JPH07315867A - Composition for sealing - Google Patents

Composition for sealing

Info

Publication number
JPH07315867A
JPH07315867A JP10682794A JP10682794A JPH07315867A JP H07315867 A JPH07315867 A JP H07315867A JP 10682794 A JP10682794 A JP 10682794A JP 10682794 A JP10682794 A JP 10682794A JP H07315867 A JPH07315867 A JP H07315867A
Authority
JP
Japan
Prior art keywords
low
powder
sealing
composition
refractory filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10682794A
Other languages
Japanese (ja)
Other versions
JP3519121B2 (en
Inventor
Nobuhiko Kawabe
信彦 川辺
Gotaro Hatta
剛太郎 八田
Atsuo Hiroi
淳雄 弘井
Noboru Nakamura
昇 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwaki Glass Co Ltd
Original Assignee
Iwaki Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwaki Glass Co Ltd filed Critical Iwaki Glass Co Ltd
Priority to JP10682794A priority Critical patent/JP3519121B2/en
Publication of JPH07315867A publication Critical patent/JPH07315867A/en
Application granted granted Critical
Publication of JP3519121B2 publication Critical patent/JP3519121B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • C03C8/245Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders containing more than 50% lead oxide, by weight

Abstract

PURPOSE:To obtain a composition for sealing capable of airtightly sealing an aluminum-based semiconductor package at a low temperature and realizing the aluminum-based semiconductor package having a high mechanical strength and thermal shock resistance by blending a low-melting glass powder with a low-expansion refractory filler powder and a ceramic powder so as to manifest a specific thermal expansion coefficient. CONSTITUTION:This composition for sealing comprises (A) a low-melting glass powder, (B) a low-expansion refractory filler powder, having 6-10mum average particle diameter and containing <=5vol.% particles having >=40mum particle diameter (e.g. cordierite) and (C) a ceramic powder having 1.0-1.6mum average particle diameter (e.g. alumina). The amounts of the components are within the following ranges: 50-75vol.% component (A), 20-45vol.% component (B) and 3-27vol.% component (C). The components are blended so as to provide 60X10<-7> to 71X10<-7>/ deg.C thermal expansion coefficient from ambient temperature to 3O0 deg.C The component (A) contains 77-87wt.% Pb0, 5-15wt.% B2O3, 0-10wt.% ZnO, 0-4wt.% SiO2, 0-2wt.% Al2O3, 0-2wt.% Bad, 0-4wt.% SnO1, 0-10wt.% Bi2O3 and 0-4wt.% V2O5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低温封着用ガラス組成
物に係り、特に高強度で、かつ耐熱性に優れたアルミナ
質半導体パッケージの封着に用いられる封着用組成物に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass composition for low temperature sealing, and more particularly to a sealing composition used for sealing an alumina semiconductor package having high strength and excellent heat resistance.

【0002】[0002]

【従来の技術】半導体は湿気や不純物にきわめて敏感な
ため、これを保護するため、パッケージに収めて、気密
的に封止するのが一般的である。このため、パッケージ
には機械的強度、熱衝撃強度が高い事が要求されてい
る。アルミナ質を用いた半導体パッケージの封止には、
上記強度が必要なことから、低融点ガラス粉末と耐火物
フィラー粉末を混合した封着用組成物が使用されてい
る。近年、半導体技術の進歩に伴い、半導体の高集積
化、大型化が進み、上記の要求がますます厳しくなり、
機械的強度、熱衝撃強度の高いパッケージを実現できる
封着用組成物が要望されている。
2. Description of the Related Art Since a semiconductor is extremely sensitive to moisture and impurities, it is generally housed in a package and hermetically sealed in order to protect it. Therefore, the package is required to have high mechanical strength and thermal shock strength. For sealing a semiconductor package using alumina,
Since the above-mentioned strength is required, a sealing composition in which a low melting point glass powder and a refractory filler powder are mixed is used. In recent years, as semiconductor technology has advanced, semiconductors have become more highly integrated and larger, and the above requirements have become more stringent.
There is a demand for a sealing composition that can realize a package having high mechanical strength and thermal shock strength.

