JPH0731547B2 - Solar tracking device - Google Patents

Solar tracking device

Info

Publication number
JPH0731547B2
JPH0731547B2 JP60063340A JP6334085A JPH0731547B2 JP H0731547 B2 JPH0731547 B2 JP H0731547B2 JP 60063340 A JP60063340 A JP 60063340A JP 6334085 A JP6334085 A JP 6334085A JP H0731547 B2 JPH0731547 B2 JP H0731547B2
Authority
JP
Japan
Prior art keywords
solar
gantry
liquid surface
light receiving
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60063340A
Other languages
Japanese (ja)
Other versions
JPS61223909A (en
Inventor
省造 倉嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP60063340A priority Critical patent/JPH0731547B2/en
Priority to US06/846,706 priority patent/US4786795A/en
Publication of JPS61223909A publication Critical patent/JPS61223909A/en
Publication of JPH0731547B2 publication Critical patent/JPH0731547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S99/00Subject matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/70Waterborne solar heat collector modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/422Vertical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7861Solar tracking systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は太陽光発電システム、太陽光収熱システム、そ
の他の太陽光利用システムに使用する太陽光追尾装置に
係り、特に時々刻々に変化する太陽の方位を追尾し、太
陽光線の集光効率を高めた太陽光追尾装置に関する。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to a solar power tracking system used in a solar power generation system, a solar heat collecting system, and other solar power utilization systems, and in particular, changes moment by moment. The present invention relates to a solar tracking device that tracks the direction of the sun and enhances the efficiency of collecting sunlight.

「従来の技術」 従来より石油その他の枯渇エネルギーの代替として、無
尽蔵且つ無償で利用出来る太陽光発電が注目されてい
る。
“Conventional technology” Solar power generation, which is inexhaustible and free of charge, has been attracting attention as an alternative to oil and other depleted energy.

しかしながらこの種の発電システムにおいては太陽電池
材料としてのシリコンの価格が高く、而もそのエネルギ
ー変換効率は10〜15%と低効率である為に、該発電装置
の設置コストの回収期間が数年以上と極めて長く、商用
化を妨げる大きな要因となっていた。
However, in this type of power generation system, the price of silicon as a solar cell material is high, and its energy conversion efficiency is as low as 10 to 15%. Therefore, the recovery period of the installation cost of the power generation device is several years. The above is extremely long, and has been a major factor that hinders commercialization.

この為従来よりエネルギー変換効率を高める為に、太陽
電池アレイの前面にフレンネルレンズその他の集光機構
を付設したり、又太陽光と太陽熱の協同利用を図るハイ
ブリッドシステムの研究開発を行っているが、例えこの
ようなシステムを開発したとしても、前記太陽電池アレ
イが日の出から日没までの太陽光線の方位の変化に追尾
して回動し得る、太陽光線追尾装置付設しなければ、本
質的な集光効率の向上は何等図り得ないことは言うまで
もない。
For this reason, in order to increase the energy conversion efficiency from the past, we are attaching a Frennel lens or other light condensing mechanism to the front surface of the solar cell array, and are conducting research and development of a hybrid system for cooperative use of sunlight and solar heat. However, even if such a system is developed, it is essential that the solar cell array can rotate by tracking the change in the direction of the sun rays from sunrise to sunset, unless a sun ray tracking device is attached. Needless to say, it is impossible to improve the light collection efficiency.

