JPH07312221A - Positive electrode black mix - Google Patents

Positive electrode black mix

Info

Publication number
JPH07312221A
JPH07312221A JP6103909A JP10390994A JPH07312221A JP H07312221 A JPH07312221 A JP H07312221A JP 6103909 A JP6103909 A JP 6103909A JP 10390994 A JP10390994 A JP 10390994A JP H07312221 A JPH07312221 A JP H07312221A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
particle radius
electrode active
conductive agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6103909A
Other languages
Japanese (ja)
Inventor
Yasumasa Nakajima
保正 中嶋
Hiroshi Imachi
宏 井町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP6103909A priority Critical patent/JPH07312221A/en
Publication of JPH07312221A publication Critical patent/JPH07312221A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide nonaqueous electrolyte battery having high energy density per battery volume, especially lithium battery, by improving charging rate of a positive active material per positive electrode black mix unit volume. CONSTITUTION:A positive electrode black mix contains a positive electrode A active material, conductive agent, and binder. A positive electrode active material whose longest particle radius of each one of particles of positive electrode active materials is set to 1.00-1.20 times of the mean particle radius of each positive electrode active material particles and whose shortest particle radius is set to 0.80-1.00 time of the mean particle radius is used for the positive electrode black mix.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特にリチウム電池など
の非水電解質電池の正極合剤およびその正極合剤を用い
た非水電解質電池に関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode mixture for a non-aqueous electrolyte battery such as a lithium battery and a non-aqueous electrolyte battery using the positive electrode mixture.

【0002】[0002]

【従来の技術】非水電解質電池、リチウム電池として正
極活物質にカルコゲン化合物、負極に金属リチウム、炭
素質材料などを用いた一次電池及び二次電池がある。こ
の様な電池の構成は、正極活物質粒子と導電剤であるグ
ラファイト、アセチレンブラックなどの炭素粒子、そし
てそれぞれの粒子の結着剤としてポリテトラフルオロエ
チレン、有機固体電解質とを混合してペースト状にし
て、ステンレス網またはステンレス板などの基板に充填
または塗布してシート状としたものを正極とし、セパレ
ーターを介して負極である金属リチウムシートまたはス
テンレス板に金属リチウムシート、炭素質材料と前記結
着剤を混合してペースト状にし、ステンレス網またはス
テンレス板などの基板に充填または塗布してシート状と
したものを張り合わせたものを重ね合わせたものを電池
缶に収納または、ステンレス板などの周縁部に封口剤を
充填して電池としていた。
2. Description of the Related Art Non-aqueous electrolyte batteries and lithium batteries include primary batteries and secondary batteries using a chalcogen compound as a positive electrode active material and metallic lithium or a carbonaceous material as a negative electrode. Such a battery is constructed by mixing positive electrode active material particles, carbon particles such as graphite and acetylene black, which are conductive agents, and polytetrafluoroethylene as a binder for each particle, and an organic solid electrolyte. Then, a positive electrode is formed by filling or coating a substrate such as a stainless net or a stainless plate into a sheet shape, and a metallic lithium sheet or a stainless plate, which is the negative electrode, is connected to the metallic lithium sheet, the carbonaceous material and the above-mentioned binder through a separator. Mix the adhesive to make a paste, fill or apply it to a substrate such as a stainless steel net or stainless steel plate, and put the sheet-shaped products together to store them in a battery can or the periphery of the stainless steel plate. A cell was filled with a sealing agent to form a battery.

【0003】[0003]

【発明が解決しようとする課題】前記正極活物質はその
粒子形状が不定形で最長粒子半径が平均粒子半径の1.
20倍を越え、最短粒子半径が平均粒子半径の0.80
倍未満であり、正極合剤単位体積当りの正極活物質の充
填率が低い。そのために、電池体積当りのエネルギー密
度も低いのが現状である。さらに導電剤についてもグラ
ファイトのように粒子形状が不定形なものやアセチレン
ブラックのような二次粒子、三次粒子構造を持つものを
導電剤として使用した場合も正極合剤単位体積当りの正
極活物質の充填率が低い原因となる。
The positive electrode active material has an irregular particle shape and a longest particle radius of 1.
Over 20 times the shortest particle radius is 0.80 of the average particle radius
It is less than double and the filling rate of the positive electrode active material per unit volume of the positive electrode mixture is low. Therefore, the energy density per battery volume is currently low. Furthermore, regarding the conductive agent, when a particle shape such as graphite having an irregular shape or a secondary particle such as acetylene black or a material having a tertiary particle structure is used as the conductive agent, the positive electrode active material per unit volume of the positive electrode mixture Causes a low filling rate.