【0003】半導体パッケージの機械的強度、熱衝撃強
度の向上を図るためには、被封着物であるアルミナとの
熱膨張係数が合っていること、封着物の機械的強度が高
いことが必要である。このため、特開昭58−2631
82号公報や特開昭59−102874号公報等に開示
されているように、低融点ガラス粉末と低膨張セラミッ
クスと低膨張ではないが機械的強度の向上を目的として
添加されるセラミックス粉末からなる封着用組成物が開
発されてきた。
In order to improve the mechanical strength and thermal shock strength of a semiconductor package, it is necessary that the coefficient of thermal expansion of alumina to be adhered is matched and that the mechanical strength of the sealed object is high. is there. For this reason, JP-A-58-2631
No. 82, JP-A-59-102874, etc., it comprises a low-melting glass powder, a low-expansion ceramic, and a ceramic powder which is not low-expanded but is added for the purpose of improving mechanical strength. Sealing compositions have been developed.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の封着用
組成物は、近年のパッケージに要求される機械的強度、
熱衝撃強度を充分に満足させるものではない。この要求
を満足させるには、低融点ガラス粉末、低膨張耐火物フ
ィラー粉末、セラミックス粉末の組合せを調整すること
を要するが、封着に必要な流動性が得られなく、気密封
着できなかったり、封着温度が上がり、半導体チップに
ダメージを与えたりするという課題があった。
However, the conventional sealing composition has a problem in that the mechanical strength required for recent packages is
It does not fully satisfy the thermal shock strength. To meet this requirement, it is necessary to adjust the combination of low-melting glass powder, low-expansion refractory filler powder, and ceramic powder, but the fluidity required for sealing cannot be obtained, and air-tight sealing cannot be achieved. However, there is a problem that the sealing temperature rises and the semiconductor chip is damaged.

【0005】本発明は、上記課題を鑑みてなされたもの
で、その目的は低温で気密封着でき、機械的強度、熱衝
撃強度の高いアルミナ質半導体パッケージを実現できる
封着用組成物を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to provide a sealing composition which can be hermetically sealed at a low temperature and can realize an alumina semiconductor package having high mechanical strength and thermal shock strength. Especially.

【0006】[0006]

【課題を解決するための手段】本発明は、低融点ガラス
粉末と、平均粒径が6〜10μmで、粒径40μm以上
の粒子が5容量%以下である低膨張耐火物フィラー粉末
と、平均粒径が1.0〜1.6μmであるセラミックス
粉末とからなり、低融点ガラス粉末が50〜75容量
%、低膨張耐火物フィラー粉末が20〜45容量%、セ
ラミックス粉末が3〜27容量%の範囲にあり、かつ室
温から300℃までの熱膨張係数が60×10-7〜71
×10-7/℃の範囲にある封着用組成物である。
The present invention comprises a low melting point glass powder and a low expansion refractory filler powder having an average particle size of 6 to 10 μm and particles having a particle size of 40 μm or more in an amount of 5% by volume or less. Ceramic powder having a particle size of 1.0 to 1.6 μm, low melting glass powder 50 to 75% by volume, low expansion refractory filler powder 20 to 45% by volume, ceramic powder 3 to 27% by volume. And the coefficient of thermal expansion from room temperature to 300 ° C. is 60 × 10 −7 to 71.
The composition for sealing is in the range of × 10 -7 / ° C.

【0007】本発明において、粒子の平均粒径は、次の
ようにして測定される。空気透過法により、粒子の比表
面積(単位重量当たりの表面積)を求め、それに粒子の
密度を乗じて単位体積当たりの表面積とし、その逆数を
求め平均粒径とする。
In the present invention, the average particle size of the particles is measured as follows. The specific surface area (surface area per unit weight) of the particles is determined by the air permeation method, and the density of the particles is multiplied to obtain the surface area per unit volume, and the reciprocal thereof is determined to be the average particle diameter.

【0008】以下に前記限定の理由を説明する。The reason for the above limitation will be described below.

【0009】低膨張耐火物フィラー粉末は、封着用組成
物の熱膨張係数を小さくし、被封着物のアルミナ質パッ
ケージの熱膨張係数に近づけ、封着による熱応力を緩和
し、パッケージの耐熱衝撃性を向上させる効果がある。
その平均粒径が6μmより小さいと、低温度で封着する
のに必要な流動性を得られない。10μmより大きいと
機械的強度が弱くなり、機械的強度の高いアルミナ質パ
ッケージが得られない。さらに、低膨張耐火物フィラー
粉末のうち、40μm以上の粒子が5容量%を超える
と、封着用組成物の機械的強度が弱くなり、所望の機械
的強度を得るためには、より多くの量を添加する必要が
生じる。その結果、封着に必要な流動性を得られない。
The low expansion refractory filler powder reduces the coefficient of thermal expansion of the composition for sealing, approaches the coefficient of thermal expansion of the alumina package to be sealed, relaxes the thermal stress due to sealing, and has a thermal shock resistance of the package. It has the effect of improving the sex.
If the average particle size is smaller than 6 μm, the fluidity required for sealing at low temperature cannot be obtained. If it is larger than 10 μm, the mechanical strength becomes weak, and an alumina package having high mechanical strength cannot be obtained. Furthermore, if the particles of 40 μm or more out of the low expansion refractory filler powder exceed 5% by volume, the mechanical strength of the sealing composition becomes weak, and in order to obtain the desired mechanical strength, a larger amount is required. Need to be added. As a result, the fluidity required for sealing cannot be obtained.