そして前記追尾装置の構成として、例えば水平面内を回
転する回転架台上に多数の太陽電池アレイを設置すると
共に、前記回転架台の回転方向に角度差を有する複数の
光センサー(フォトダイオード等)を回転架台上に設
け、該光センサー間の受光量の差異に基づいて太陽電池
アレイの受光面と太陽光線との位置ずれを検知し、前記
太陽光線の方位変化に追従させて回転架台を回転させな
がら、太陽光線の追尾を行うようにした装置が存在する
(特開昭58−193510他) 「発明が解決しようとする問題点」 しかしながらかかる従来技術においては、前記回転架台
上には多数の太陽電池アレイと共に該太陽電池アレイの
支持部材その他が搭載され、而もこれらを支持する回転
架台自体も所定の強度を必要とする為に、回転架台の重
量負担が極めて大となり、該回転架台を駆動する為に必
要とする駆動エネルギーが相当大きくならざるを得ず、
設置コストの増加に比較してそれ程のエネルギー変換効
率の向上を図り得ないという問題を有していた。
As the configuration of the tracking device, for example, a large number of solar cell arrays are installed on a rotary mount that rotates in a horizontal plane, and a plurality of optical sensors (photodiodes, etc.) having an angular difference in the rotation direction of the rotary mount are rotated. Provided on the pedestal, detects the positional deviation between the light receiving surface of the solar cell array and the sun rays based on the difference in the amount of light received between the optical sensors, while rotating the rotary pedestal following the azimuth change of the sun rays. , There is a device for tracking the sun's rays (Japanese Patent Laid-Open No. 58-193510, etc.) "Problems to be solved by the invention" However, in such a conventional technique, a large number of solar cells are mounted on the rotary mount. Since the solar cell array supporting member and the like are mounted together with the array, and the rotary platform itself supporting these also requires a predetermined strength, the weight burden of the rotary platform is extremely large. Therefore, the drive energy required to drive the rotary mount is inevitably large,
There was a problem that the energy conversion efficiency could not be improved so much as compared with the increase in installation cost.

又、前記従来技術においては、回転架台の重量負担が大
な故に、該回転架台を回転可能に支持する支持台側も強
固に且つその回転時に生じる摩擦抵抗等についても極力
少なくなるように設計しなければならず、機構の複雑化
と共に装置全体が大型化し、設置コストが増加するとい
う欠点を有す。
Further, in the above-mentioned conventional technique, since the weight of the rotary mount is heavy, the support base for rotatably supporting the rotary mount is designed to be strong and the frictional resistance generated during the rotation is minimized. However, it has a drawback that the apparatus becomes large and the installation cost increases as the mechanism becomes complicated.

本発明が解決しようとする技術的課題は、前記回転架台
の重量負担をほとんど0近くまで軽減し、回転架台を駆
動する為に必要とする駆動エネルギーを極めてて小さく
すると共に、簡易な構造で前記回転架台を支持及び駆動
し得るようにした太陽光追尾装置を提供する事にある。
The technical problem to be solved by the present invention is to reduce the weight load of the rotary gantry to almost zero, to reduce the drive energy required for driving the rotary gantry to an extremely small value, and to simplify the structure described above. (EN) Provided is a solar light tracking device capable of supporting and driving a rotary mount.

又本発明の他の目的とする所は、前記回転架台に太陽電
池アレイを搭載した太陽光発電装置において、前記発電
に使用される太陽電池アレイの起電力を何等使用するこ
となく且つ外部より何等動力を得ずして前記回転架台の
追尾駆動を可能にならしめた太陽光追尾装置を提供する
事にある。
Another object of the present invention is to provide a solar power generation device in which a solar cell array is mounted on the rotary mount, without using any electromotive force of the solar cell array used for the power generation, and from an external source. Another object of the present invention is to provide a solar light tracking device that enables tracking drive of the rotary gantry without obtaining power.

「問題点を解決する為の手段」 本発明は、液面上に浮力を持たせて浮設され、固定軸に
回転自在に且つ上下動自在に軸支された略偏平状の架台
と、該架台上に設置された太陽光利用機器と、前記架台
を液面に沿って水平面内で回転させる回転手段と、太陽
光利用機器の受光面と太陽光線との位置ずれを検知する
手段とを具え、 該位置ずれ検知手段よりの検知信号に基づいて前記回転
手段を駆動制御することにより、前記太陽光利用機器の
受光面が最適受光位置に位置するように、前記架台を液
面に沿って所定角度回転させる事を特徴とするものであ
る。
"Means for Solving Problems" The present invention relates to a substantially flat-shaped pedestal that is floated on a liquid surface with buoyancy and is rotatably and vertically movable on a fixed shaft. It comprises a solar-powered device installed on a pedestal, a rotating means for rotating the gantry along a liquid level in a horizontal plane, and a means for detecting a positional deviation between a light-receiving surface of the solar-powered device and a sun ray. By driving and controlling the rotating means based on the detection signal from the position shift detecting means, the mount is predetermined along the liquid surface so that the light receiving surface of the sunlight utilizing device is located at the optimum light receiving position. It is characterized by rotating at an angle.