【0004】本発明は、この問題を解消すべくなされた
ものであって、その目的とするところは、正極合剤単位
体積当りの正極活物質の充填率を高めて、電池体積当り
のエネルギー密度の高い非水電解質電池、特にリチウム
電池を提供することである。
The present invention has been made to solve this problem, and its purpose is to increase the filling rate of the positive electrode active material per unit volume of the positive electrode mixture to increase the energy density per battery volume. To provide a high-performance non-aqueous electrolyte battery, particularly a lithium battery.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明の正極合剤およびその正極合剤を用いた電池は
正極活物質として前記正極活物質の粒子のそれぞれ1個
ずつの粒子がそれぞれ1個の正極活物質の粒子の平均粒
子半径に対して、最長粒子半径が平均粒子半径の1.0
0倍〜1.20倍、最短粒子半径が平均粒子半径の0.
80倍〜1.00倍である正極活物質、導電剤として前
記導電剤の粒子のそれぞれ1個ずつの粒子がそれぞれ1
個ずつの導電剤の粒子の平均粒子半径に対して、最長粒
子半径が平均粒子半径の1.00倍〜1.20倍、最短
粒子半径が平均粒子半径の0.80倍〜1.00倍であ
る導電剤が使用されてなる。図1、図2にそれぞれ本発
明の1個の正極活物質および導電剤の粒子の断面図を示
す。
In order to achieve the above object, a positive electrode mixture of the present invention and a battery using the positive electrode mixture have a positive electrode active material in which each one of the particles of the positive electrode active material is The longest particle radius is 1.0 of the average particle radius with respect to the average particle radius of one particle of each positive electrode active material.
0 times to 1.20 times, the shortest particle radius is 0.
80 times to 1.00 times the positive electrode active material, and 1 particle of each of the conductive agent particles as the conductive agent.
The longest particle radius is 1.00 to 1.20 times the average particle radius, and the shortest particle radius is 0.80 to 1.00 times the average particle radius with respect to the average particle radius of the particles of each conductive agent. Is used. 1 and 2 are cross-sectional views of one positive electrode active material and one conductive agent particle of the present invention, respectively.

【0006】本発明における正極活物質は正極活物質の
粒子のそれぞれ1個ずつの粒子が、それぞれ1個の正極
活物質の粒子の平均粒子半径に対して、最長粒子半径が
平均粒子半径の1.00倍〜1.20倍、最短粒子半径
が平均粒子半径の0.80倍〜1.00倍である正極活
物質、正極活物質の粒子のそれぞれ1個ずつの粒子の平
均粒子半径が60μm以下である正極活物質、および本
発明における正極活物質とそれ以外の正極活物質を混合
したものを100重量%としたとき本発明における正極
活物質が20重量%以上の正極活物質を本発明の正極合
剤に使用することにより正極合剤単位体積当りの活物質
充填率が向上し、本発明の非水電解質電池に前記正極合
剤を使用することにより電池体積当りのエネルギー密度
が向上する。
In the positive electrode active material of the present invention, one particle of each positive electrode active material has a longest particle radius of 1 with respect to the average particle radius of one particle of the positive electrode active material. 0.001 times to 1.20 times, the shortest particle radius is 0.80 times to 1.00 times the average particle radius, and the average particle radius of each one particle of the positive electrode active material and the positive electrode active material is 60 μm. When the following positive electrode active material and the mixture of the positive electrode active material in the present invention and the other positive electrode active material are taken as 100% by weight, the positive electrode active material in the present invention is 20% by weight or more in the present invention. The use of the positive electrode mixture improves the active material filling rate per unit volume of the positive electrode mixture, and the use of the positive electrode mixture in the non-aqueous electrolyte battery of the present invention improves the energy density per battery volume. .

【0007】正極活物質の粒子のそれぞれ1個ずつの粒
子が、それぞれ1個の正極活物質の粒子の平均粒子半径
に対して、最長粒子半径が平均粒子半径の1.20倍を
越えたもの、最短粒子半径が平均粒子半径の0.80倍
未満である正極活物質、正極活物質の粒子のそれぞれ1
個ずつの粒子の平均粒子半径が60μmを越える正極活
物質および本発明における正極活物質とそれ以外の正極
活物質を混合したものを100重量%としたとき本発明
における正極活物質が20重量%未満の正極活物質を使
用した正極合剤およびその正極合剤を用いた非水電解質
電池は、正極合剤単位体積当りの活物質充填率および電
池体積当りのエネルギー密度は向上しない。
Each of the particles of the positive electrode active material has the longest particle radius exceeding 1.20 times the average particle radius with respect to the average particle radius of each one particle of the positive electrode active material. A positive electrode active material having a shortest particle radius of less than 0.80 times the average particle radius and a positive electrode active material particle of 1
20% by weight of the positive electrode active material in the present invention is defined as 100% by weight of a mixture of the positive electrode active material having an average particle radius of 60 μm or more and the positive electrode active material in the present invention and other positive electrode active materials. The positive electrode mixture using less than the positive electrode active material and the non-aqueous electrolyte battery using the positive electrode mixture do not improve the active material filling rate per unit volume of the positive electrode mixture and the energy density per battery volume.