【0010】セラミックス粉末は、封着用組成物の機械
的強度を向上させ、アルミナ質パッケージの機械的強度
を向上させる効果がある。このセラミックス粉末の平均
粒径が1.0μm未満では低温で封着に必要な流動性が
得られない。平均粒径が1.6μmを超えると低膨張耐
火物フィラー粉末の10μmより大きい場合と同様の難
点を生じる。
The ceramic powder has the effect of improving the mechanical strength of the sealing composition and improving the mechanical strength of the alumina package. If the average particle size of the ceramic powder is less than 1.0 μm, the fluidity required for sealing cannot be obtained at low temperatures. If the average particle size exceeds 1.6 μm, the same problems as those of the low expansion refractory filler powder larger than 10 μm occur.

【0011】本発明の封着用組成物は、低融点ガラス粉
末が55〜75容量%、低膨張耐火物フィラー粉末が2
0〜45容量%、セラミックス粉末が3〜27容量%の
範囲にある。
The sealing composition of the present invention comprises 55 to 75% by volume of low melting point glass powder and 2% of low expansion refractory filler powder.
0 to 45% by volume and ceramic powder in the range of 3 to 27% by volume.

【0012】低融点ガラス粉末の含有量が75容量%を
超えると熱膨張係数が大きくなりすぎ、被封着物のアル
ミナ質パッケージの熱膨張係数と整合させることができ
ない。含有量が55容量%未満では、低温度で封着に必
要な流動性が得られない。
When the content of the low melting point glass powder exceeds 75% by volume, the coefficient of thermal expansion becomes too large to match the coefficient of thermal expansion of the alumina package of the material to be sealed. If the content is less than 55% by volume, the fluidity required for sealing cannot be obtained at low temperature.

【0013】低膨張耐火物フィラー粉末の含有量が45
容量%を超えると封着に必要な流動性が得られない。2
0容量%未満ではアルミナパッケージの熱膨張係数と整
合させることが難しい。
The low expansion refractory filler powder content is 45
If it exceeds the capacity%, the fluidity required for sealing cannot be obtained. Two
If it is less than 0% by volume, it is difficult to match the coefficient of thermal expansion of the alumina package.

【0014】セラミックス粉末の含有量が27容量%を
超えると低温度で封着するのに必要な流動性が得られな
い、又は、被封着物であるアルミナ質パッケージの熱膨
張係数との整合性が得られない。3容量%未満では封着
用組成物の機械的強度の向上に効果がない。
When the content of the ceramic powder exceeds 27% by volume, the fluidity required for sealing at a low temperature cannot be obtained, or the compatibility with the thermal expansion coefficient of the alumina package which is the material to be sealed. Can't get If it is less than 3% by volume, it is not effective in improving the mechanical strength of the sealing composition.

【0015】本発明の封着用組成物において、低融点ガ
ラス粉末、低膨張耐火物フィラ−粉末、セラミックス粉
末の混合割合は、低融点ガラス粉末が55〜70容量
%、低膨張耐火物フィラー粉末が20〜35容量%、セ
ラミックス粉末が9〜21容量%の範囲が特に好まし
い。
In the sealing composition of the present invention, the low-melting glass powder, the low-expansion refractory filler powder and the ceramic powder are mixed in a mixing ratio of 55-70% by volume of the low-melting glass powder and low-expansion refractory filler powder. The range of 20 to 35% by volume and the ceramic powder of 9 to 21% by volume are particularly preferable.

【0016】封着用組成物の熱膨張係数は、アルミナ質
パッケージの熱衝撃強度に大きな影響を与える。本発明
の封着用組成物は、室温から300℃までの熱膨張係数
が60×10-7〜71×10-7/℃の範囲にある。
The coefficient of thermal expansion of the sealing composition has a great influence on the thermal shock strength of the alumina package. The sealing composition of the present invention has a coefficient of thermal expansion from room temperature to 300 ° C. in the range of 60 × 10 −7 to 71 × 10 −7 / ° C.