尚、前記回転架台の液面上での浮設とは、架台自体に浮
力を内包し該架台を液面と同位置に維持せしめてもよ
く、又架台と別個に浮力付勢手段を付設して、架台が液
面より上方に位置せしめてもよい。
The floating on the liquid surface of the rotary mount may be such that the mount itself contains buoyancy to keep the mount at the same position as the liquid level, or a buoyancy biasing means is provided separately from the mount. The pedestal may be positioned above the liquid surface.

この場合、前記回転架台を浮かす液面は一般に、湖、
池、川、海等の水面を指すが、必ずしもこれに限定され
るものではなく、油面、例えば前記回転架台を原油タン
クの浮き屋根に兼用して用いることも可能である。
In this case, the liquid level floating on the rotary mount is generally a lake,
It refers to the water surface of a pond, a river, the sea, etc., but is not necessarily limited to this, and it is also possible to use the oil surface, for example, the rotary mount as a floating roof of a crude oil tank.

又、前記固定軸は、架台中心線上に沿って液内に垂設す
るのがよく、これにより架台を液面に沿って水平面内で
回転させる事が容易となる。
Further, it is preferable that the fixed shaft is vertically installed in the liquid along the center line of the gantry, which makes it easy to rotate the gantry along the liquid surface in a horizontal plane.

又前記架台を回転可能にを海面上に浮設する場合におい
ても、架台を軸支する固定軸が回転自在に且つ上下動自
在であるために、潮の満干その他による海面推移の変動
が生じても前記固定軸と架台間が液面の高低変化に応じ
て伸縮可能に構成し、架台上に搭載した太陽光利用機器
が海面下に没しない。
Even when the pedestal is rotatably floated above the sea surface, the fixed shaft supporting the pedestal is rotatably and vertically movable. Also, between the fixed shaft and the gantry is configured to be expandable / contractible according to the change in the liquid level, so that the solar-powered device mounted on the gantry does not sink below the sea level.

更に前記位置ずれ検知手段は、公知の如く、太陽光利用
機器の受光量の変化を検知する光センサーで、又回転手
段は該光センサーの検知信号に基づいて架台を所定角度
回転させるモータ等の駆動手段とから構成することも可
能であるが、例えば前記位置ずれ検知手段を架台上に設
置され互いに受光方向が異なる一対の太陽電池で構成
し、該一対の太陽電池の出力差に応じて前記架台が液面
に沿って所定角度回転し得るように構成することによ
り、回路構成が簡単化し、而も特別な駆動源を必要とす
ることなく半永久的に前記追尾が可能となる。
Further, as is well known, the position shift detecting means is an optical sensor for detecting a change in the amount of light received by the solar light utilizing device, and the rotating means is a motor for rotating the gantry at a predetermined angle based on the detection signal of the optical sensor. It is also possible to configure with the drive means, for example, the position deviation detection means is configured by a pair of solar cells installed on a pedestal and mutually different in light receiving direction, and depending on the output difference of the pair of solar cells, By configuring the gantry so that it can rotate along the liquid surface by a predetermined angle, the circuit configuration is simplified, and the tracking can be performed semipermanently without requiring a special drive source.

尚、前記太陽光利用機器とは太陽電池アレイ、太陽光集
熱板のみに限定されるものではなく、他の全ての太陽光
利用機器を含む。
In addition, the said solar utilization equipment is not limited only to a solar cell array and a solar heat collecting plate, and includes all other solar utilization equipment.

「作用」 かかる技術手段によれば、太陽光利用機器を搭載した架
台が浮力をもたして液面上に浮設されている為に、前記
架台の重量負担をほとんど0近くまで軽減することが出
来、而も該架台の回転方向が液面に沿う水平面内での回
転であるために、該架台を回転させる回転手段の駆動エ
ネルギー及び駆動源自体を極めて小さくさせることが出
来る。
[Operation] According to the technical means, since the gantry on which the solar light-utilizing equipment is mounted has buoyancy and is floated above the liquid surface, the weight burden of the gantry can be reduced to almost zero. Since the rotation direction of the gantry is rotation in the horizontal plane along the liquid surface, the drive energy of the rotating means for rotating the gantry and the drive source itself can be made extremely small.