【0008】なお、本発明における正極活物質は正極活
物質の粒子のそれぞれ1個ずつの粒子がそれぞれ1個の
正極活物質の粒子の平均粒子半径に対して、最長粒子半
径が平均粒子半径の1.00倍〜1.10倍、最短粒子
半径が平均粒子半径の0.90倍〜1.00倍である正
極活物質、また本発明における正極活物質とそれ以外の
正極活物質を混合したものを100重量%としたとき本
発明における正極活物質が50重量%以上である正極活
物質を本発明の正極合剤およびその正極合剤を用いた非
水電解質電池に使用することが好ましい。
In the positive electrode active material according to the present invention, one particle of the positive electrode active material is one particle of the positive electrode active material, and the longest particle radius is the average particle radius. 1.00 times to 1.10 times, and the positive electrode active material having the shortest particle radius of 0.90 times to 1.00 times the average particle radius, and the positive electrode active material of the present invention and other positive electrode active materials were mixed. It is preferable to use the positive electrode active material in which the positive electrode active material in the present invention is 50% by weight or more when 100% by weight is used for the positive electrode mixture of the present invention and the non-aqueous electrolyte battery using the positive electrode mixture.

【0009】本発明における導電剤は導電剤の粒子のそ
れぞれ1個ずつの粒子がそれぞれ1個の導電剤の粒子の
平均粒子半径に対して、最長粒子半径が平均粒子半径の
1.00倍〜1.20倍、最短粒子半径が平均粒子半径
の0.80倍〜1.00倍である導電剤、導電剤の粒子
のそれぞれ1個ずつの粒子の平均粒子半径が5μm以下
である導電剤、および本発明における導電剤および正極
活物質を混合したものを100重量%としたとき本発明
における導電剤が1〜25重量%以上の混合物を本発明
の正極合剤に使用することにより正極合剤単位体積当り
の活物質充填率が向上し、本発明の非水電解質電池に前
記正極合剤を使用することにより電池体積当りのエネル
ギー密度が向上する。
In the conductive agent in the present invention, one of the particles of the conductive agent has a longest particle radius of 1.00 times the average particle radius with respect to the average particle radius of one particle of the conductive agent. 1.20 times, conductive agent having the shortest particle radius 0.80 times to 1.00 times the average particle radius, conductive agent having an average particle radius of 5 μm or less for each one particle of the conductive agent, Further, when the mixture of the conductive agent and the positive electrode active material in the present invention is 100% by weight, the mixture of the conductive agent in the present invention of 1 to 25% by weight or more is used in the positive electrode mixture of the present invention to obtain a positive electrode mixture. The active material filling rate per unit volume is improved, and the energy density per battery volume is improved by using the positive electrode mixture in the non-aqueous electrolyte battery of the present invention.

【0010】導電剤の粒子のそれぞれ1個ずつの粒子が
それぞれ1個の導電剤の粒子の平均粒子半径に対して、
最長粒子半径が平均粒子半径の1.20倍を越えたも
の、最短粒子半径が平均粒子半径の0.80倍未満であ
る導電剤、導電剤の粒子のそれぞれ1個ずつの粒子の平
均粒子半径が5μmを越える導電剤および本発明におけ
る導電剤および正極活物質を混合したものを100重量
%としたとき本発明における導電剤が1〜25重量%の
混合物を使用した正極合剤およびその正極合剤を用いた
非水電解質電池は、正極合剤単位体積当りの活物質充填
率および電池体積当りのエネルギー密度は向上しない。
One particle of each of the conductive agent particles has an average particle radius of one particle of the conductive agent.
The average particle radius of the particles having the longest particle radius exceeding 1.20 times the average particle radius, the shortest particle radius being less than 0.80 times the average particle radius, and one particle each of the conductive agent particles. Is more than 5 μm and the mixture of the conductive agent in the present invention and the positive electrode active material is 100% by weight, the positive electrode mixture and the positive electrode mixture using the mixture in which the conductive agent in the present invention is 1 to 25% by weight. The non-aqueous electrolyte battery using the agent does not improve the active material filling rate per unit volume of the positive electrode mixture and the energy density per cell volume.

【0011】なお、本発明における導電剤は導電剤の粒
子のそれぞれ1個ずつの粒子がそれぞれ1個の導電剤の
粒子の平均粒子半径に対して、最長粒子半径が平均粒子
半径の1.00倍〜1.10倍、最短粒子半径が平均粒
子半径の0.90倍〜1.00倍である導電剤、また本
発明における導電剤および正極活物質を混合したものを
100重量%としたとき本発明における導電剤が1〜1
0重量%である混合物を本発明の正極合剤およびその正
極合剤を用いた非水電解質電池に使用することが好まし
い。
In the conductive agent of the present invention, one of the particles of the conductive agent is one particle of the conductive agent, and the longest particle radius is 1.00 of the average particle radius. When the amount of the conductive agent having the shortest particle radius of 0.90 times to 1.00 times the average particle radius and the mixture of the conductive agent and the positive electrode active material of the present invention is 100% by weight. The conductive agent in the present invention is 1 to 1
It is preferable to use the mixture of 0% by weight for the positive electrode mixture of the present invention and the non-aqueous electrolyte battery using the positive electrode mixture.

【0012】なお、本発明の正極合剤に使用される正極
活物質は、一次電池用としてMnO2 ,二次電池用とし
てMoO3 ,V2 5 ,V6 13,LiV3 8 ,Li
Mn2 4 ,LiCoO2 ,LiCrO2 ,LiNiO
2 等があるがこれらには、限定されない。また、導電剤
としてはグラファイト、カーボンブラック、金属粉、導
電性セラミック、導電性高分子等があるがこれらには、
限定されない。
The positive electrode active material used in the positive electrode mixture of the present invention is MnO 2 for a primary battery, MoO 3 , V 2 O 5 , V 6 O 13 , LiV 3 O 8 for a secondary battery, Li
Mn 2 O 4 , LiCoO 2 , LiCrO 2 , LiNiO
There are 2 etc., but not limited to these. Further, as the conductive agent, there are graphite, carbon black, metal powder, conductive ceramics, conductive polymers, etc.
Not limited.

【0013】正極は例えば上記正極活物質、導電剤およ
びポリテトラフルオロエチレン、ポリフッ化ビニリデ
ン、イオン伝導性高分子固体電解質材料などの結着剤と
混練して正極合剤を作製後その正極合剤を集電体として
のアルミニウムやステンレスなどからなる箔などに圧延
または塗布し、キュアリングして作製される。
The positive electrode is kneaded with, for example, the above-mentioned positive electrode active material, a conductive agent and a binder such as polytetrafluoroethylene, polyvinylidene fluoride, and an ion conductive polymer solid electrolyte material to prepare a positive electrode mixture, and then the positive electrode mixture is prepared. Is rolled or applied to a foil or the like made of aluminum or stainless steel as a current collector, and cured.

【0014】[0014]

【作用】本発明の正極合剤およびその正極合剤を用いた
非水電解質電池では、正極合剤単位体積当りの活物質充
填率が向上し、電池体積当りのエネルギー密度が向上す
る。その理由として、本発明における正極活物質および
導電剤を用いて正極合剤を作製した場合、前記正極活物
質および導電剤の粒子形状をできるだけ球状に近くなる
ように制限しているために正極合剤中で粒子同志の接触
回数が多く、接触面積が大きくなり、粒子がより密に重
なり合う。そして、前記正極活物質および導電剤以外の
体積が減少し正極合剤単位体積当りの活物質充填率が大
きくなる。本発明以外の正極活物質を使用した場合で
は、粒子形状が不定形で正極合剤中ではランダムに粒子
が存在した場合、粒子同志の接触回数は本発明の場合に
比べて少なく、接触面積も小さくなり、よって、前記正
極活物質および導電剤以外の体積が本発明の場合より増
加し正極合剤単位体積当りの正極活物質充填率は小さく
なる。また、本発明における正極活物質と本発明以外の
正極活物質を混合したものを100重量%としたとき、
前記正極活物質が20重量%以上であると正極合剤単位
体積当りの正極活物質充填率は、従来のものに比較して
向上が見られる。また、正極活物質の平均粒子半径が6
0μmを越えてしまうと放電中または充電中に前記正極
活物質内でのLiイオンなどのカチオンが拡散しにくく
なり、放電特性または充電特性が低下するので好ましく
ない。本発明の導電剤の平均粒子半径が5μmを越えて
しまうと、正極合剤中に存在する導電剤の個数が少なく
なり、導電剤の接触面積も小さくなり、正極合剤中の電
子伝導が低下し放電または充電特性が低下してしまう。
本発明の正極活物質と本発明の導電剤を混合したものを
100重量%としたとき前記導電剤が1重量%未満では
正極合剤中の電子伝導が低下し放電または充電特性が低
下してしまう。25重量%を越えると正極合剤中の正極
活物質が占める割合が小さくなり、結果として正極合剤
単位体積当りの正極活物質充填率が低下してしまう。
In the positive electrode mixture of the present invention and the non-aqueous electrolyte battery using the positive electrode mixture, the active material filling rate per unit volume of the positive electrode mixture is improved, and the energy density per battery volume is improved. The reason for this is that, when a positive electrode mixture is produced using the positive electrode active material and the conductive agent in the present invention, the particle shape of the positive electrode active material and the conductive agent is limited to be as spherical as possible. The number of contact between particles in the agent is large, the contact area is large, and the particles overlap each other more closely. Then, the volume other than the positive electrode active material and the conductive agent is reduced, and the active material filling rate per unit volume of the positive electrode mixture is increased. In the case of using a positive electrode active material other than the present invention, if the particle shape is irregular and particles are randomly present in the positive electrode mixture, the number of contact between the particles is smaller than that of the present invention, and the contact area is also Therefore, the volume other than the positive electrode active material and the conductive agent is increased, and the positive electrode active material filling rate per unit volume of the positive electrode mixture is reduced. Further, when the mixture of the positive electrode active material in the present invention and the positive electrode active material other than the present invention is 100% by weight,
When the content of the positive electrode active material is 20% by weight or more, the filling rate of the positive electrode active material per unit volume of the positive electrode mixture is improved as compared with the conventional one. The average particle radius of the positive electrode active material is 6
If it exceeds 0 μm, cations such as Li ions in the positive electrode active material are less likely to diffuse during discharge or charge, and discharge characteristics or charge characteristics are deteriorated, which is not preferable. When the average particle radius of the conductive agent of the present invention exceeds 5 μm, the number of conductive agents present in the positive electrode mixture decreases, the contact area of the conductive agent also decreases, and the electron conduction in the positive electrode mixture decreases. However, the discharge or charge characteristics will deteriorate.
When the mixture of the positive electrode active material of the present invention and the conductive agent of the present invention is 100% by weight, when the amount of the conductive agent is less than 1% by weight, electron conduction in the positive electrode mixture is reduced and discharge or charge characteristics are deteriorated. I will end up. If it exceeds 25% by weight, the proportion of the positive electrode active material in the positive electrode mixture will be small, and as a result, the positive electrode active material filling rate per unit volume of the positive electrode mixture will decrease.

【0015】[0015]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by the examples described below, and various modifications may be made without departing from the scope of the invention. Is possible.

【0016】一次電池用正極活物質として本発明の正極
活物質の粒子のそれぞれ1個ずつの粒子がそれぞれ1個
の正極活物質の粒子の平均粒子半径に対して、最長粒子
半径が平均粒子半径の1.00倍〜1.20倍、最短粒
子半径が平均粒子半径の0.80倍〜1.00倍であ
り、その正極活物質の粒子の平均粒子半径が60μm以
下であるMnO2 を100g、導電剤として本発明の導
電剤の粒子のそれぞれ1個ずつの粒子がそれぞれ1個ず
つの導電剤の粒子の平均粒子半径に対して、最長粒子半
径が平均粒子半径の1.00倍〜1.20倍、最短粒子
半径が平均粒子半径の0.80倍〜1.00倍であり、
その導電剤の平均粒子半径が5μm以下であるグラファ
イトを10gを混合し、さらに結着剤としてイオン伝導
性高分子固体電解質材料40g、反応開始剤としてアゾ
ビスイソブチロニトリル0.025gを混合して正極合
剤ペーストを得た。また、上記イオン伝導性高分子固体
電解質材料はエチレンオキシドのモノアクリレート、同
ジアクリレート、同トリアクリレートからなる混合物を
プロピレンカーボネートにLiClO4 を溶解したもの
に溶解してなるものである。
As a positive electrode active material for a primary battery, one particle of each of the positive electrode active material of the present invention is the average particle radius of the particles of one positive electrode active material, and the longest particle radius is the average particle radius. 1.00 times to 1.20 times, the shortest particle radius is 0.80 times to 1.00 times the average particle radius, and 100 g of MnO 2 in which the average particle radius of the particles of the positive electrode active material is 60 μm or less. The longest particle radius is 1.00 times to 1 times the average particle radius with respect to the average particle radius of each one particle of the conductive agent of the present invention as the conductive agent. 20 times, the shortest particle radius is 0.80 times to 1.00 times the average particle radius,
10 g of graphite having an average particle radius of 5 μm or less of the conductive agent is mixed, 40 g of an ion conductive polymer solid electrolyte material as a binder, and 0.025 g of azobisisobutyronitrile as a reaction initiator are further mixed. A positive electrode mixture paste was obtained. The ion conductive polymer solid electrolyte material is obtained by dissolving a mixture of ethylene oxide monoacrylate, diacrylate and triacrylate in LiClO 4 in propylene carbonate.

【0017】次に上記正極合剤ペーストをステンレス基
板上にキャストし不活性ガス雰囲気中で100゜Cで1
時間放置することにより硬化させステンレス基板上にシ
ート状の正極合剤を得た。得られた正極合剤の厚さは約
250μmであった。
Next, the above positive electrode mixture paste is cast on a stainless steel substrate, and the paste is applied at 100 ° C. in an inert gas atmosphere.
The mixture was left to stand for a period of time to be cured to obtain a sheet-shaped positive electrode mixture on a stainless steel substrate. The thickness of the obtained positive electrode mixture was about 250 μm.

【0018】次にアゾビスイソブチロニトリル0.05
gを上記イオン伝導性高分子固体電解質材料100gに
溶解したものを上記正極合剤上にキャストし上記と同様
に硬化させて、上記正極合剤上にセパレータとしてイオ
ン伝導性高分子固体電解質被膜を形成した。得られた被
膜の厚さは、20μmであった。
Next, azobisisobutyronitrile 0.05
What was dissolved in 100 g of the above ion conductive polymer solid electrolyte material was cast on the above positive electrode mixture and cured in the same manner as above, and an ion conductive polymer solid electrolyte film was formed as a separator on the above positive electrode mixture. Formed. The thickness of the obtained coating was 20 μm.

【0019】以上のようにして得たステンレス基板と正
極合剤とイオン伝導性高分子固体電解質被膜とからなる
複合シートを、1cm×1cmの大きさで切り出し、こ
の複合シートのイオン伝導性高分子固体電解質被膜上
に、厚さ100μmの金属リチウムを負極として取り付
けて、図3に示す構造の、即ちステンレス基板9と正極
合剤10とイオン伝導性高分子固体電解質被膜11と負
極12とステンレス基板13とからなる電池を作製し
た。
A composite sheet comprising the stainless steel substrate, the positive electrode mixture, and the ion conductive polymer solid electrolyte coating obtained as described above was cut into a size of 1 cm × 1 cm, and the ion conductive polymer of this composite sheet was cut out. Metallic lithium having a thickness of 100 μm is attached as a negative electrode on the solid electrolyte coating, and has a structure shown in FIG. 3, that is, a stainless substrate 9, a positive electrode mixture 10, an ion conductive polymer solid electrolyte coating 11, a negative electrode 12, and a stainless substrate. A battery consisting of

【0020】得られた電池に1kg/cm2 の荷重を掛
け、その状態で20゜Cにて0.1mA/cm2 の定電
流で放電終止電圧2.0Vで放電試験を行った。
A load of 1 kg / cm 2 was applied to the obtained battery, and in that state, a discharge test was performed at a discharge current of 2.0 V at a constant current of 0.1 mA / cm 2 at 20 ° C.

【0021】なお、比較例として、一次電池用正極活物
質として正極活物質の粒子のそれぞれ1個ずつの粒子が
それぞれ1個の正極活物質の粒子の平均粒子半径に対し
て、最長粒子半径が平均粒子半径の1.22倍〜2.0
0倍、最短粒子半径が平均粒子半径の0.55倍〜0.
79倍であり、その正極活物質の粒子の平均粒子半径が
62〜70μmであるMnO2 を100g、導電剤とし
て導電剤の粒子のそれぞれ1個ずつの粒子がそれぞれ1
個ずつの導電剤の粒子の平均粒子半径に対して、最長粒
子半径が平均粒子半径の1.21倍〜1.40倍、最短
粒子半径が平均粒子半径の0.60倍〜0.77倍であ
り、その導電剤の平均粒子半径が7〜10μmであるグ
ラファイトを10gを混合し、その他は上記と同様の方
法で作製した正極合剤を用いた電池も上記と同様の方法
で作製した。ただし、正極合剤ペースト作製においてイ
オン伝導性高分子固体電解質は65g、アゾビスイソブ
チロニトリルは0.033g必要であった以外は、上記
と同様である。
As a comparative example, each of the particles of the positive electrode active material as the positive electrode active material for the primary battery has a longest particle radius with respect to the average particle radius of one particle of the positive electrode active material. 1.22 times the average particle radius to 2.0
0 times the shortest particle radius is 0.55 times the average particle radius to 0.
79 times, the average particle radius of the particles of the positive electrode active material is 62 to 70 μm, 100 g of MnO 2, and one particle of each conductive agent as a conductive agent is 1
The longest particle radius is 1.21 to 1.40 times the average particle radius and the shortest particle radius is 0.60 to 0.77 times the average particle radius with respect to the average particle radius of the particles of the conductive agent. A battery using the positive electrode mixture prepared by the same method as above except that 10 g of graphite having an average particle radius of the conductive agent of 7 to 10 μm was mixed was also prepared by the same method as described above. However, it is the same as the above except that 65 g of the ion conductive polymer solid electrolyte and 0.033 g of azobisisobutyronitrile were required in the preparation of the positive electrode mixture paste.

【0022】以上のように2種類の電池の正極合剤体積
当りの活物質充填密度および放電特性から電池体積当り
のエネルギー密度の比較を行った。
As described above, the energy density per battery volume was compared from the packing density of the active material per positive electrode mixture volume and the discharge characteristics of the two types of batteries.

【0023】表1、表2に放電試験における正極活物質
利用率、正極合剤体積当りの活物質充填密度および電池
体積当りのエネルギー密度を示す。
Tables 1 and 2 show the positive electrode active material utilization rate in the discharge test, the active material packing density per positive electrode mixture volume, and the energy density per battery volume.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】表1、表2から明らかなように、正極合剤
単位体積当りの活物質充填率や電池体積当りのエネルギ
ー密度において、本発明の正極合剤およびその正極合剤
を用いた非水電解質電池は従来例に比べて優れているこ
とがわかる。
As is clear from Tables 1 and 2, the positive electrode mixture of the present invention and the non-aqueous solution containing the positive electrode mixture are used in terms of the active material filling rate per unit volume of the positive electrode mixture and the energy density per battery volume. It can be seen that the electrolyte battery is superior to the conventional example.

【0027】[0027]

【発明の効果】以上の説明から明らかなように正極活物
質の粒子のそれぞれ1個ずつの粒子がそれぞれ1個の正
極活物質の粒子の平均粒子半径に対して、最長粒子半径
が平均粒子半径の1.00倍〜1.20倍、最短粒子半
径が平均粒子半径の0.80倍〜1.00倍、前記正極
活物質の粒子の平均粒子半径が60μm以下、前記正極
活物質と前記以外の正極活物質を混合したものを100
重量%としたとき前記正極活物質が20重量%以上であ
る混合物、導電剤の粒子のそれぞれ1個ずつの粒子がそ
れぞれ1個ずつの導電剤の粒子の平均粒子半径に対し
て、最長粒子半径が平均粒子半径の1.00倍〜1.2
0倍、最短粒子半径が平均粒子半径の0.80倍〜1.
00倍、前記導電剤の平均粒子半径が5μm以下、前記
正極活物質と前記導電剤を混合したものを100重量%
としたとき前記導電剤が1〜25重量%である混合物を
用いた正極合剤では、その単位体積当りの正極活物質充
填率は向上し、その正極合剤を用いた非水電解質電池で
は、電池体積当りのエネルギー密度が向上する。
As is clear from the above description, one particle of the positive electrode active material is the average particle radius of the particles of the positive electrode active material, and the longest particle radius is the average particle radius. 1.00 times to 1.20 times, the shortest particle radius is 0.80 times to 1.00 times the average particle radius, the average particle radius of the particles of the positive electrode active material is 60 μm or less, and the positive electrode active material and other than the above. 100 mixed with the positive electrode active material
The mixture having the positive electrode active material in an amount of 20% by weight or more, and one particle of each of the conductive agent is the longest particle radius with respect to the average particle radius of the conductive agent particles. Is 1.00 to 1.2 times the average particle radius
0 times the shortest particle radius is 0.80 times the average particle radius-1.
00 times, the average particle radius of the conductive agent is 5 μm or less, and 100% by weight of the mixture of the positive electrode active material and the conductive agent.
Then, in the positive electrode mixture using the mixture in which the conductive agent is 1 to 25% by weight, the positive electrode active material filling rate per unit volume is improved, and in the non-aqueous electrolyte battery using the positive electrode mixture, The energy density per battery volume is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における正極活物質の断面図である。FIG. 1 is a cross-sectional view of a positive electrode active material according to the present invention.

【図2】本発明における導電剤の断面図である。FIG. 2 is a cross-sectional view of a conductive agent according to the present invention.

【図3】実施例における電池の断面図である。FIG. 3 is a cross-sectional view of a battery in an example.

【符号の説明】[Explanation of symbols]

1 本発明における正極活物質の最長粒子半径 2 本発明における正極活物質の平均粒子半径 3 本発明における正極活物質の最短粒子半径 4 本発明における正極活物質 5 本発明における導電剤の最長粒子半径 6 本発明における導電剤の平均粒子半径 7 本発明における導電剤の最短粒子半径 8 本発明における導電剤 9 ステンレス基板 10 正極合剤 11 イオン伝導性高分子固体電解質被膜 12 負極 13 ステンレス基板 1 Longest particle radius of positive electrode active material in the present invention 2 Average particle radius of positive electrode active material in the present invention 3 Shortest particle radius of positive electrode active material in the present invention 4 Positive electrode active material 5 in the present invention Longest particle radius of conductive agent in the present invention 6 Average Particle Radius of Conductive Agent in Present Invention 7 Shortest Particle Radius of Conductive Agent in Present Invention 8 Conductive Agent in Present Invention 9 Stainless Steel Substrate 10 Positive Electrode Mixture 11 Ion Conductive Polymer Solid Electrolyte Coating 12 Negative Electrode 13 Stainless Steel Substrate

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質、導電剤および結着剤を含有
する正極合剤であって、正極活物質の粒子のそれぞれ1
個ずつの粒子が、それぞれ1個の正極活物質の粒子の平
均粒子半径に対して、最長粒子半径が平均粒子半径の
1.00倍〜1.20倍、最短粒子半径が平均粒子半径
の0.80倍〜1.00倍である正極活物質を用いたこ
とを特徴とする正極合剤。
1. A positive electrode mixture containing a positive electrode active material, a conductive agent, and a binder, each of which is one of particles of the positive electrode active material.
Each of the particles has a longest particle radius of 1.00 to 1.20 times the average particle radius and a shortest particle radius of 0 to the average particle radius of the average particle radius of one positive electrode active material particle. A positive electrode mixture characterized by using a positive electrode active material having a weight ratio of 80 to 1.00.
【請求項2】 前記正極活物質の粒子の平均粒子半径
が、60μm以下であることを特徴とする請求項1記載
の正極合剤。
2. The positive electrode mixture according to claim 1, wherein the particles of the positive electrode active material have an average particle radius of 60 μm or less.
【請求項3】 請求項1記載の正極活物質とこれ以外の
正極活物質を混合したものを100重量%としたとき、
請求項1記載の正極活物質が20重量%以上であること
を特徴とする正極合剤。
3. When the mixture of the positive electrode active material according to claim 1 and other positive electrode active material is 100% by weight,
A positive electrode mixture, wherein the positive electrode active material according to claim 1 is 20% by weight or more.
【請求項4】 前記導電剤の粒子のそれぞれ1個ずつの
粒子が、それぞれ1個ずつの導電剤の粒子の平均粒子半
径に対して、最長粒子半径が平均粒子半径の1.00倍
〜1.20倍、最短粒子半径が平均粒子半径の0.80
倍〜1.00倍である導電剤を用いたことを特徴とする
請求項1記載の正極合剤。
4. The longest particle radius of each one particle of the conductive agent is 1.00 to 1 times the average particle radius of the average particle radius of each one particle of the conductive agent. 20 times, the shortest particle radius is 0.80 of the average particle radius
The positive electrode mixture according to claim 1, wherein a conductive agent having a ratio of 2 to 1.00 is used.
【請求項5】 前記導電剤の平均粒子半径が、5μm以
下であることを特徴とする請求項1記載の正極合剤。
5. The positive electrode mixture according to claim 1, wherein the conductive agent has an average particle radius of 5 μm or less.
【請求項6】 請求項1、2又は3記載の正極活物質と
前記導電剤を混合したものを100重量%としたとき、
前記導電剤が1〜25重量%である混合物を用いること
を特徴とする正極合剤。
6. When the mixture of the positive electrode active material according to claim 1, 2 and 3 and the conductive agent is 100% by weight,
A positive electrode material mixture, wherein a mixture containing 1 to 25% by weight of the conductive agent is used.
JP6103909A 1994-05-18 1994-05-18 Positive electrode black mix Pending JPH07312221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6103909A JPH07312221A (en) 1994-05-18 1994-05-18 Positive electrode black mix

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6103909A JPH07312221A (en) 1994-05-18 1994-05-18 Positive electrode black mix

Publications (1)

Publication Number Publication Date
JPH07312221A true JPH07312221A (en) 1995-11-28

Family

ID=14366558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6103909A Pending JPH07312221A (en) 1994-05-18 1994-05-18 Positive electrode black mix

Country Status (1)

Country Link
JP (1) JPH07312221A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0981176A1 (en) * 1998-08-20 2000-02-23 Sony Corporation Solid electrolytic battery
JP2012023049A (en) * 1998-08-17 2012-02-02 Ovonic Battery Co Inc Composite positive electrode material and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023049A (en) * 1998-08-17 2012-02-02 Ovonic Battery Co Inc Composite positive electrode material and its manufacturing method
EP0981176A1 (en) * 1998-08-20 2000-02-23 Sony Corporation Solid electrolytic battery
US6423453B1 (en) 1998-08-20 2002-07-23 Sony Corporation Solid electrolyte battery

Similar Documents

Publication Publication Date Title
JP3585122B2 (en) Non-aqueous secondary battery and its manufacturing method
JPWO2011036759A1 (en) Lithium secondary battery and manufacturing method thereof
JPH10144298A (en) Lithium secondary battery
JP3615472B2 (en) Non-aqueous electrolyte battery
JPH07201316A (en) Nonaqueous electrolyte secondary battery
JP2002056896A (en) Nonaqueous electrolyte battery
JP3399614B2 (en) Positive electrode mixture and battery using the same
JP5605614B2 (en) Method for manufacturing lithium secondary battery
JP2012185911A (en) Composite positive electrode active material for lithium ion secondary battery and lithium ion secondary battery using the same
JPH1131508A (en) Nonaqueous electrolyte secondary battery
JP6468191B2 (en) Nonaqueous electrolyte secondary battery
JPH11126600A (en) Lithium ion secondary battery
JPH09306546A (en) Positive electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP3208243B2 (en) Non-aqueous battery
JP2015176744A (en) Method of manufacturing secondary battery
JP2002117834A (en) Positive electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP7096981B2 (en) Lithium ion secondary battery
JP4712158B2 (en) Production method of active material powder for lithium ion battery and electrode for lithium ion battery
JPH07312221A (en) Positive electrode black mix
WO1998008263A1 (en) Lithium ion secondary cell and its cathode
JPH1154122A (en) Lithium ion secondary battery
JPH08138678A (en) Positive electrode mix
JP3115256B2 (en) Non-aqueous electrolyte secondary battery
JP2002075377A (en) Negative electrode for nonaqueous electrolyte secondary battery
JP7484790B2 (en) All-solid-state battery