【0017】熱膨張係数が71×10-7/℃を超える
と、被封着物であるアルミナ質より熱膨張係数が大きく
なり、急激に熱をかけた場合、封着用組成物に引張り応
力が発生し、マイクロクラックを生じやすい。熱膨張係
数が60×10-7/℃より小さいと、急冷の熱衝撃があ
った場合、 上記熱膨張係数が71×10-7/℃を超える
場合と同じ難点がある。どちらの場合もアルミナ質パッ
ケージの熱衝撃強度を劣化させるので好ましくない。
When the coefficient of thermal expansion exceeds 71 × 10 -7 / ° C., the coefficient of thermal expansion becomes larger than that of the alumina material to be sealed, and when heat is applied rapidly, tensile stress is generated in the sealing composition. However, microcracks are likely to occur. When the coefficient of thermal expansion is smaller than 60 × 10 −7 / ° C., there is the same drawback as in the case where the thermal expansion coefficient exceeds 71 × 10 −7 / ° C. when the thermal shock of quenching occurs. In either case, the thermal shock strength of the alumina package is deteriorated, which is not preferable.

【0018】封着用組成物の熱膨張係数は、上記理由に
より、被封着物であるアルミナ質パッケージとの整合を
とるため、好ましくは、62×10-7〜66×10-7
℃の範囲がより望ましい。
The coefficient of thermal expansion of the sealing composition is preferably 62 × 10 −7 to 66 × 10 −7 / for the reason described above, in order to match the alumina package which is the object to be sealed.
The range of ° C is more desirable.

【0019】本発明の低融点ガラス粉末の組成は、重量
%で、PbO:77〜87重量%、B23 :5〜15
重量%、ZnO:0〜10重量%、SiO2 :0〜4重
量%、Al23 :0〜2重量%、BaO:0〜2重量
%、SnO2 :0〜4重量%、Bi23 :0〜10重
量%、V25 :0〜4重量%の範囲にあることが好ま
しい。PbO:82〜86重量%、B23 :10〜1
4重量%、ZnO:1〜3重量%、SiO2 :0〜2重
量%、Al23 :0〜1重量%、BaO:0〜1重量
%、SnO2 :0〜1重量%、Bi23 0〜3重量
%、V25 :0〜1重量%の範囲が特に好ましい。
The composition of the low melting point glass powder of the present invention is, by weight, PbO: 77-87% by weight, B 2 O 3 : 5-15.
Wt%, ZnO: 0 wt%, SiO 2: 0~4 wt%, Al 2 O 3: 0~2 wt%, BaO: 0 to 2 wt%, SnO 2: 0~4 wt%, Bi 2 O 3: 0 wt%, V 2 O 5: is preferably in the range of 0-4 wt%. PbO: 82-86 wt%, B 2 O 3: 10~1
4 wt%, ZnO: 1 to 3 wt%, SiO 2: 0~2 wt%, Al 2 O 3: 0~1 wt%, BaO: 0 to 1 wt%, SnO 2: 0~1 wt%, Bi A range of 0 to 3% by weight of 2 O 3 and 0 to 1% by weight of V 2 O 5 is particularly preferable.

【0020】PbOは少なすぎると軟化点が高くなり封
着温度が高くなる。一方多すぎるとガラスの溶融時に結
晶化しやすくなるとともに封着時の流動性が悪くなり、
充分な封着強度が得られず、いずれも好ましくない。B
23 は少なすぎるとPbOが多すぎる場合と同様の難
点が生じ、多すぎるとPbOが少なすぎる場合と同様の
難点が生じ、いずれも好ましくない。ZnOは、多すぎ
るとPbOが多すぎる場合と同様の難点が生じるので好
ましくない。
If PbO is too small, the softening point becomes high and the sealing temperature becomes high. On the other hand, if there is too much, it tends to crystallize when the glass melts and the fluidity at the time of sealing becomes poor,
Sufficient sealing strength cannot be obtained, which is not preferable. B
If the amount of 2 O 3 is too small, the same problems as in the case of too much PbO occur, and if it is too large, the same problems as in the case of too little PbO occur, both of which are not preferred. ZnO is not preferable because too much ZnO causes the same problems as when too much PbO is present.

【0021】SiO2 、Al23 、BaO及びSnO
2 は添加することにより耐酸性を向上することができ
る。多すぎると封着温度が高くなり好ましくない。Bi
23及びV25 は、添加することにより封着温度を
下げる効果がある.多すぎるとPbOが多すぎる場合と
同様の難点を生じるので好ましくない。
SiO 2 , Al 2 O 3 , BaO and SnO
By adding 2, it is possible to improve the acid resistance. If it is too large, the sealing temperature becomes high, which is not preferable. Bi
2 O 3 and V 2 O 5 have the effect of lowering the sealing temperature by adding them. If it is too large, the same problems as in the case of too much PbO occur, which is not preferable.

【0022】低融点ガラス粉末の大きさは、平均粒径で
1〜6μm程度、最大粒径で100μm程度のものが好
ましい。
The low-melting glass powder preferably has an average particle size of about 1 to 6 μm and a maximum particle size of about 100 μm.

【0023】本発明の低膨張耐火物フィラー粉末として
は、室温から300℃までの熱膨張係数が30×10-7
/℃以下のもが好ましい。なかでも、コージェライト、
β−ユークリプタイト、ウイルマイト及びジルコンは、
入手が比較的容易なので、低膨張耐火物フィラー粉末と
して、好適に使用できる。
The low expansion refractory filler powder of the present invention has a thermal expansion coefficient of 30 × 10 −7 from room temperature to 300 ° C.
It is preferably below / ° C. Among them, cordierite,
β-eucryptite, willemite and zircon are
Since it is relatively easy to obtain, it can be preferably used as a low expansion refractory filler powder.

【0024】本発明のセラミックス粉末としては、室温
でヤング率が2.1×105 kg/cm2 以上及び熱伝
導率が75kcal/m・hr・℃以上の特性を有する
ものが好ましい。セラミックス粉末として、具体的には
アルミナ、酸化スズ、TiO2 −SnO2 固溶体が例示
される。TiO2 −SnO2 固溶体は、絶縁性、低誘電
率を保つために、TiO2 の含有量は5〜40モル%の
範囲にあり、TiO2−SnO2 固溶体はルチル型構造
をとるものが好ましい。
The ceramic powder of the present invention preferably has a Young's modulus of 2.1 × 10 5 kg / cm 2 or more and a thermal conductivity of 75 kcal / m · hr · ° C. or more at room temperature. Specific examples of the ceramic powder include alumina, tin oxide, and TiO 2 —SnO 2 solid solution. The TiO 2 —SnO 2 solid solution has a TiO 2 content in the range of 5 to 40 mol% in order to maintain insulation and a low dielectric constant, and the TiO 2 —SnO 2 solid solution preferably has a rutile structure. .

【0025】本発明の低融点ガラス粉末、低膨張耐火物
フィラー粉末、セラミックス粉末の製造方法は、特に限
定されなく、公知の方法で行うことができる。すなわ
ち、低融点ガラスは、PbO、B23 、ZnO、Si
2 、Al23 、BaO、SnO2 、Bi23 、V
25 を与える原料を、上記割合を満足するように配合
し、加熱して溶融させた後、金型に流し込みガラスブロ
ックを製造する。次いで、このガラスブロックを、例え
ばボールミル等を用いて粉砕してガラス粉末とする。低
膨張耐火物フィラー粉末、セラミックス粉末は、各組成
を与える原料を所定の割合で混合し、焼成、粉砕して製
造する。
The low-melting glass powder, low-expansion refractory filler powder and ceramic powder of the present invention are not particularly limited in their production method, and any known method can be used. That is, the low-melting-point glass includes PbO, B 2 O 3 , ZnO, and Si.
O 2 , Al 2 O 3 , BaO, SnO 2 , Bi 2 O 3 , V
Raw materials that give 2 O 5 are blended so as to satisfy the above ratio, heated and melted, and then poured into a mold to manufacture a glass block. Next, this glass block is crushed using a ball mill or the like to obtain glass powder. The low-expansion refractory filler powder and the ceramic powder are manufactured by mixing raw materials that give each composition in a predetermined ratio, firing and crushing.

【0026】低融点ガラス粉末、低膨張耐火物フィラー
粉末、セラミックス粉末の混合方法はどのような方法で
もよく、例えば、ガラスブロックをボールミルで粉砕す
る際に、低膨張耐火物フィラー、セラミックスを加え、
粉砕、混合を同時に行ってもよく、それぞれを所定の大
きさの粉末とした後、混合してもよい。
The low-melting glass powder, low-expansion refractory filler powder and ceramics powder may be mixed in any manner.
The pulverization and the mixing may be carried out simultaneously, or the powder may be made into powder having a predetermined size and then mixed.

【0027】このようにして製造された、本発明の封着
用組成物は、従来の封着用組成物と同様な方法により、
半導体パッケージの封着に使用できる。すなわち、例え
ば、封着用組成物と有機バインダーとを混合した後、半
導体のパッケージの封着すべき部分に付着させ、加熱し
て封着用組成物を溶融させると共に、有機バインダーを
飛散させることにより、パッケージを封着する。
The sealing composition of the present invention produced in this manner is treated in the same manner as in conventional sealing compositions.
It can be used for sealing semiconductor packages. That is, for example, after mixing the sealing composition and the organic binder, the mixture is attached to a portion of the semiconductor package to be sealed, and the sealing composition is heated to melt, and the organic binder is scattered, Seal the package.

【0028】[0028]

【作用】以上述べたように、本発明の封着用組成物は、
特定の粒度を持つ低膨張耐火物フィラー粉末、セラミッ
クス粉末を混合しているため、低温で封着でき、封着さ
れた半導体パッケージは、機械的強度、熱衝撃強度の高
いパッケージが実現できる。したがって、本発明の封着
用組成物は、特にアルミナ質からなる半導体パッケージ
の封着に好適に用いられる。
As described above, the sealing composition of the present invention is
Since the low-expansion refractory filler powder having a specific particle size and the ceramic powder are mixed, they can be sealed at a low temperature, and the sealed semiconductor package can realize a package having high mechanical strength and thermal shock strength. Therefore, the sealing composition of the present invention is particularly suitable for sealing a semiconductor package made of alumina.

【0029】[0029]

【実施例】PbO、B23 、ZnO、SiO2 、Al
23 、BaO、SnO2 、Bi23 、V25 を表
1に示す割合で配合し、白金ルツボに入れ、1000〜
1200℃の電気炉中で、1時間加熱して溶融させた
後、急冷して板状に成形し、板状のガラスブロックを得
た。次いで、このガラスブロックをボールミルを用いて
粉砕して平均粒径1〜6μmのガラス粉末を得た。これ
らのガラスの組成、転移点及び軟化点を表1のA、B、
C欄に記載した。得られたガラス粉末と低膨張耐火物フ
ィラー粉末、セラミックス粉末とを所定の割合で混合
し、封着用組成物を得た。
EXAMPLES PbO, B 2 O 3 , ZnO, SiO 2 , Al
2 O 3 , BaO, SnO 2 , Bi 2 O 3 , and V 2 O 5 were mixed in the proportions shown in Table 1, put in a platinum crucible, and the mixture was heated to 1000-
After heating and melting in an electric furnace at 1200 ° C. for 1 hour, it was rapidly cooled and molded into a plate shape to obtain a plate-shaped glass block. Next, this glass block was crushed using a ball mill to obtain glass powder having an average particle size of 1 to 6 μm. The compositions, transition points and softening points of these glasses are shown in Table 1, A, B,
It is described in column C. The obtained glass powder, low-expansion refractory filler powder, and ceramic powder were mixed at a predetermined ratio to obtain a sealing composition.

【0030】これらの混合割合、ならびに、低膨張耐火
物フィラー粉末及びセラミックス粉末の種類、平均粒径
等を表2、表3、表4のそれぞれの欄に示した。表に
は、封着用組成物の熱膨張係数、流動性、平均粒径、粒
度分布、機械的強度、耐熱衝撃性をそれぞれ測定した結
果も示す。さらに、比較例についても同様の測定を行
い、その結果も表に併記した。なお、表における特性等
の測定法は、以下の通りである。
The mixing ratios, types of low expansion refractory filler powder and ceramic powder, average particle size, etc. are shown in the columns of Tables 2, 3 and 4, respectively. The table also shows the results of measuring the thermal expansion coefficient, fluidity, average particle size, particle size distribution, mechanical strength, and thermal shock resistance of the sealing composition. Furthermore, the same measurement was performed for the comparative example, and the results are also shown in the table. The methods for measuring the characteristics and the like in the table are as follows.

【0031】(1)ガラス転移点、軟化点:ガラスを粉
末とし示差熱分析装置を用いて、昇温速度10℃/分で
それぞれの温度を測定した。
(1) Glass transition point and softening point: Glass was used as a powder and each temperature was measured at a temperature rising rate of 10 ° C./min using a differential thermal analyzer.

【0032】(2)熱膨張係数:示差膨張計により昇温
速度10℃/分で、30〜300℃までの平均熱膨張係
数(単位:10-7/℃)を測定した。
(2) Coefficient of thermal expansion: An average coefficient of thermal expansion (unit: 10 -7 / ° C) from 30 to 300 ° C was measured by a differential expansion meter at a temperature rising rate of 10 ° C / minute.

【0033】(3)流動性:各封着用組成物を、その比
重に相当する重量を採取し、12.5mmφの円柱状に
加圧成型した後、板ガラス上にのせ、所定の温度で10
分間熱処理した後、その直径を測定し、20mm以上で
あれば良好と判定した。
(3) Fluidity: Each sealing composition was weighed out in a weight corresponding to its specific gravity, pressure-molded into a cylindrical shape having a diameter of 12.5 mm, placed on a plate glass and kept at a predetermined temperature for 10 minutes.
After heat treatment for a minute, its diameter was measured, and if it was 20 mm or more, it was judged as good.

【0034】(4)平均粒径:ブレーン空気透過装置に
より、粒子の比表面積(単位重量当たりの表面積)を測
定し、これに粒子の密度を乗じ、さらに、その逆数を求
め平均粒径とした。
(4) Average particle size: The specific surface area (surface area per unit weight) of the particles was measured with a Blaine air permeation apparatus, and this was multiplied by the density of the particles, and the reciprocal thereof was determined to be the average particle size. .

【0035】(5)粒度分布:レーザー回折式粒度分布
測定機により40μm以上の粒度の累積値を測定した。
(5) Particle size distribution: A cumulative value of particle sizes of 40 μm or more was measured by a laser diffraction type particle size distribution measuring device.

【0036】(6)機械的強度:各封着用組成物を用い
てアルミナ質パッケージを(28ピンタイプNi−Fe
合金)気密封着しMIL−883C−2024のトルク
強度試験を行ない、20個のサンプルの最小値を測定し
た。
(6) Mechanical strength: An alumina package (28-pin type Ni-Fe) was prepared by using each sealing composition.
Alloy) Airtightly sealed and subjected to MIL-883C-2024 torque strength test to measure the minimum value of 20 samples.

【0037】(7)耐熱衝撃性:各封着用組成物を用い
てアルミナ質パッケージを(28ピンタイプNi−Fe
合金)気密封着しMIL−883B−1011−2−A
による熱衝撃テストを実施した。各々50個のサンプル
をHeリークテスタによりリークがないことを確認した
後、前記試験を行ない、試験後Heリークテスタにより
5×10-8cc/秒以上のリークがあるサンプルが1個
でも検出された場合、リークあり(耐熱衝撃性不良)と
した。
(7) Thermal shock resistance: Aluminous packages (28-pin type Ni-Fe) were prepared using each sealing composition.
Alloy) Airtightly adhered to MIL-883B-1011-2-A
The thermal shock test was conducted. When the He leak tester confirms that there are no leaks of 50 samples each, and the above test is performed, and even if one sample with a leak of 5 × 10 −8 cc / sec or more is detected by the He leak tester after the test. There was a leak (poor thermal shock resistance).

【0038】表2、表3、表4の結果から、実施例1〜
8の本発明の封着用組成物は、従来の封着用組成物と同
程度の低温で封着でき、封着されたパッケージの機械的
強度、熱衝撃強度が良好であることがわかる。
From the results of Table 2, Table 3 and Table 4, Examples 1 to 1
It can be seen that the sealing composition of No. 8 of the present invention can be sealed at a temperature as low as that of the conventional sealing composition, and the sealed package has good mechanical strength and thermal shock strength.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【表4】 [Table 4]

【0043】[0043]

【発明の効果】本発明の封着用組成物は、低温で気密封
着でき、封着された半導体パッケージは、機械的強度、
熱衝撃強度の高いパッケージが実現できる。したがっ
て、本発明の封着用組成物は、特にアルミナ質からなる
半導体パッケージの封着に好適に用いられる。
The sealing composition of the present invention can be hermetically sealed at a low temperature, and the sealed semiconductor package has mechanical strength,
A package with high thermal shock strength can be realized. Therefore, the sealing composition of the present invention is particularly suitable for sealing a semiconductor package made of alumina.

フロントページの続き (72)発明者 中村 昇 千葉県船橋市行田一丁目50番1号 岩城硝 子株式会社内Front page continuation (72) Inventor Noboru Nakamura 1-50-1 Gyoda, Funabashi, Chiba Iwaki Glass Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】低融点ガラス粉末と、平均粒径が6〜10
μmで、粒径40μm以上の粒子が5容量%以下である
低膨張耐火物フィラー粉末と、平均粒径が1.0〜1.
6μmであるセラミックス粉末とからなり、低融点ガラ
ス粉末が50〜75容量%、低膨張耐火物フィラー粉末
が20〜45容量%、セラミックス粉末が3〜27容量
%の範囲にあり、かつ室温から300℃までの熱膨張係
数が60×10-7〜71×10-7/℃の範囲にある封着
用組成物。
1. A low melting glass powder and an average particle size of 6 to 10.
Low expansion refractory filler powder having a particle size of 40 μm or more and 5% by volume or less, and an average particle size of 1.0 to 1.
6 μm of ceramic powder, low melting glass powder in the range of 50 to 75% by volume, low expansion refractory filler powder in the range of 20 to 45% by volume, ceramic powder in the range of 3 to 27% by volume, and from room temperature to 300 A sealing composition having a coefficient of thermal expansion up to ℃ in the range of 60 × 10 -7 to 71 × 10 -7 / ° C.
【請求項2】前記低融点ガラスは、PbO:77〜87
重量%、B23 :5〜15重量%、ZnO:0〜10
重量%、SiO2 :0〜4重量%、Al23 :0〜2
重量%、BaO:0〜2重量%、SnO2 :0〜4重量
%、Bi23 :0〜10重量%、V25 :0〜4重
量%の範囲にある請求項1記載の封着用組成物。
2. The low melting point glass is PbO: 77-87.
% By weight, B 2 O 3 : 5 to 15% by weight, ZnO: 0 to 10
% By weight, SiO 2 : 0 to 4% by weight, Al 2 O 3 : 0 to 2
Wt%, BaO: 0 to 2 wt%, SnO 2: 0 to 4 wt%, Bi 2 O 3: 0~10 wt%, V 2 O 5: according to claim 1, wherein in the range of 0-4 wt% A composition for sealing.
【請求項3】前記低膨張耐火物フィラー粉末はコージェ
ライト、β−ユークリプタイト、ウイルマイト及びジル
コンから選ばれた少なくとも1種である請求項1又は2
記載の封着用組成物。
3. The low expansion refractory filler powder is at least one selected from cordierite, β-eucryptite, willemite and zircon.
A composition for sealing as described above.
【請求項4】前記セラミックス粉末は、アルミナ、酸化
スズ及びTiO2 −SnO2 固溶体から選ばれた少なく
とも1種である請求項1、2又は3記載の封着用組成
物。
4. The sealing composition according to claim 1, 2 or 3, wherein the ceramic powder is at least one selected from alumina, tin oxide and TiO 2 —SnO 2 solid solution.
JP10682794A 1994-05-20 1994-05-20 Sealing composition Expired - Fee Related JP3519121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10682794A JP3519121B2 (en) 1994-05-20 1994-05-20 Sealing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10682794A JP3519121B2 (en) 1994-05-20 1994-05-20 Sealing composition