従って前記架台の回転、即ち追尾駆動を行う駆動源が小
さくて済む事は、例えば太陽光利用機器の受光面と太陽
光線との位置ずれを検知する為に配設した、センサー機
能をもたした太陽電池の出力のみで前記架台の追尾駆動
をなし得る事も出来、この結果太陽光利用機器として搭
載したアレイの起電力を何等使用することなく且つ外部
より何等動力を得る必要がなく、半永久的な使用が可能
である。
Therefore, the rotation of the gantry, that is, a small drive source for performing the tracking drive, has a sensor function provided for detecting the positional shift between the light receiving surface of the solar light-using device and the sun's rays. It is also possible to perform tracking drive of the pedestal only with the output of the solar cell, and as a result, it is semi-permanent without using any electromotive force of the array mounted as a solar-powered device and no need to obtain power from the outside. It can be used for various purposes.

又前記架台が略偏平状であることは、液面での安定性が
良好でもあり、而も液面に沿う水平面内での回転を精度
よく且つ安定して行うことが出来る。
Further, since the gantry is substantially flat, the stability on the liquid surface is also good, and rotation in the horizontal plane along the liquid surface can be performed accurately and stably.

「実施例」 以下、図面を参照して本発明の好適な実施例を例示的に
詳しく説明する。ただしこの実施例に記載されている構
成部品の寸法、材質、形状、その相対配置などは特に特
定的な記載がない限りは、この発明の範囲をそれのみに
限定する趣旨ではなく、単なる説明例に過ぎない。
[Embodiment] Hereinafter, a preferred embodiment of the present invention will be exemplarily described in detail with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative positions, etc. of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but merely illustrative examples. Nothing more than.

第1図乃至第4図は本発明の実施例に係る太陽光発電装
置で、海上又は湖水上に配置させた状態を示している。
1 to 4 show a solar power generation device according to an embodiment of the present invention, which is placed on the sea or lake water.

第1図及び第2図において、1は回転架台2を回転可能
に支持する固定軸で、基部を水底中に埋設して水中に垂
直状態を維持して立設させると共に、一端を水底に係止
させたワイヤ3に張架させ、その補強を図っている。
In FIGS. 1 and 2, reference numeral 1 denotes a fixed shaft that rotatably supports a rotary gantry 2. The base is embedded in the water bottom to stand upright while maintaining a vertical state in the water, and one end is engaged with the water bottom. The stopped wire 3 is stretched to reinforce it.

回転架台2は偏平円板状をなし、中心部の回転軸4下面
に設けられた円筒状の嵌合部5を介して前記固定軸1に
遊嵌させると共に、内部に浮き袋その他の浮力形成手段
を内包し、水平を維持しつつ水面上に浮上させている。
The rotary base 2 has a flat disk shape, and is loosely fitted to the fixed shaft 1 through a cylindrical fitting portion 5 provided on the lower surface of the rotary shaft 4 at the center, and a floating bag or other buoyancy forming means is provided inside. It floats above the surface of the water while maintaining its level.

そして前記回転架台2上面には、発電に使用される複数
の太陽電池アレイ6a…(本発明の太陽光利用機器に相当
する)と、センサー機能をもたした一対の太陽電池アレ
イ7,8(本発明の位置ずれ検知手段に相当する)が、又
該回転架台2円周上には直流モータ9a,9bとスクリュー1
0a,10bからなる追尾駆動機構11,12(本発明の回転手段
に相当する)が夫々配設されている。
A plurality of solar cell arrays 6a used for power generation (corresponding to the solar light utilizing device of the present invention) and a pair of solar cell arrays 7 and 8 having a sensor function are provided on the upper surface of the rotary mount 2. (Corresponding to the positional deviation detecting means of the present invention), but the DC motors 9a and 9b and the screw 1 are arranged on the circumference of the rotary mount 2.
Tracking drive mechanisms 11 and 12 (corresponding to the rotating means of the present invention) composed of 0a and 10b are provided respectively.

発電に使用される複数の太陽電池アレイ6a…は、南向き
に所定角度傾斜させて所定間隔存して平行に配置され、
配置する場所の緯度の高低に応じてその抑角を調整し得
るように構成している。
The plurality of solar cell arrays 6a used for power generation are arranged parallel to each other with a predetermined angle inclined to the south,
The declination can be adjusted according to the height of the latitude of the location.

