JPH07309602A - Tubular cracking furnace for catalytic cracking of hydrocarbon with steam - Google Patents

Tubular cracking furnace for catalytic cracking of hydrocarbon with steam

Info

Publication number
JPH07309602A
JPH07309602A JP7020722A JP2072295A JPH07309602A JP H07309602 A JPH07309602 A JP H07309602A JP 7020722 A JP7020722 A JP 7020722A JP 2072295 A JP2072295 A JP 2072295A JP H07309602 A JPH07309602 A JP H07309602A
Authority
JP
Japan
Prior art keywords
bulk material
material layer
gas
process gas
tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7020722A
Other languages
Japanese (ja)
Inventor
Heiko Barnert
ハイコ・バーナート
Jasbir Dr Singh
ジャスビール・シン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of JPH07309602A publication Critical patent/JPH07309602A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/087Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/12Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by gravity in a downward flow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/42Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts using moving solid particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0833Heating by indirect heat exchange with hot fluids, other than combustion gases, product gases or non-combustive exothermic reaction product gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE: To provide the cracking furnace capable of performing catalytic steam cracking of a hydrocarbon(s) with high heat efficiency and in a high cracking conversion ratio by providing a tubular cracking furnace with a catalyst chamber contg. the bulk material bed, introducing a process gas consisting of methane and steam into the bulk material bed and concurrently, heating the process gas with heated gas tubes.
CONSTITUTION: In this cracking furnace, a catalyst chamber 3 contains a bulk material bed 5 consisting of catalyst elements 4 and the catalyst elements 4 are downwardly moved in the catalyst chamber 3 by gravity and refluxed with a process gas, transferred through a take-off conduit 15, an excess flow control device 16, a reactivation unit 21, a flow rate control device 12 and a feed conduit 11. Also, one or many heating gas tubes 6 are placed in the snaky or helical shape, so as to pierce the bulk material bed 5 and then, hot helium heated to 950°C is passed through the inside of each of the heating gas tubes 6, to heat the process gas. At this time, the process gas comprises methane and steam in a steam/methane volumetric ratio of 3/1 to 7/1 and is fed into the bulk material bed 5 from a process gas inflow port 19 and in the bed 5, catalytically cracked in a ≥80% cracking conversion ratio and then, the resulting cracked gas is taken off from a cracked gas outflow port 20.
COPYRIGHT: (C)1995,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガス状の炭化水素、特
に水蒸気と混合されたプロセスガスを形成するメタンを
水蒸気により接触的に分解するための管状分解炉に関す
る。
BACKGROUND OF THE INVENTION The present invention relates to a tubular cracking furnace for the catalytic cracking of gaseous hydrocarbons, in particular methane which forms a process gas mixed with steam, by means of steam.

【0002】この管状分解炉はプロセスガスを分解する
ために、プロセスガスを流過する触媒要素から成る材料
層を含んでいる触媒室を備えている。プロセスガスが加
熱ガス、特にヘリウムで加熱される。
This tubular cracking furnace is equipped with a catalyst chamber containing a layer of material consisting of catalytic elements through which the process gas flows in order to decompose it. The process gas is heated with a heating gas, especially helium.

【0003】[0003]

【従来の技術】このような様式の管状分解炉は公知であ
る。即ち、雑誌『Nuclear Engineeringand Design 』,
Vol. 78,No.2,1984 ,“The nuclear heated steam ref
ormer-design and semitechnical operating experienc
e ”P.179-194 には管状分解炉が記載されているが、こ
の管状分解炉においては触媒室を形成している分解管体
内にラシッヒリングの様式の触媒要素が存在している。
触媒要素を備えた分解管体は、接触分解に必要な反応熱
を与えるため加熱したヘリウムで加熱される。ヘリウム
側からの熱伝達を増大させるために、ヘリウムが流れる
領域内に熱伝達を増大させるための内蔵物が分解管体と
共に設けられており、これにより接触分解の効率が改善
される。しかし、触媒要素の接触的な特性は管状分解炉
の作動が継続している間に変わり、触媒の種類に応じて
触媒要素を一定の作動時間の経過後交換しなければなら
ない。触媒要素は管状分解炉の外側では再活性され、引
続き再び使用される。
2. Description of the Prior Art Tubular cracking furnaces of this type are known. That is, the magazine "Nuclear Engineering and Design",
Vol. 78, No.2,1984, “The nuclear heated steam ref
ormer-design and semitechnical operating experienc
In e "P.179-194, a tubular cracking furnace is described, in which the Raschig ring type catalyst elements are present in the cracking tube forming the catalyst chamber.
The cracking tube provided with the catalytic element is heated with heated helium to provide the heat of reaction required for catalytic cracking. In order to increase the heat transfer from the helium side, internals for increasing the heat transfer are provided with the cracking tube in the region where the helium flows, thereby improving the efficiency of catalytic cracking. However, the catalytic properties of the catalytic element change during the continuous operation of the tubular cracking furnace, and depending on the type of catalyst, the catalytic element must be replaced after a certain operating time. The catalytic element is reactivated outside the tubular cracking furnace and subsequently reused.

【0004】[0004]

【発明が解決しようとする課題】本発明の根底をなす課
題は、冒頭に記載した様式の、水蒸気素による炭化水素
の接触的な分解のための管状分解炉を、その構成が容易
である傍ら、その高い分解効率が達せられるように完全
することである。
The problem underlying the present invention is to provide a tubular cracking furnace for the catalytic cracking of hydrocarbons with steam in the manner described at the outset, while its construction is easy. , So that its high decomposition efficiency is reached.

【0005】[0005]

【課題を解決するための手段】この課題は本発明によ
り、冒頭に記載した様式の管状分解炉が触媒室を備え、
この触媒室が触媒要素から成るばら材料層を備えてお
り、触媒要素が重力の作用の下で触媒室を移動し、一種
類或いは多種類の炭化水素を水蒸気と共に混合された状
態で含んでいるプロセスガスと還流可能であり、この場
合触媒室に、触媒要素を移送するために、触媒要素のた
めのそれぞれ一つの流過量制御装置を備えた少なくとも
一つの供給導管と取出し導管が接続されており、プロセ
スガス流入口がばら材料層の下方領域内に、そしてばら
材料層の上方領域内に分解ガス流出口が設けられている
こと、およびプロセスガスを加熱するためにばら材料層
を貫通している一つ或いは多数の加熱ガス管がばら材料
層内で蛇行状に或いはヘリックス状に敷設されており、
この場合加熱ガス管をばら材料層の領域内で上方から下
方へと加熱ガス、特に加熱ヘリウムが流過するように構
成されていることによって解決される。
This object is achieved according to the invention by a tubular cracking furnace of the type described at the outset comprising a catalyst chamber,
The catalytic chamber is provided with a bulk material layer of catalytic elements, which moves under the action of gravity in the catalytic chamber and contains one or more hydrocarbons mixed with steam. It is possible to recirculate with the process gas, in which case the catalyst chamber is connected to at least one feed conduit and withdrawal conduit, each with a flow-through controller for the catalytic element, for transferring the catalytic element. A process gas inlet is provided in the lower region of the bulk material layer and a decomposition gas outlet in the upper region of the bulk material layer, and through the bulk material layer to heat the process gas. One or many heated gas pipes are laid in a meandering or helix shape in the bulk material layer,
This is solved by the fact that the heating gas pipe is designed so that the heating gas, in particular heating helium, flows from the top to the bottom in the region of the bulk material layer.

【0006】触媒室には、触媒要素を移送するために、
供給導管および取出し導管が接続されており、これらの
導管はそれらの供給部および取出し部を介して行われる
触媒要素の流過量を制御するための流過量調節装置をそ
れぞれ備えている。触媒要素は、重力の作用の下に、ば
ら材料層としての触媒室を流過する。その際、流過量は
その都度、時間単位−この単位時間内で触媒要素が触媒
室を移動する−が所望の接触作用が達せられるような時
間単位であるように調節されている。触媒要素はその接
触特性が所定の品質以下になって始めて触媒室を去る。
流過量は連続的に、或いは連続に類似した様式で、相応
した予選択された時間周期で行われる。
In order to transfer the catalyst element to the catalyst chamber,
Connected to the supply and withdrawal conduits, these conduits are each equipped with a flow-through regulator for controlling the flow-through of the catalytic element through the feed and withdrawal parts. The catalytic element flows under the action of gravity through the catalytic chamber as a bulk material layer. In this case, the flow-through amount is adjusted so that the time unit-the catalyst element moves in the catalyst chamber within this unit time-is a time unit in which the desired contact action is achieved. The catalytic element leaves the catalytic chamber only when its contact properties are below a certain quality.
The flow-through is carried out continuously or in a manner similar to continuous with a corresponding preselected time period.

【0007】本発明による他の構成にあっては、触媒要
素の取出し導管は再活性化ユニットに通じており、この
再活性化ユニットから再活性された触媒要素が触媒室の
供給導管に戻される(特許請求の範囲の請求項2参
照)。
In another arrangement according to the invention, the withdrawal conduit of the catalytic element leads to a reactivation unit, from which the reactivated catalytic element is returned to the feed conduit of the catalytic chamber. (See claim 2 in the claims).

【0008】高い接触効果を達するため、触媒要素は球
状に形成されており、その接触反応を行う表面を拡大す
るために凹部を備えている(特許請求の範囲の請求項3
参照)。
In order to achieve a high contact effect, the catalytic element is formed in a spherical shape and is provided with recesses for enlarging the surface on which its catalytic reaction takes place (Claim 3).
reference).

【0009】このような凹部は、例えば触媒要素を僅か
に切取ることによって得られる。ばら材料層内での触媒
要素間の橋絡の形成は適当な内蔵物を設けることにより
回避することが可能である。
Such a recess is obtained, for example, by slightly cutting off the catalytic element. The formation of bridges between catalytic elements in the bulk material layer can be avoided by providing suitable inclusions.

【0010】触媒室内のプロセスガスを加熱するため
に、加熱ガス管が蛇行して或いはヘリックス状にばら材
料層内を引通される(特許請求の範囲の請求項4参
照)。加熱ガスとしてはヘリウムが使用され、このヘリ
ウムは例えば高温反応容器内で、接触反応に必要なガス
温度に加熱される。触媒要素の全く支障のない流過を維
持するために、加熱ガス管はばら材料層の内部に、個々
の管曲線部間においてそれぞれ球状の触媒要素の直径D
の5倍に相当する間隔a(a≦5D)が維持されるよう
に設けられている(特許請求の範囲の請求項5参照)。
ばら材料層の領域内で、加熱ガスは上方から下方へと加
熱ガス管を流過する(特許請求の範囲の請求項6参
照)。
In order to heat the process gas in the catalyst chamber, a heating gas pipe is drawn through the bulk material layer in a meandering or helix manner (see claim 4 of the claims). Helium is used as the heating gas, and this helium is heated to the gas temperature necessary for the catalytic reaction, for example, in a high temperature reaction vessel. In order to maintain a completely undisturbed passage of the catalytic element, the heating gas pipe is arranged inside the bulk material layer, between the individual curved sections of the tube, the diameter D of the respective catalytic element being spherical.
Is provided so as to maintain an interval a (a ≦ 5D) corresponding to 5 times (see claim 5 of the claims).
In the region of the bulk material layer, the heating gas flows through the heating gas pipe from top to bottom (see claim 6).

【0011】触媒室内のばら材料層内での触媒要素の流
過方向に対抗してプロセスガスが案内される。触媒室は
ばら材料層の下方領域内でプロセスガス流入口を、ばら
材料層の上方に分解ガス流出口を有している((特許請
求の範囲の請求項6参照)。
The process gas is guided against the flow direction of the catalytic element in the bulk material layer in the catalytic chamber. The catalyst chamber has a process gas inlet in the lower region of the bulk material layer and a cracking gas outlet above the bulk material layer (see claim 6).

【0012】以下に添付した図面に図示した実施例につ
き本発明を詳しく説明する。
Hereinafter, the present invention will be described in detail with reference to the embodiments illustrated in the accompanying drawings.

【0013】[0013]

【実施例】図1には、対称軸線1と外壁2とを備えた円
筒形の管状分解炉が縦断面図で示されている。管状分解
炉内の中央には、ばら材料層5を形成している球状の触
媒要素4が充填されている触媒室3が存在している。ば
ら材料層5を、この実施例にあっては、ヘリックス状に
指向している加熱ガス管6が貫通しており、この加熱ガ
ス管を通って、この実施例にあっては、加熱ガスとして
加熱されたヘリウムが流れる。ヘリックス状に指向して
いる加熱ガス管の代わりに、この加熱ガス管の蛇行した
配設も可能である。
1 is a longitudinal sectional view of a cylindrical tubular cracking furnace with an axis of symmetry 1 and an outer wall 2. At the center of the tubular cracking furnace, there is a catalyst chamber 3 filled with spherical catalyst elements 4 forming a bulk material layer 5. In the present embodiment, the bulk material layer 5 is penetrated by a heating gas pipe 6 oriented in a helix shape, and passes through this heating gas pipe, and in this embodiment, as a heating gas. The heated helium flows. Instead of a heating gas tube oriented in a helix, a meandering arrangement of this heating gas tube is also possible.

【0014】図1には、加熱ガス管6の二つのみを図示
した。加熱ガス管の個々の管曲線部の間において、この
加熱ガス管6は触媒要素の直径Dの五倍に相当する最低
間隔aを有している(図2にこの直径Dを示した)。多
数の加熱ガス管6を使用した際は、この最低間隔a≦5
Dはすべての加熱ガス管の間じ維持される。これにより
ばら材料層5内での球状の触媒要素4の重力によって行
われる流過が妨げられない。
In FIG. 1, only two heating gas pipes 6 are shown. Between the individual curve sections of the heating gas pipe, this heating gas pipe 6 has a minimum distance a corresponding to five times the diameter D of the catalytic element (this diameter D is shown in FIG. 2). When a large number of heating gas pipes 6 are used, this minimum interval a ≦ 5
D is maintained between all heated gas lines. As a result, the flow-through of the spherical catalytic element 4 in the bulk material layer 5 caused by the gravity is not impeded.

【0015】加熱ガス管6は、管状分解炉の頭部7にお
いて、加熱ガス流入口8に接続されている。加熱ガス管
6はばら材料層5を経て案内されており、触媒室3の外
側領域内で、外壁2の内側を走る戻流導管9と結合され
ている。この戻流導管は、ばら材料層5を流過するプロ
セスガスにその加熱ガスがその熱を放出した後、この加
熱ガスを加熱ガス流出口10に案内する。この加熱ガス
流出口10は加熱ガス流入口8と同様に管状分解炉の頭
部7内に存在している。
The heated gas pipe 6 is connected to the heated gas inlet 8 at the head 7 of the tubular cracking furnace. A heating gas line 6 is guided through the bulk material layer 5 and is connected in the outer region of the catalyst chamber 3 with a return flow conduit 9 which runs inside the outer wall 2. This return conduit guides the heating gas to the heating gas outlet 10 after it has released its heat to the process gas flowing through the bulk material layer 5. The heating gas outlet 10 is located in the head portion 7 of the tubular cracking furnace, like the heating gas inlet 8.

【0016】触媒要素4は一つの供給導管11或いは−
この実施例におけると同様に−多数の供給導管11を経
て触媒室3内に導入される。これらの供給導管11は、
この実施例にあっては、管状分解炉の頭部7内に環状に
設けられている。触媒要素4はこれらの供給導管11か
ら−この供給導管11内で流過量調節機構12により所
定の流過量に調節されて−ばら材料層5へとその表面1
3上に落下する。
The catalytic element 4 comprises one feed conduit 11 or-
As in this embodiment-introduced into the catalyst chamber 3 via a number of feed conduits 11. These supply conduits 11 are
In this embodiment, it is provided annularly inside the head 7 of the tubular cracking furnace. The catalytic element 4 is adjusted from these supply conduits 11—in this supply conduit 11 by a flow-through adjustment mechanism 12 to a predetermined flow-through amount—to the bulk material layer 5 on its surface 1.
Drop on 3.

【0017】球状の触媒要素4は、その接触的に作用す
る表面を拡大するために、この実施例にあっては触媒要
素を僅かに切取ることにより形成される凹部14を備え
ている(図2にこの凹部示した)。
The spherical catalytic element 4 is provided with a recess 14 in this embodiment which is formed by slightly cutting out the catalytic element in order to enlarge its catalytically active surface (FIG. 2 shows this recess).

【0018】触媒室3から、触媒要素4がばら材料層5
の下方領域から取出し導管15−この取出し導管内の流
過量は他の流過量調節機構16により調節される−を介
して取出される。触媒要素は触媒要素流出口17におい
て管状分解炉から流出する。
From the catalyst chamber 3 the catalyst element 4 is loaded with the bulk material layer 5
From the lower region of the pipe through the take-out pipe 15-the flow-through amount in the take-out pipe is adjusted by another flow-through amount adjusting mechanism 16. The catalyst element exits the tubular cracking furnace at the catalyst element outlet 17.

【0019】流過量調節機構12と16は、重力の作用
の下でばら材料層5を流過する触媒要素4が、触媒室3
内での所定の滞留時間を経た後、触媒要素流出口17を
経て再び管状分解炉から除去されるように調節を行う。
触媒要素のための滞留時間はこの実施例にあっては約6
月である。触媒物質としては、酸化アルミニウム、酸化
カルシウムおよび/または酸化ニッケルが使用される。
In the flow-through amount adjusting mechanisms 12 and 16, the catalyst element 4 which flows through the bulk material layer 5 under the action of gravity is disposed in the catalyst chamber 3
After a predetermined residence time in the inside, adjustment is performed so that the gas is removed again from the tubular cracking furnace through the catalyst element outlet 17.
The residence time for the catalytic element is about 6 in this example.
It is the moon. Aluminum oxide, calcium oxide and / or nickel oxide are used as catalyst substances.

【0020】加熱ガス管6を流れ方向18で流過する加
熱ガスに対して反対方向で、触媒要素4の表面に直に接
触するプロセスガスがばら材料層5を流過する。この実
施例にあっては、プロセスガスと水蒸気と分解されるべ
きメタンとから、3:1の量比率、特に7:1の量比率
で成る。プロセスガスはばら材料層5の下方領域内で、
この実施例にあってはプロセスガス流入口19を経て、
ばら材料層内に入り、このばら材料層を下方から上方へ
と流過する。プロセスガス流入口は流入する触媒要素4
に対して保護されている。プロセスガスは触媒室3内に
おいて、H2 、CO、CO2 、CH4 とH2 Oを含んで
いる分解ガスに分解され、ばら材料層5を流過した後、
管状分解炉の頭部7内で分解ガス流出口20を経て流出
する。
A process gas, which is in direct contact with the surface of the catalytic element 4 in a direction opposite to the heating gas flowing in the heating gas pipe 6 in the flow direction 18, flows through the bulk material layer 5. In this embodiment, the process gas, water vapor and methane to be decomposed are in a 3: 1 volume ratio, in particular a 7: 1 volume ratio. In the lower region of the bulk material layer 5, the process gas is
In this embodiment, via the process gas inlet 19
It enters the bulk material layer and flows through this bulk material layer from below to above. The process gas inlet is an inflowing catalyst element 4
Protected against. In the catalyst chamber 3, the process gas is decomposed into decomposition gas containing H 2 , CO, CO 2 , CH 4 and H 2 O, and after passing through the bulk material layer 5,
It flows out through the cracked gas outlet 20 in the head 7 of the tubular cracking furnace.

【0021】水蒸気によりメタンを接触的に分解するた
めに、この実施例にあっては、管状分解炉内は、以下の
ガス組成、温度および圧力に調節される。 −プロセスガス ガス組成: 水蒸気:メタン=4:1 流入温度:約500℃ −分解ガス ガス組成:(容量%)約:H2 =37、CO=5、CO
2 =6、CH4 =6、H2 O=46 流出温度:約800℃ −加熱ガス ヘリウム 流入温度:約950℃ 流出温度:約680℃ 圧力: 約40バール −触媒要素 材料: 酸化アルミニウム、酸化カルシウム、酸化ニッ
ケルの混合物 滞留時間: 約6月 −通過量 プロセスガス対分解ガス:>80% −ばら材料層内の反応区間:約1m/秒のプロセスガス
流過速度にあって約1111m この実施例にあっては、触媒要素流出口17から取出さ
れる触媒要素は再活性化ユニット21に供給される。触
媒要素のための移送導管22がこの再活性化ユニット2
1に通じている。この再活性化ユニット21内におい
て、触媒要素はその原初の接触作用のある品質にされ
る。引続き、再活性された触媒要素は移送導管23を経
て供給導管11に導かれ、ここで再び管状分解炉内に導
入される。図1には、移送導管22と23並びに再活性
化ユニット21は概略図でのみ示されている。
In order to catalytically decompose methane with steam, in the present embodiment, the gas composition, temperature and pressure are adjusted as follows in the tubular cracking furnace. - Process Gas Gas composition: water vapor: Methane = 4: 1 inlet temperature: about 500 ° C. - decomposition gas Gas composition :( volume%) about: H 2 = 37, CO = 5, CO
2 = 6, CH 4 = 6 , H 2 O = 46 outlet temperature: about 800 ° C. - heating gas helium inlet temperature: about 950 ° C. outflow temperature of about 680 ° C. Pressure: 40 bar - catalyst elemental materials: aluminum oxide, Mixture of calcium and nickel oxide Residence time: Approximately 6 months-Amount of process gas vs. decomposition gas:> 80% -Reaction zone in bulk material layer: Approximately 1111 m at a process gas flow velocity of approximately 1 m / sec. In the example, the catalyst element taken out from the catalyst element outlet 17 is supplied to the reactivating unit 21. The transfer conduit 22 for the catalytic element is the reactivation unit 2
It leads to 1. Within this reactivation unit 21, the catalytic element is brought to its original catalytic quality. Subsequently, the reactivated catalyst element is led to the feed conduit 11 via the transfer conduit 23, where it is again introduced into the tubular cracking furnace. In FIG. 1, the transfer conduits 22 and 23 as well as the reactivating unit 21 are shown only in a schematic view.

【0022】[0022]

【発明の効果】本発明による管状分解炉により、構造が
単純であるにもかかわらず、高い熱効率と触媒要素の再
活性による再使用により、高い分解効率と経済的に有利
な炭化水素の水蒸気による接触分解が達せられる。
With the tubular cracking furnace according to the present invention, despite the simple structure, the high thermal efficiency and the reuse due to the reactivation of the catalyst element allow the high cracking efficiency and economically advantageous hydrocarbon steam. Catalytic decomposition is achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による管状分解炉の垂直断面図である。FIG. 1 is a vertical sectional view of a tubular cracking furnace according to the present invention.

【図2】本発明による触媒要素の断面図である。FIG. 2 is a cross-sectional view of a catalytic element according to the present invention.

【符号の説明】[Explanation of symbols]

1 対称軸線 2 外壁 3 触媒室 4 触媒要素 5 ばら材料層 6 加熱ガス管 7 頭部 8 加熱ガス流入口 9 戻流導管 10 加熱ガス流出口 11 供給導管 12 流過量調節機構 13 ばら材料層の表面 14 凹部 16 流過量調節機構 17 触媒要素流出口 18 流れ方向 19 プロセスガス流出口 20 分解ガス流出口 21 再活性化ユニット 22 移送導管 23 移送導管 1 symmetry axis 2 outer wall 3 catalyst chamber 4 catalyst element 5 bulk material layer 6 heating gas pipe 7 head 8 heating gas inlet 9 backflow conduit 10 heating gas outlet 11 supply conduit 12 flow excess adjustment mechanism 13 surface of bulk material layer 14 recess 16 flow rate adjusting mechanism 17 catalyst element outlet 18 flow direction 19 process gas outlet 20 cracked gas outlet 21 reactivation unit 22 transfer conduit 23 transfer conduit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ガス状の炭化水素、特にメタンを水蒸気
により接触的に分解するための管状分解炉において、触
媒室(3)を備え、この触媒室が触媒要素(4)から成
るばら材料層(5)を備えており、触媒要素が重力の作
用の下で触媒室(3)を移動し、一種類或いは多種類の
炭化水素を水蒸気と共に混合された状態で含んでいるプ
ロセスガスと還流可能であり、この場合触媒室(3)
に、触媒要素(4)を移送するために、触媒要素(4)
のためのそれぞれ一つの流過量制御装置(12,16)
を備えた少なくとも一つの供給導管(11)と取出し導
管(15)が接続されており、プロセスガス流入口(1
9)がばら材料層(5)の下方領域内に、そしてこのば
ら材料層(5)の上方領域内に分解ガス流出口(20)
が設けられていること、および、プロセスガスを加熱す
るためにばら材料層(5)を貫通している一つ或いは多
数の加熱ガス管(6)がばら材料層(5)内で蛇行状に
或いはヘリックス状に敷設されており、この場合加熱ガ
ス管(6)をばら材料層(5)の領域内で上方から下方
へと加熱ガス、特に加熱ヘリウムが流過するように構成
されていること、を特徴とする炭化水素を水素で接触的
に分解するための管状分解炉。
1. A tubular cracking furnace for catalytically cracking gaseous hydrocarbons, in particular methane with steam, comprising a catalyst chamber (3), the catalyst chamber comprising a catalytic element (4). (5), the catalyst element moves under the action of gravity in the catalyst chamber (3) and can be refluxed with a process gas containing one or more kinds of hydrocarbons mixed with steam. And in this case the catalyst chamber (3)
To transfer the catalytic element (4) to the catalytic element (4)
One overflow controller for each (12, 16)
Is connected to at least one supply conduit (11) with a withdrawal conduit (15), the process gas inlet (1
9) in the lower region of the bulk material layer (5) and in the upper region of the bulk material layer (5) in the cracked gas outlet (20).
And that one or more heating gas pipes (6) penetrating the bulk material layer (5) for heating the process gas are meandered in the bulk material layer (5). Alternatively, it is laid in a helix shape, in which case the heating gas pipe (6) is constructed so that the heating gas, in particular heating helium, flows from the upper side to the lower side in the region of the bulk material layer (5). , A tubular cracking furnace for catalytically cracking hydrocarbons with hydrogen.
【請求項2】 加熱ガス管(6)がばら材料層(5)の
下方において内側で触媒室(3)の外壁(2)に沿って
走る加熱ガスのための戻流導管(9)と結合されてお
り、この戻流導管が管状分解炉の頭部(7)内の加熱ガ
ス流出口(10)に通じていることを特徴とする請求項
1に記載の管状分解炉。
2. A heating gas pipe (6) is combined with a return flow conduit (9) for the heating gas which runs inside the bulk material layer (5) inside and along the outer wall (2) of the catalyst chamber (3). A tubular cracking furnace according to claim 1, characterized in that the return conduit leads to a heated gas outlet (10) in the head (7) of the tubular cracking furnace.
【請求項3】 取出し導管(15)が触媒要素(4)の
ための再活性化ユニット(21)に開口しており、再活
性された触媒要素が供給導管(11)に移送されるよう
に構成されていることを特徴とする請求項1或いは2に
記載の管状分解炉。
3. The withdrawal conduit (15) opens into a reactivation unit (21) for the catalytic element (4) so that the reactivated catalytic element is transferred to the feed conduit (11). The tubular decomposition furnace according to claim 1, wherein the tubular decomposition furnace is configured.
【請求項4】 触媒要素(4)が球状に形成されてお
り、その接触的な反応性の表面を拡大するための凹部を
備えていることを特徴とする請求項1から3までのいず
れか一つに記載の管状分解炉。
4. The catalytic element (4) is spherically shaped and is provided with recesses for enlarging its catalytically reactive surface. The tubular decomposition furnace according to one.
【請求項5】 加熱ガス管(6)がばら材料層(5)内
で、球状の触媒要素(4)の直径(D)の五倍(a≦5
D)に相当する相互の最低間隔(a)を有していること
を特徴とする請求項1から4までのいずれか一つに記載
の管状分解炉。
5. The heating gas pipe (6) has, in the bulk material layer (5), five times the diameter (D) of the spherical catalytic element (4) (a ≦ 5).
5. The tubular cracking furnace according to claim 1, having a minimum distance (a) between them corresponding to D).
JP7020722A 1994-02-11 1995-02-08 Tubular cracking furnace for catalytic cracking of hydrocarbon with steam Withdrawn JPH07309602A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4404294:9 1994-02-11
DE4404294A DE4404294C2 (en) 1994-02-11 1994-02-11 Tube cracking furnace for the catalytic splitting of hydrocarbons with water vapor

Publications (1)

Publication Number Publication Date
JPH07309602A true JPH07309602A (en) 1995-11-28

Family

ID=6509994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7020722A Withdrawn JPH07309602A (en) 1994-02-11 1995-02-08 Tubular cracking furnace for catalytic cracking of hydrocarbon with steam

Country Status (2)

Country Link
JP (1) JPH07309602A (en)
DE (1) DE4404294C2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2596299A (en) * 1952-05-13 Sheetsxsheet i
DE899349C (en) * 1944-09-22 1953-12-10 Socony Vacuum Oil Co Inc Device for carrying out catalytic reactions
US2680676A (en) * 1949-01-04 1954-06-08 Phillips Petroleum Co Gas reaction chamber
DE887338C (en) * 1950-12-29 1953-08-24 Houdry Process Corp Process for reducing catalyst wear in hydrocarbon conversions
US3882015A (en) * 1973-05-29 1975-05-06 Universal Oil Prod Co Countercurrent catalytic contact of a reactant stream in a multi-stage process and the apparatus therefor
DE3420319A1 (en) * 1984-05-30 1985-12-05 Linde Ag, 6200 Wiesbaden Process and apparatus for carrying out a catalytic reaction
DE3523417A1 (en) * 1985-03-23 1987-01-08 Kernforschungsanlage Juelich WALKING BED REACTOR FOR ADSORPTIVE AND / OR CATALYTIC REACTIONS
GB8627897D0 (en) * 1986-11-21 1986-12-31 Shell Int Research Reactor

Also Published As

Publication number Publication date
DE4404294C2 (en) 1998-01-29
DE4404294A1 (en) 1995-08-17

Similar Documents

Publication Publication Date Title
JP2664670B2 (en) Equipment for producing syngas
RU2053957C1 (en) Method and aggregate for hydrocarbons conversion by steam reformer
KR101357977B1 (en) Internal combustion exchanger reactor for endothermic reaction in fixed bed
EP0178853B1 (en) Conversion process
JP4331434B2 (en) Tubular reactor with gas injector for gas phase catalytic reaction
CA2282948A1 (en) Low temperature autothermal steam reformation of methane in a fluidized bed
US5120691A (en) Process for regulating or checking the thermal level of a pulverulent solid incorporating a heat exchanger with fluidized bed compartments
JPS627435A (en) Catalytic conversion of gas or liquid in multitubular type reactor
JPH0777608B2 (en) Method and apparatus for contacting gas
JP2652690B2 (en) Method for continuously generating and preheating a hydrocarbon gas / steam mixture as a charge for a reforming process for producing hydrogen or synthesis gas and an upright heat exchanger
CN111542492B (en) Apparatus and method for producing hydrogen-containing gas
US4101376A (en) Tubular heater for cracking hydrocarbons
EP0841317B1 (en) Process for dehydrogenation of ethylbenzene to styrene
JPS60225632A (en) Reactor
JPH07309602A (en) Tubular cracking furnace for catalytic cracking of hydrocarbon with steam
KR101831507B1 (en) Self heat supply dehydrogenation reactor for inducing isothermal reaction
KR101815752B1 (en) Self heat supply dehydrogenation reactor with heat source column inside catalyst layer
JPH06219706A (en) Adiabatic reformer reactor
JPH0640701A (en) Hydrogen separation type steam reforming reactor
KR101815753B1 (en) Self heat supply dehydrogenation reactor with heat source plate inside catalyst layer
US3508873A (en) Hydrogen produced in aqueous hydrocarbon emulsion multibed reactor
JP3924039B2 (en) Reactor
US3479166A (en) Apparatus for producing gases of predetermined characteristics
JP3924040B2 (en) Reactor
JPS6287240A (en) Endothermic reactor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507