Publications (2)

Publication Number Publication Date
JPH07315867A true JPH07315867A (en) 1995-12-05
JP3519121B2 JP3519121B2 (en) 2004-04-12

Family

ID=14443607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10682794A Expired - Fee Related JP3519121B2 (en) 1994-05-20 1994-05-20 Sealing composition

Country Status (1)

Country Link
JP (1) JP3519121B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163106A (en) * 1997-09-09 2000-12-19 Asahi Glass Company Ltd. Color cathode ray tube and water resistant glass frit
JP2008247658A (en) * 2007-03-30 2008-10-16 Hitachi Powdered Metals Co Ltd Glass paste composition
CN103848571A (en) * 2012-12-06 2014-06-11 北京有色金属研究总院 Semiconductor glass glaze capable of improving breakdown strength of alternating voltage of glass ceramic capacitor and preparation method thereof
CN112500186A (en) * 2020-11-09 2021-03-16 新沂市锡沂高新材料产业技术研究院有限公司 High-bonding-strength ceramic and glass connecting material and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163106A (en) * 1997-09-09 2000-12-19 Asahi Glass Company Ltd. Color cathode ray tube and water resistant glass frit
JP2008247658A (en) * 2007-03-30 2008-10-16 Hitachi Powdered Metals Co Ltd Glass paste composition
CN103848571A (en) * 2012-12-06 2014-06-11 北京有色金属研究总院 Semiconductor glass glaze capable of improving breakdown strength of alternating voltage of glass ceramic capacitor and preparation method thereof
CN112500186A (en) * 2020-11-09 2021-03-16 新沂市锡沂高新材料产业技术研究院有限公司 High-bonding-strength ceramic and glass connecting material and preparation method thereof

Also Published As

Publication number Publication date
JP3519121B2 (en) 2004-04-12

Similar Documents

Publication Publication Date Title
US4186023A (en) Sealing glass composition
US5346863A (en) Low temperature sealing composition
JPH09278482A (en) Low dielectric constant glass composition
US4704370A (en) Sealing glass composition
JPH0127982B2 (en)
JP3519121B2 (en) Sealing composition
JP4425386B2 (en) Low melting point glass and sealing composition
JPS6143298B2 (en)
JPH0624797A (en) Glass for bonding or sealing
JPH0419176B2 (en)
JP3402314B2 (en) Method for producing low melting point sealing composition and method for using the same
JP3227733B2 (en) High expansion sealing material
JPH05105480A (en) Seal bonding composition
JPS6143299B2 (en)
JPH0570172A (en) Highly expandable composite material
JPS6354660B2 (en)
JPH04937B2 (en)
JPH04349146A (en) High expansion seal bonding material having low melting point
JP3151794B2 (en) Low melting point sealing composition
JP3424218B2 (en) Low melting point sealing composition
JPH0193436A (en) Glass composition for substrate material
JPH08253345A (en) Composition for low-temperature sealing
JPS58161943A (en) Glass composition for sealing
JP2957087B2 (en) Low temperature sealing composition
JPH0859295A (en) Low melting point composition for sealing

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040128

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080206

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090206

LAPS Cancellation because of no payment of annual fees