一対の太陽電池アレイ7,8は、回転軸4を通過する緯度
線S−N(南北線)を中心として対称に、例えば南東方
向と南西方向に沿って、その受光面を互いに内側に向け
て配設している。(第3図参照) そして該太陽電池アレイ7,8は夫々同側に配置した直流
モータ9a,9bと電気的に接続し、該直流モータ9a,9bと連
結されたスクリュー10a,10bに太陽電池アレイ7,8の起電
力A,Bに応じた回転力C,Dを付与する。
The pair of solar cell arrays 7 and 8 are symmetrical with respect to a latitude line SN (south-north line) passing through the rotation axis 4, for example, along the southeast direction and the southwest direction, with their light-receiving surfaces facing inward. It is arranged. (See FIG. 3) The solar cell arrays 7 and 8 are electrically connected to the DC motors 9a and 9b arranged on the same side, respectively, and the solar cells are connected to the screws 10a and 10b connected to the DC motors 9a and 9b. Rotational forces C and D corresponding to the electromotive forces A and B of the arrays 7 and 8 are applied.

追尾駆動機構11,12は回転軸4を通過する緯度線E−W
(東西線)上に配設すると共に、スクリュー10a,10bを
夫々北向きに同方向に配置している。
The tracking drive mechanisms 11 and 12 are the latitude lines EW passing through the rotary shaft 4.
The screws 10a and 10b are arranged in the same direction in the north direction, respectively.

次にかかる実施例に基づく作用を第4図に基づいて説明
する。
Next, the operation based on this embodiment will be described with reference to FIG.

第4図aにおいて、日の出により東より太陽が昇ると、
南西方向に沿って配置した太陽電池アレイ7の起電力A
が他の太陽電池アレイ8の起電力Bより大になる為に、
これに応じてスクリュー10a,10bの回転力C,Dもこの起電
力の差に基づいてC>Dとなり、回転架台2が矢印イ方
向に回転する。
In Figure 4a, when the sun rises from the east due to sunrise,
Electromotive force A of the solar cell array 7 arranged along the southwest direction
Becomes larger than the electromotive force B of the other solar cell array 8,
In response to this, the rotational forces C and D of the screws 10a and 10b also become C> D based on this difference in electromotive force, and the rotary base 2 rotates in the direction of arrow a.

そして、前記太陽電池アレイ7,8の起電力がA=Bとな
った時点でスクリュー10a,10bの回転力もC=Dとな
り、回転架台2の回転が停止し、この結果、太陽電池ア
レイ6a…の受光面が太陽光線に対向して配置されること
となる。(第4図(c)の位置) そして第4図(c)の位置を維持しながら回転架台2が
太陽光線の方位の変化に追従して回動し、発電に使用さ
れる複数の太陽電池アレイ6a…が常に最適の受光位置を
維持しながら日没まで回動する。以下毎日これを繰り返
す。
Then, when the electromotive force of the solar cell arrays 7 and 8 becomes A = B, the rotational force of the screws 10a and 10b also becomes C = D, the rotation of the rotary mount 2 is stopped, and as a result, the solar cell array 6a ... The light receiving surface of is arranged to face the sun rays. (Position of FIG. 4 (c)) Then, while maintaining the position of FIG. 4 (c), the rotary base 2 rotates following the change in the direction of the sun's rays, and a plurality of solar cells used for power generation. The arrays 6a ... rotate until sunset while always maintaining the optimum light receiving position. Repeat this every day.

そして波その他の影響により太陽光線の方位の変化より
回転架台2の回動が遅れ位置ずれが生じた場合に第4図
(b)の位置になり、今度は逆に前記太陽電池アレイ6a
…の起電力がA<Bとなる為に、スクリュー10a,10bの
回転力がC<Dとなり、回転架台2が矢印ロ方向に回動
し、第4図(c)の位置に復帰する。
Then, when the rotation of the rotary gantry 2 is delayed due to the change of the direction of the sun rays due to the influence of waves or the like and the positional deviation occurs, the position becomes as shown in FIG. 4 (b).
Since the electromotive force of ... becomes A <B, the rotational force of the screws 10a and 10b becomes C <D, the rotary base 2 rotates in the arrow B direction, and returns to the position shown in FIG. 4 (c).

一方、回転架台2と固定軸1間は円筒状の嵌合部5を介
して遊嵌可能に嵌合されている為に、潮の干満や高波等
により水面の高低変動が生じた場合でもこれを吸収し、
前記回転架台2を水面上に常に浮かせていることが出来
る。
On the other hand, since the rotary base 2 and the fixed shaft 1 are loosely fitted to each other via the cylindrical fitting portion 5, even when the water level changes due to tides or high waves Absorbs
The rotary base 2 can be always floated on the water surface.

「発明の効果」 以上記載した如く本発明によれば、架台を液面上に浮き
状態を維持して配置せしめた為に、前記架台の重量負担
をほとんど0近くまで軽減することが出来、この結果、
架台を駆動する為に必要とする回転手段の駆動エネルギ
ーを極めてて小さくし得、エネルギー効率の大幅な向上
が図れる。
[Advantages of the Invention] As described above, according to the present invention, the weight of the gantry can be reduced to almost zero because the gantry is arranged on the liquid surface while maintaining the floating state. result,
The drive energy of the rotating means required for driving the gantry can be made extremely small, and the energy efficiency can be greatly improved.

又架台の重量負担がない為に、該架台を回転する回転手
段の小型化とともに簡易な構造とすることが出来、設置
コストも大幅に低減出来る。
Further, since the weight of the gantry is not burdened, the rotating means for rotating the gantry can be downsized and have a simple structure, and the installation cost can be greatly reduced.

又前記架台が略偏平状であることは、液面での安定性が
良好でもあり、而も液面に沿う水平面内での回転を精度
よく且つ安定して行うことが出来る。
Further, since the gantry is substantially flat, the stability on the liquid surface is also good, and rotation in the horizontal plane along the liquid surface can be performed accurately and stably.

等の種々の著効を有する。It has various remarkable effects.

【図面の簡単な説明】[Brief description of drawings]

第1図乃至第4図は本発明の実施例に係る太陽光発電装
置を示し、第1図は正面図、第2図は平面図、第3図は
センサー機能をもたせた太陽電池の配置状態を示す斜視
図、第4図(a)乃至(c)は作用説明図である。
1 to 4 show a solar power generation device according to an embodiment of the present invention. FIG. 1 is a front view, FIG. 2 is a plan view, and FIG. 3 is a state of arrangement of solar cells having a sensor function. And FIG. 4 (a) to FIG. 4 (c) are operation explanatory views.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】液面上に浮力を持たせて浮設され、固定軸
に回転自在に且つ上下動自在に軸支された略偏平状の架
台と、該架台上に設置された太陽光利用機器と、前記架
台を液面に沿って水平面内で回転させる回転手段と、太
陽光利用機器の受光面と太陽光線との位置ずれを検知す
る手段とを具え、 該位置ずれ検知手段よりの検知信号に基づいて前記回転
手段を駆動制御することにより、前記太陽光利用機器の
受光面が最適受光位置に位置するように、前記架台を液
面に沿って所定角度回転させる事を特徴とする太陽光追
尾装置
1. A substantially flat frame, which is floated on the liquid surface with buoyancy, and is rotatably and vertically movable on a fixed shaft, and solar light installed on the frame. A device, a rotating means for rotating the gantry in a horizontal plane along the liquid surface, and a means for detecting the positional deviation between the light receiving surface of the solar light utilizing apparatus and the sun ray, the detection by the positional deviation detecting means The sun is characterized in that the gantry is rotated by a predetermined angle along the liquid surface so that the light receiving surface of the solar light-using device is located at an optimum light receiving position by drivingly controlling the rotating means based on a signal. Optical tracking device
【請求項2】前記位置ずれ検知手段が、架台上に設置さ
れ互いに受光方向が異なる一対の太陽電池で構成され、
該一対の太陽電池の出力差に応じて前記架台が液面に沿
って所定角度回転し得るようにした特許請求の範囲第1
項記載の太陽光追尾装置
2. The position deviation detecting means is composed of a pair of solar cells installed on a pedestal and having mutually different light receiving directions,
Claim 1 wherein the gantry can rotate a predetermined angle along the liquid surface according to the output difference between the pair of solar cells.
Solar tracking device
JP60063340A 1985-03-29 1985-03-29 Solar tracking device Expired - Fee Related JPH0731547B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60063340A JPH0731547B2 (en) 1985-03-29 1985-03-29 Solar tracking device
US06/846,706 US4786795A (en) 1985-03-29 1986-03-31 Sun tracking device floating upon liquid surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60063340A JPH0731547B2 (en) 1985-03-29 1985-03-29 Solar tracking device

Publications (2)

Publication Number Publication Date
JPS61223909A JPS61223909A (en) 1986-10-04
JPH0731547B2 true JPH0731547B2 (en) 1995-04-10

Family

ID=13226407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60063340A Expired - Fee Related JPH0731547B2 (en) 1985-03-29 1985-03-29 Solar tracking device

Country Status (1)

Country Link
JP (1) JPH0731547B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4687961B2 (en) * 2005-06-24 2011-05-25 有限会社中島工業 Floating water purification system
EP1791184A1 (en) * 2005-11-29 2007-05-30 Dr. H. Frauenknecht GmbH Solar power system and method of operation
KR100831382B1 (en) * 2007-03-09 2008-05-22 (주)쏠라비젼 Buoyant-type power generation system using solar cells
KR200442088Y1 (en) * 2007-10-04 2008-10-10 우도영 Solar Energy Generating Device
KR101056607B1 (en) 2009-02-27 2011-08-11 우도영 Sleep floating solar power device
KR100942904B1 (en) 2009-04-08 2010-02-16 우도영 Float type solar energy generating device
CN102541073A (en) * 2010-12-09 2012-07-04 西安大昱光电科技有限公司 Sunlight double-axis tracking device
CN102830710B (en) * 2012-09-13 2014-10-29 东南大学 Tracking driving device for tank type solar concentrating collector
CN103163891A (en) * 2013-01-23 2013-06-19 白树新 Solar power generation double-shaft tracking device
CN103869832B (en) * 2014-03-29 2016-04-13 安庆师范学院 Light source automatic tracking type solar harvester and control method thereof
JP6440388B2 (en) * 2014-06-23 2018-12-19 川崎重工業株式会社 Floating solar power generation system
CN111578540B (en) * 2020-05-14 2021-07-06 西安交通大学 Automatic tracking solar energy collection device based on piezoelectric drive

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693214B2 (en) * 1984-02-28 1994-11-16 清水建設株式会社 Solar power generator

Also Published As

Publication number Publication date
JPS61223909A (en) 1986-10-04

Similar Documents

Publication Publication Date Title
US6089224A (en) Apparatus for orientation of solar radiation collectors
US4227513A (en) Solar system having improved heliostat and sensor mountings
CN101588147B (en) Solar energy collecting system
CN202453740U (en) Solar automatic-tracking device based on GPS (Global Positioning System) and light-sensitive sensor
JPH0731547B2 (en) Solar tracking device
US3986021A (en) Passive solar tracking system for steerable Fresnel elements
CN102520731A (en) Method for automatically tracking solar rays and automatic tracking system
US4447718A (en) Apparatus for collecting and concentrating solar light energy
US4572160A (en) Heliotropic solar heat collector system
KR101298633B1 (en) Water Float Type Solar Power Generator
JP2006005306A (en) Solar energy power generation system
CN110266257B (en) Unmanned ship fan-shaped solar charging device for water quality detection
EP3255786A1 (en) Solar light detection device and solar light tracker having same
KR20170030844A (en) Float type Solar Energy Generating Device
CN210469203U (en) Water quality testing&#39;s fan-shaped solar charging device of unmanned ship
JP2004146760A (en) Differential voltage driven sun tracking solar electric power plant
JP2005129574A (en) Sunlight tracking device
JP2004146759A (en) Differential voltage drive sun tracking solar electric power plant
JPS6277546A (en) Tracking device tracking solar-energy receiver to movement of sun
US4467787A (en) Static solar tracking mechanism
KR101191456B1 (en) Apparatus for tracking sunlight
JPH0449685Y2 (en)
JPH0429577Y2 (en)
Hu et al. An intelligent photosensitive tracker for concentrating PV system
CN109240349A (en) A kind of night playback photovoltaic tracing system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees