JPH07308791A - Via hole forming method and film cutting method - Google Patents

Via hole forming method and film cutting method

Info

Publication number
JPH07308791A
JPH07308791A JP6174413A JP17441394A JPH07308791A JP H07308791 A JPH07308791 A JP H07308791A JP 6174413 A JP6174413 A JP 6174413A JP 17441394 A JP17441394 A JP 17441394A JP H07308791 A JPH07308791 A JP H07308791A
Authority
JP
Japan
Prior art keywords
film
laser light
via hole
forming
teflon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6174413A
Other languages
Japanese (ja)
Other versions
JP2760288B2 (en
Inventor
Berugasemu Haba
ベルガセム ハバ
Yukio Morishige
幸雄 森重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6174413A priority Critical patent/JP2760288B2/en
Priority to US08/364,451 priority patent/US5628926A/en
Priority to EP94120674A priority patent/EP0661734B1/en
Priority to DE69424393T priority patent/DE69424393T2/en
Priority to KR94040716A priority patent/KR0139708B1/en
Publication of JPH07308791A publication Critical patent/JPH07308791A/en
Application granted granted Critical
Publication of JP2760288B2 publication Critical patent/JP2760288B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To obtain the via hole forming method and film cutting method by which the generation of defect is reduced with high precision and simple process by forming a laser beam absorbing layer, irradiating the specified part with laser beam and executing ultrasonic cleaning. CONSTITUTION:In a first process, a laser beam absorbing layer 2 is formed on a 'Teflon<(>R<)>' film 1 by one among sputtering method, vapor deposition method and CVD method. In a second process, by radiating laser light 3 on a place to form a via hole or along a desired cutting pattern, an altered layer 4 is formed under the laser light radiating part of 'Teflon<(>R<)>' film 1. Successively, in a third process, a substrate is put in an ultrasonic washer filled with water and is subjected to ultrasonic cleaning for 5min. Due to the propagation of ultrasonic wave, the 'Teflon<(>R<)>' film 1 of the altered layer 4 is separated in aq. solution and a via hole 6 is formed. By this method, for example, a fine via hole having about <=20mum diameter and <=100mum depth is formed, further, a cutting margin is as small as about 20mum, and a film of about 100mum thickness is obtd. by cutting with high precision.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高密度多層配線の基板
として有用なシリカ等の充填材を含有するテフロン、ポ
リイミドやガラスエポキシ等の絶縁フィルムへの微細な
ビアホール形成法や所望のパターン通りに整形するフィ
ルム切断法に関する。
The present invention relates to a method for forming a fine via hole in an insulating film containing a filler such as silica, which is useful as a substrate for high-density multilayer wiring, such as Teflon, polyimide or glass epoxy, and to obtain a desired pattern. It relates to a film cutting method for shaping into.

【0002】[0002]

【従来の技術】多層配線基板技術は、パーソナルコンピ
ュータや、大型コンピュータのLSI実装用に発展し、
現在、装置コストの低減と、実装デバイスの高速化への
対応を図るために、高周波特性のよい絶縁フィルムを用
いる高密度実装技術の実用化が望まれている。従来、ガ
ラスエポキシ樹脂基板等へのビアホール形成法として
は、メカニカルなドリルによる方法が一般的に用いられ
ている。また、有機フィルムについては、数ミクロンオ
ーダの微細な加工が可能な方法として、紫外のパルスレ
ーザ光によるアブレーション加工法が知られている。有
機フィルムの加工を行った例として、1982年のアプ
ライドフィジックスレター(AppliedPhysi
cs Letters)誌第41巻第576頁にスリニ
バサン等による報告がある。
2. Description of the Related Art Multilayer wiring board technology has been developed for mounting LSIs on personal computers and large computers.
At present, in order to reduce the device cost and cope with the speeding up of mounted devices, it is desired to put into practical use a high-density mounting technique using an insulating film having good high-frequency characteristics. Conventionally, as a method of forming a via hole in a glass epoxy resin substrate or the like, a method using a mechanical drill is generally used. In addition, an ablation method using ultraviolet pulsed laser light is known as a method capable of finely processing an organic film on the order of several microns. As an example of processing an organic film, the Applied Physics Letter (Applied Physi) of 1982 is used.
In cs Letters, Vol. 41, p. 576, there is a report by Srinivasan et al.

【0003】また、従来、ガラスエポキシ樹脂基板等へ
のフィルム切断方法としては、メカニカルなカッターに
よる方法が一般的に用いられている。また、有機フィル
ムについては、炭酸ガスレーザ照射によるフィルムの溶
融蒸発作用を利用する切断加工法が知られている。
Conventionally, as a method of cutting a film on a glass epoxy resin substrate or the like, a method using a mechanical cutter is generally used. As for the organic film, a cutting method is known which utilizes the melting and evaporating action of the film by irradiation with carbon dioxide gas laser.

【0004】[0004]

【発明が解決しようとする課題】従来のメカニカルなド
リルによる加工方法では、ガラスエポキシなどの一般的
な基板でも、一つの穴を開けるのに要する時間は0.1
秒程度かかり、20cm角基板に2000個のビアホール
形成に要する時間は3分程度かかっているため、コスト
低減のためのスループット向上の重大な制約要因となっ
ていた。また高周波特性に優れるテフロンフィルム等で
は、ガラスエポキシ基板に比べ熱的・機械的な特性に劣
るため、ドリルの回転数や送り速度をゆっくりすること
が必要であった。また、メカニカルなドリル法では、最
小加工径が200μm 程度と大きいために、プリント基
板の配線密度の高密度化のために新しい微細加工対応の
手法が求められている。
In the conventional mechanical drilling method, the time required to make one hole is 0.1 even in a general substrate such as glass epoxy.
Since it takes about 2 seconds and the time required to form 2000 via holes on a 20 cm square substrate is about 3 minutes, it has been a serious limiting factor for improving the throughput for cost reduction. Further, since Teflon film and the like having excellent high frequency characteristics are inferior in thermal and mechanical characteristics to the glass epoxy substrate, it is necessary to slow down the rotation speed and feed rate of the drill. Further, in the mechanical drilling method, the minimum processing diameter is as large as about 200 μm, and therefore a new method for fine processing is required to increase the wiring density of the printed circuit board.

【0005】絶縁フィルムへのビアホール径の微細化に
対応できる手法として、高出力の紫外パルス光源である
エキシマレーザを用いるアブレーション法が開発された
が、この手法では、数μm 程度までの微細な加工は可能
なものの、最大加工速度が0.1μm /パルス程度であ
り、市販の100Hz程度の高繰り返しエキシマレーザ
を用いても、20μm 厚の比較的薄い絶縁フィルムの場
合でも一つのビアホール形成に2秒程度必要なため、1
ショットのレーザ照射で、複数のビアホールを形成する
などの工夫をしても、20cm角のプリント基板の加工速
度は、メカニカルな加工法の1/5程度と高く、高いス
ループットを得られない欠点があった。また、アブレー
ション法では加工するフィルムにレーザ光の強い吸収が
あることが必要で、ガラスエポキシや、テフロン等で
は、一般的なXeClエキシマレーザや、KrFエキシ
マレーザでは加工ができない欠点があった。また、エキ
シマレーザは、フッ素や塩素等のハロゲンガスを用いる
ため、装置価格や保守・維持費が高くつくことも欠点で
ある。
An ablation method using an excimer laser, which is a high-power ultraviolet pulse light source, has been developed as a method capable of responding to the miniaturization of the via hole diameter in the insulating film. In this method, fine processing up to several μm is performed. Although the maximum processing speed is about 0.1 μm / pulse, it takes 2 seconds to form one via hole even if a commercially available high repetition rate excimer laser of about 100 Hz is used and a relatively thin insulating film with a thickness of 20 μm is used. 1 is necessary
Even if a shot laser irradiation is used to form a plurality of via holes, the processing speed of a 20 cm square printed circuit board is about 1/5 that of a mechanical processing method and high throughput cannot be obtained. there were. In the ablation method, the film to be processed needs to have strong absorption of laser light, and glass epoxy, Teflon, etc. have a drawback that they cannot be processed by a general XeCl excimer laser or KrF excimer laser. Further, since the excimer laser uses a halogen gas such as fluorine or chlorine, it is also a drawback that the device price and maintenance / maintenance cost are high.

【0006】また、従来のメカニカルなフィルム切断法
では、切断部の側面にバリや、フィルムのそりなどが残
ることや、切りしろが300μm 以上必要な欠点があ
る。また炭酸ガスレーザによる方法では、切断部がフィ
ルム溶融を起こす以上の高温に曝されるため、切断部周
囲に熱的な変性層が残留する欠点がある。
Further, the conventional mechanical film cutting method has drawbacks such that burrs and film warp are left on the side surface of the cut portion and a cutting margin of 300 μm or more is required. Further, in the method using the carbon dioxide gas laser, since the cut portion is exposed to a high temperature higher than that which causes film melting, there is a drawback that a thermally modified layer remains around the cut portion.

【0007】[0007]

【課題を解決するための手段】本発明のビアホール形成
方法は、有機物を含む絶縁フィルム基板へのビアホール
形成法において、レーザ光をビアホール形成を行う基板
上の所要部に照射してレーザ光照射部を変性もしくは熱
分解させた後、超音波洗浄を行うことを特徴とする。
A method for forming a via hole according to the present invention is a method for forming a via hole in an insulating film substrate containing an organic material, wherein a laser beam is applied to a required portion on the substrate where the via hole is formed. It is characterized in that ultrasonic cleaning is performed after denaturing or thermally decomposing.

【0008】本発明のフィルム切断法は、有機物を含む
フィルム基板へのフィルム切断方法において、レーザ光
を所望の切断パターン通りにフィルム上の所要部に照射
してレーザ光照射部を変性もしくは熱分解させた後、超
音波洗浄を行うことを特徴とする。
The film cutting method of the present invention is a method for cutting a film on a film substrate containing an organic substance, in which a desired portion of the film is irradiated with laser light according to a desired cutting pattern to modify or thermally decompose the laser light irradiation portion. After that, ultrasonic cleaning is performed.

【0009】[0009]

【作用】本発明のビアホール形成法の作用を説明する。The function of the via hole forming method of the present invention will be described.

【0010】レーザ光をビアホール形成を行う絶縁フィ
ルム上の所要部に照射して、レーザ光照射部を変性もし
くは熱分解させた後、超音波洗浄を行うことによりビア
ホールを形成する。その時、レーザ光の吸収の小さい絶
縁フィルム基板の場合には、レーザ光を吸収し、温度上
昇を起こす吸収膜をレーザ光照射前に絶縁フィルム上に
形成しておく。一方、レーザ光を吸収する絶縁フィルム
基板の場合には、上記の吸収層等は設けず、絶縁フィル
ムに直接レーザ光を照射する。
Laser light is irradiated to a required portion on the insulating film for forming a via hole to modify or thermally decompose the laser light irradiation portion, and then ultrasonic cleaning is performed to form a via hole. At this time, in the case of an insulating film substrate that absorbs less laser light, an absorbing film that absorbs laser light and causes a temperature rise is formed on the insulating film before laser light irradiation. On the other hand, in the case of an insulating film substrate that absorbs laser light, the insulating layer is not provided and the insulating film is directly irradiated with laser light.

【0011】本発明の作用は、絶縁フィルムにレーザ光
の吸収がなく、基材と熱膨張率の異なる充填材を含有し
た絶縁フィルムの加工においては、絶縁フィルムの表面
に0.1μm 厚程度の薄い吸収体を表面に設けた絶縁フ
ィルムに、従来知られている有機膜のアブレーション加
工の場合に比べはるかに弱い適当な照射強度でレーザ光
を1マイクロ秒から100ミリ秒程度の短時間照射し
て、上記吸収体に温度上昇を起こさせた後、絶縁フィル
ムを超音波洗浄すると、レーザ光照射部直下のフィルム
中の充填材と基材が、液中に分散して、ビアホールを形
成する現象を実験的に新たに見いだしたことによる。
The effect of the present invention is that when the insulating film does not absorb laser light and contains a filler having a thermal expansion coefficient different from that of the base material, the surface of the insulating film has a thickness of about 0.1 μm. The insulating film provided with the thin absorber on the surface is irradiated with laser light for a short time of about 1 microsecond to 100 milliseconds with an appropriate irradiation intensity that is much weaker than that of the conventionally known ablation process of an organic film. Then, after raising the temperature of the absorber and ultrasonically cleaning the insulating film, the filler and the base material in the film immediately below the laser light irradiation part are dispersed in the liquid, forming a via hole. It was due to the new discovery of.

【0012】レーザ光照射直後の絶縁フィルム基板を電
子顕微鏡で観察したところ、表面に付けた吸収層ははが
れて紛失するものの、その下の絶縁フィルム層は、モフ
ォロジーが若干変化するもののフィルムとして、残存し
ていたことから、レーザ照射効果は、熱伝導や、熱歪を
通して絶縁フィルムを構成する充填材と基材の間の結合
を弱めることにあり、その結果、レーザ光照射部に超音
波洗浄により溶出する変性層が形成される。レーザ光の
照射により、変性層が形成され、レーザ光照射部を中心
として、エッジ垂直性よくビアホール形成ができる。レ
ーザ照射による熱効果と、超音波洗浄による強力な振動
の効果が合わさってきれいな形状の加工が可能になっ
た。
Observation of the insulating film substrate immediately after laser irradiation with an electron microscope revealed that the absorbing layer attached to the surface was peeled off and lost, but the insulating film layer therebelow remained as a film although the morphology slightly changed. Therefore, the laser irradiation effect is to weaken the bond between the filler and the base material that constitute the insulating film through heat conduction or thermal strain, and as a result, the laser light irradiation part is cleaned by ultrasonic cleaning. A denaturing layer that elutes is formed. The modified layer is formed by the irradiation of the laser light, and the via hole can be formed with good edge verticality around the laser light irradiation portion. The heat effect of laser irradiation and the powerful vibration effect of ultrasonic cleaning combine to enable the processing of clean shapes.

【0013】また、絶縁フィルムにレーザ光の吸収があ
る程度(加工対象とする絶縁フィルムの厚みにおいて、
レーザ光が20%程度以上吸収する)ある場合には、絶
縁フィルム中に有機物からなる基材の他に、充填材があ
る場合及び充填材がない場合のいずれの場合でも、上記
と同様にレーザ照射により、絶縁フィルムの発熱を介し
て、局所的な変性もしくは熱分解を生じさせることがで
き、その結果、上記の薄い吸収層を設けなくとも、垂直
性の高い微細なビアホールを形成することができる。レ
ーザ光吸収膜を絶縁フィルム上に形成して、表面の吸収
層から、絶縁フィルムに熱伝導を介して間接的に絶縁フ
ィルムを加熱する場合に比べ、直接絶縁フィルム内部で
レーザ光の吸収による発熱を効率的に起こし得るため、
比較的弱い照射強度でも照射強度の増加に連れて、絶縁
フィルムの基材の変性、熱分解、熱分解に伴うガス発生
等を順次起こし得る程度の温度上昇を起こすことが可能
となり、その結果、超音波洗浄による照射部の溶出を起
こしえる変化を生じた。
Further, the insulating film absorbs the laser light to some extent (at the thickness of the insulating film to be processed,
If the laser light is absorbed by about 20% or more), the laser beam is the same as above regardless of whether the insulating film has a base material made of an organic material, or a filler. Irradiation can cause local modification or thermal decomposition through the heat generation of the insulating film, and as a result, fine vertical via holes can be formed without providing the above thin absorption layer. it can. Compared to the case where a laser light absorption film is formed on the insulating film and the insulating film is heated indirectly from the surface absorption layer to the insulating film via heat conduction, heat is generated by absorption of laser light inside the insulating film. Can occur efficiently,
Even with relatively weak irradiation intensity, it is possible to cause temperature rise to such an extent that denaturation of the base material of the insulating film, thermal decomposition, gas generation due to thermal decomposition, etc. can occur sequentially as the irradiation intensity increases. The change caused the elution of the irradiated part by ultrasonic cleaning.

【0014】次に本発明のフィルム切断法の作用につい
て説明する。
Next, the operation of the film cutting method of the present invention will be described.

【0015】レーザ光をフィルム切断を行うフィルム上
の所要部に照射して、レーザ光照射部を変性もしくは熱
分解させた後、超音波洗浄を行うことによりフィルムを
切断する。その時、レーザ光の吸収の小さいフィルム基
板の場合には、レーザ光を吸収し、温度上昇を起こす吸
収膜をレーザ光照射前にフィルム上に形成しておく。一
方、レーザ光を吸収するフィルム基板の場合には、上記
の吸収層等は設けず、フィルムに直接レーザ光を照射す
る。
Laser light is irradiated to a required portion on the film to be cut, the laser light irradiation portion is denatured or thermally decomposed, and then ultrasonic cleaning is performed to cut the film. At that time, in the case of a film substrate which absorbs a small amount of laser light, an absorption film that absorbs the laser light and causes a temperature rise is formed on the film before the laser light irradiation. On the other hand, in the case of a film substrate that absorbs laser light, the film is directly irradiated with laser light without providing the above-mentioned absorption layer and the like.

【0016】本発明の作用は、フィルムにレーザ光の吸
収がなく、基材と熱膨張率の異なる充填材を含有したフ
ィルムの加工においては、フィルムの表面に0.1μm
厚程度の薄い吸収体を表面に設けたフィルムに、炭酸ガ
スレーザによる切断法に用いる照射強度よりもはるかに
弱い適当な照射強度でレーザ光を1cm/s程度の走査速
度で基板に照射して、上記吸収体に温度上昇を起こさせ
た後、絶縁フィルムを超音波洗浄すると、レーザ光照射
部直下のフィルム中の充填材と基材が、液中に分散し
て、レーザ光照射部が除去される現象を実験的に新たに
見いだしたことによる。レーザ光照射直後のフィルム基
板を電子顕微鏡で観察したところ、表面に付けた吸収層
ははがれて消失するものの、その下のフィルム層は、モ
フォロジーが若干変化するもののフィルムとして、残存
していたことから、レーザ照射効果は、熱伝導や、熱歪
を通してフィルムを構成する充填材と基材との間の結合
を弱めることにあり、その結果、レーザ光照射部に超音
波洗浄により溶出する変性層が形成される。レーザ光の
照射により、変性層が形成され、レーザ光照射部を中心
として、エッジ垂直性よく切断加工ができる。レーザ照
射による熱効果と、超音波洗浄による強力な振動の効果
が合わさって、切断部の側壁にバリやそり等のない滑ら
かで断面垂直性の高い切断加工が可能になった。
The function of the present invention is that the film does not absorb laser light, and when the film containing a filler having a different coefficient of thermal expansion from the substrate is processed, the film surface has a thickness of 0.1 μm.
A film with a thin absorber on the surface is irradiated with laser light at a scanning speed of about 1 cm / s at an appropriate irradiation intensity that is much weaker than the irradiation intensity used for the cutting method using carbon dioxide gas laser, When the insulating film is ultrasonically cleaned after raising the temperature of the absorber, the filler and the base material in the film immediately below the laser light irradiation part are dispersed in the liquid, and the laser light irradiation part is removed. This is due to the fact that a new phenomenon was experimentally found. Observation of the film substrate immediately after laser light irradiation with an electron microscope revealed that the absorption layer attached to the surface was peeled and disappeared, but the film layer below it remained as a film with a slight change in morphology. The effect of laser irradiation is to weaken the bond between the filler and the base material that constitute the film through heat conduction or thermal strain, and as a result, a modified layer that elutes by ultrasonic cleaning is generated in the laser light irradiation portion. It is formed. The modified layer is formed by the irradiation of the laser light, and the cutting process can be performed with good edge perpendicularity around the laser light irradiation portion. The heat effect of laser irradiation and the effect of strong vibration of ultrasonic cleaning combine to enable smooth and highly vertical cutting with no burrs or warps on the side wall of the cut.

【0017】また、フィルムにレーザ光の吸収がある程
度(加工対象とするフィルムの厚みにおいて、レーザ光
が20%程度以上吸収する)ある場合には、フィルム中
に有機物からなる基材の他に、充填材がある場合及び充
填材がない場合のいずれの場合でも、上記と同様にレー
ザ照射により、フィルムの発熱を介して、局所的な変性
もしくは熱分解を生じさせることができ、その結果、上
記の薄い吸収層を設けなくとも、垂直性の高い溝を形成
することができる。レーザ光吸収膜をフィルム上に形成
して、表面の吸収層から、フィルムに熱伝導を介して間
接的にフィルムに加熱する場合に比べ、直接フィルム内
部でレーザ光の吸収による発熱を効率的に起こし得るた
め、比較的弱い照射強度でも照射強度の増加に連れて、
フィルムの基材の変性、熱分解、熱分解に伴うガス発生
等を順次起こし得る程度の温度上昇を起こすことが可能
となり、その結果、超音波洗浄による照射部の溶出を起
こし得る変化を生じた。
When the film absorbs the laser light to some extent (the laser light absorbs about 20% or more in the thickness of the film to be processed), in addition to the substrate made of an organic material in the film, In both cases with and without a filler, laser irradiation in the same manner as above can cause local modification or thermal decomposition via heat generation of the film, and as a result, the above It is possible to form a highly vertical groove without providing a thin absorption layer. Compared to the case where a laser light absorption film is formed on the film and the film is indirectly heated from the surface absorption layer via heat conduction to the film, the heat generated by the absorption of the laser light inside the film is more efficient. Since it can occur, even with relatively weak irradiation intensity, as the irradiation intensity increases,
It became possible to raise the temperature to such an extent that denaturation of the base material of the film, thermal decomposition, gas generation due to thermal decomposition, etc. could occur sequentially, and as a result, changes that could cause elution of the irradiated part by ultrasonic cleaning occurred. .

【0018】[0018]

【実施例】次に本発明について、図面を参照して説明す
る。図1は、本発明の一実施例(第1の実施例)の工程
と各工程における膜の構造の模式図であり、図2は本発
明で得られたビアホールの形状の電子顕微鏡写真の模式
図を示す。
The present invention will be described below with reference to the drawings. FIG. 1 is a schematic view of a process of one embodiment (first embodiment) of the present invention and a film structure in each process, and FIG. 2 is a schematic of an electron micrograph of a via hole shape obtained in the present invention. The figure is shown.

【0019】本実施例における工程は、レーザ光吸収
層形成、レーザ光照射、超音波洗浄の各段階からな
る。以下、被加工フィルムとして、0.1μm 径の石英
微粒子を充填材とするテフロンフィルム(厚み20μm
)を用いた場合に付き加工条件等を詳細に述べる。
The process in this embodiment comprises the steps of forming a laser light absorption layer, irradiating laser light, and ultrasonic cleaning. Hereafter, as a film to be processed, a Teflon film containing silica fine particles with a diameter of 0.1 μm as a filler (thickness: 20 μm
) Is used to describe the processing conditions in detail.

【0020】第1工程では、テフロンフィルム1の上に
レーザ吸収層2を形成する。膜形成には、スパッタ法を
用い、金の薄膜を厚み300A形成した。この厚さは、
後に述べるアルゴンレーザの波長での吸収長に相当し、
この厚みで、次工程で照射されるアルゴンレーザ光は、
反射分を除きほぼ吸収される。
In the first step, the laser absorption layer 2 is formed on the Teflon film 1. A gold thin film having a thickness of 300 A was formed by using a sputtering method. This thickness is
Corresponds to the absorption length at the wavelength of the argon laser described later,
With this thickness, the argon laser light irradiated in the next step is
Almost absorbed except the reflected component.

【0021】第2工程には、アルゴンレーザを光源とす
るレーザ描画装置を用いた。この装置は、光源のアルゴ
ンレーザの照射位置を走査するための光学的スキャナー
と基板の位置を移動させるX−Yステージから成る。レ
ーザ光源からの光は、可変減衰器、オン/オフ変調用の
超音波変調器、光学的スキャナー、集光レンズを順に通
って、基板上にビーム径(1/e2 強度になる径)8μ
m のレーザ光3を集光照射させる構成となっている。光
学的スキャナーの走査範囲は5cm×5cm、それ以上の範
囲の移動にはX−Yステージを用いた。この装置によ
り、所要の加工部にレーザ光照射強度30kW/cm2
1点当りの照射時間、1ミリ秒の照射を繰り返して、レ
ーザ照射工程を行った。レーザ光3の照射により、テフ
ロンフィルム1のレーザ光照射部の下側に、変性層4が
形成される。この装置により、10cm角の基板に100
00個のビアホールを形成するのに必要な時間は、位置
合わせの時間を含めて2分間であった。
In the second step, a laser drawing device using an argon laser as a light source was used. This device comprises an optical scanner for scanning the irradiation position of an argon laser as a light source and an XY stage for moving the position of the substrate. The light from the laser light source passes through the variable attenuator, the ultrasonic modulator for on / off modulation, the optical scanner, and the condenser lens in this order, and the beam diameter (the diameter at which the intensity becomes 1 / e 2 ) is 8 μm.
The laser light 3 of m 3 is focused and emitted. The scanning range of the optical scanner was 5 cm × 5 cm, and an XY stage was used to move over the range. With this device, the laser beam irradiation intensity of 30 kW / cm 2 ,
The laser irradiation step was performed by repeating irradiation for 1 point and irradiation for 1 millisecond. By the irradiation with the laser light 3, the modified layer 4 is formed below the laser light irradiation portion of the Teflon film 1. With this device, 100 is applied to a 10 cm square substrate.
The time required to form 00 via holes was 2 minutes including the alignment time.

【0022】第3工程では、水を満たした超音波洗浄器
に基板を入れ、5分間超音波洗浄を行った。超音波発振
器には、出力100W、周波数100kHzのものを用
いた。超音波5の伝搬により、変性層4のテフロンフィ
ルムは、水溶液中に分離され、ビアホール6が形成され
る。なお、上記のレーザ照射条件は、典型的な加工条件
であり、照射強度を100kW/cm2 に高めれば、10
マイクロ秒程度の短時間で、ビアホール加工が可能とな
り、また、照射強度を10kW/cm2 程度に弱めても、
照射時間を100m 秒程度に長くすれば、ビアホール加
工が可能であり、基板の厚みや、所要スループットに合
わせ、レーザ照射条件を広い範囲で選択可能である。ま
た、超音波洗浄時においては、複数枚の基板を1回の洗
浄で行うことにより、スループットの低下を抑えること
ができることは言うまでもない。ビアホールの形状は、
エッジ部の垂直性に優れ、直径20μm 、深さ20μm
の縦横比が1に近い、形状制御性に優れたものである。
照射時間を一定として、レーザ光照射強度を上記典型的
な加工照射強度よりも強くすると、ビアホール径は、大
きくなる傾向が見られ、照射強度を変化させることによ
り、ビアホール径を可変させ得ることは従来の方法にな
い特徴である。
In the third step, the substrate was placed in an ultrasonic cleaner filled with water and ultrasonically cleaned for 5 minutes. An ultrasonic oscillator with an output of 100 W and a frequency of 100 kHz was used. Due to the propagation of the ultrasonic wave 5, the Teflon film of the modified layer 4 is separated into the aqueous solution, and the via hole 6 is formed. The above laser irradiation conditions are typical processing conditions, and if the irradiation intensity is increased to 100 kW / cm 2 , it will be 10
Via holes can be processed in a short time of about microseconds, and even if the irradiation intensity is reduced to about 10 kW / cm 2 .
If the irradiation time is extended to about 100 msec, the via hole can be processed, and the laser irradiation condition can be selected in a wide range according to the thickness of the substrate and the required throughput. Further, it is needless to say that a decrease in throughput can be suppressed by cleaning a plurality of substrates with one cleaning at the time of ultrasonic cleaning. The shape of the via hole is
Excellent edge verticality, diameter 20μm, depth 20μm
The aspect ratio is close to 1, and the shape controllability is excellent.
When the irradiation time is constant and the laser light irradiation intensity is higher than the typical processing irradiation intensity, the via hole diameter tends to increase, and it is possible to change the via hole diameter by changing the irradiation intensity. This is a feature not found in conventional methods.

【0023】以上述べた実施例では、第1工程に金のス
パッタ膜を用いたが、レーザ光に対する吸収がある薄膜
であれば、他の材料、例えば、Ti、Ni、銅等の金属
膜や、TiN等の絶縁膜や、αシリコンなどの半導体、
炭素系材料等適用できることは言うまでもない。また、
真空蒸着法、スパッタ法、CVD法等の真空成膜法を用
いてテフロン上に成膜する代わりに、テフロンのエッチ
ャントであるナトリウムナフタリンでテフロンフィルム
を処理すれば、処理した基板表面が、炭素を主とする
0.1μm 厚程度の茶色の吸収体となるので、本発明の
第1工程に適用することができる。
In the embodiments described above, the gold sputtered film was used in the first step, but other materials such as a metal film of Ti, Ni, copper or the like, as long as it is a thin film that absorbs laser light, are used. , An insulating film such as TiN, a semiconductor such as α silicon,
It goes without saying that carbonaceous materials and the like can be applied. Also,
Instead of forming a film on Teflon using a vacuum film forming method such as a vacuum vapor deposition method, a sputtering method, or a CVD method, if the Teflon film is treated with sodium naphthalene, which is an etchant of Teflon, the treated substrate surface will reduce carbon. Since it is a brown absorber mainly having a thickness of about 0.1 μm, it can be applied to the first step of the present invention.

【0024】次に、絶縁フィルムの吸収波長にあるレー
ザ光源を用いる場合に適用できる第2の本発明の一実施
例について説明する。図3は、この場合の各プロセス工
程とその時の、絶縁フィルムの状態を示す模式図であ
る。絶縁フィルム7には、基材に感光性エポキシ樹脂、
充填材に、炭酸カルシウム、硫酸バリウム、ガラス粒子
を混合した厚み70μm のものを用いた。光源は、波長
515nmのアルゴンレーザを用いた。波長515nmにお
けるこの絶縁フィルムの吸収厚(強度が1/eになる厚
み)は、およそ50μm であった。変性層の形成は、照
射パワー1W、照射時間6ms、照射ビーム径6μm で
行った。超音波洗浄の条件は、第1の実施例と同じにし
た。その結果、直径10μm 、深さ70μm の、エッジ
垂直性のよいビアホールを再現性よく形成することがで
きた。第1の実施例に比べ、レーザ光の吸収が絶縁フィ
ルム中の深い部分にまで浸透した状態で起こるため、直
径に比べ、深さの深い、アスペクト比の大きなビアホー
ルが形成できた。ビアホール径は、照射強度、照射時
間、照射ビーム径のいずれかを増加させることにより、
大きくすることができ、照射強度を2Wにまで増加させ
ると、上記の他の条件を変えない場合でも、80μm の
ビアホール径が得られた。
Next, one embodiment of the second invention of the present invention applicable when a laser light source having an absorption wavelength of the insulating film is used will be described. FIG. 3 is a schematic diagram showing each process step in this case and the state of the insulating film at that time. The base material of the insulating film 7 is a photosensitive epoxy resin,
A filler having a thickness of 70 μm in which calcium carbonate, barium sulfate and glass particles were mixed was used. As the light source, an argon laser with a wavelength of 515 nm was used. The absorption thickness (thickness at which the strength becomes 1 / e) of this insulating film at a wavelength of 515 nm was about 50 μm. The modified layer was formed with an irradiation power of 1 W, an irradiation time of 6 ms, and an irradiation beam diameter of 6 μm. The conditions of ultrasonic cleaning were the same as in the first embodiment. As a result, a via hole having a diameter of 10 μm and a depth of 70 μm and good edge verticality could be formed with good reproducibility. Compared with the first embodiment, absorption of laser light occurs in a state where the laser light penetrates deep into the insulating film, so that a via hole having a larger depth and a larger aspect ratio than the diameter can be formed. The via hole diameter can be increased by increasing the irradiation intensity, irradiation time, or irradiation beam diameter.
When the irradiation intensity was increased to 2 W, a via hole diameter of 80 μm was obtained even when the above other conditions were not changed.

【0025】上記の第2の本発明の一実施例の説明にお
いて、レーザ光の吸収長がビアホール形成の必要な膜の
厚み程度とすると、アスペクト比の大きい深いビアホー
ルを形成する上で好都合であることを述べたが、このた
めに、レーザ光の波長、基材の種類及び基材分子への感
光基の付加等の化学的な修飾、もしくは、レーザ光の吸
収のある充填材の種類などを適宜、選択して組み合わせ
ることにより、信頼性が高く、安価な実用性の高いレー
ザ照射装置の使用が可能となる。
In the above description of the second embodiment of the present invention, it is convenient to form a deep via hole having a large aspect ratio if the absorption length of the laser light is about the thickness of the film required to form the via hole. However, for this reason, the wavelength of the laser beam, the type of substrate and the chemical modification such as the addition of a photosensitive group to the substrate molecule, or the type of the filler that absorbs the laser beam, etc. By appropriately selecting and combining them, it is possible to use a highly reliable, inexpensive, highly practical laser irradiation apparatus.

【0026】上記の第1及び第2の実施例において、光
源にアルゴンレーザを用いた場合について説明したが、
その代わりに、KrレーザやNd:YAGレーザ及びそ
の第2高調波光源を用いることも可能である。また近赤
外もしくは、可視光を発生する半導体レーザを使用する
ことも可能である。半導体レーザを用いれば、光源一個
当りのコスト並びに大きさが小さいうえ、出力の変調が
容易であるので、複数の光源を装置に備えて、同時に複
数の加工点にレーザ光を照射することにより、照射時間
をさらに大幅に短縮することが可能である。
In the above first and second embodiments, the case where the argon laser is used as the light source has been described.
Instead, it is also possible to use a Kr laser, an Nd: YAG laser, or its second harmonic light source. It is also possible to use a semiconductor laser that emits near infrared light or visible light. If a semiconductor laser is used, the cost and size per light source are small, and the output can be easily modulated. Therefore, by equipping the apparatus with a plurality of light sources and simultaneously irradiating a plurality of processing points with laser light, It is possible to further shorten the irradiation time.

【0027】以上の本発明の説明においては絶縁フィル
ムの基材をテフロン、及びエポキシ樹脂を用いた場合に
ついて延べたが、そのほかに基材にポリイミドを用い、
充填材に石英やガラス微粒子を用いる場合や、テフロン
基材にポリイミド微粒子の充填材を用いる絶縁フィルム
についても、本発明を適用して、微細なビアホール加工
を実現することができた。また、絶縁フィルムに、充填
材を含有しないポリイミド樹脂、及び、エポキシ樹脂に
おいても、ビアホール形成を行うことができた。この場
合、ビアホール加工の起こる閾照射強度が、ビームサイ
ズ及び照射時間が同じ条件では、充填材がない時に比
べ、30%程度高くなるが、得られるビアホール形状
は、充填材のあるものの場合とほとんど差はなく、側壁
垂直性のよいビアホールを形成できた。テフロン基材と
石英粒子から成る絶縁フィルムは、高周波特性等に優れ
るので、大型コンピュータのCPUボード等の高付加価
値のプリント基板向けに適したものであり、ポリイミド
基材に石英粒子を充填した絶縁フィルムやポリイミドフ
ィルムは、テフロン系基材に比べ、安価で、耐熱性に優
れる利点がある。また、エポキシフィルムやエポキシ基
材にガラス粒子を充填した絶縁フィルムは、値段が安く
ても、広い応用分野を持つ利点がある。
In the above description of the present invention, the case of using the Teflon and the epoxy resin as the base material of the insulating film was extended, but in addition to this, polyimide was used as the base material,
The present invention was also applied to the case of using quartz or glass fine particles as the filling material or the insulating film using the filling material of the polyimide fine particles as the Teflon base material to realize fine via hole processing. Also, via holes could be formed in the insulating film using a polyimide resin and an epoxy resin that do not contain a filler. In this case, the threshold irradiation intensity at which the via hole processing occurs is about 30% higher under the same beam size and irradiation time than when there is no filling material, but the obtained via hole shape is almost the same as that with the filling material. There was no difference, and a via hole with good sidewall verticality could be formed. Since the insulating film consisting of Teflon base material and quartz particles has excellent high frequency characteristics, it is suitable for high value-added printed circuit boards such as CPU boards of large computers. Films and polyimide films have the advantages of being cheaper and having better heat resistance than Teflon-based substrates. In addition, an epoxy film or an insulating film in which an epoxy base material is filled with glass particles has an advantage that it has a wide range of application fields even though the price is low.

【0028】次に本発明のフィルム切断法について、図
面を参照して説明する。図4は、本発明の一実施例(第
3の実施例)の工程と各工程における膜の構造の模式図
であり、図5は本発明で得られたフィルムの切断部の形
状の模式図を示す。
Next, the film cutting method of the present invention will be described with reference to the drawings. FIG. 4 is a schematic diagram of the process of one embodiment (third embodiment) of the present invention and the structure of the film in each process, and FIG. 5 is a schematic diagram of the shape of the cut portion of the film obtained in the present invention. Indicates.

【0029】本実施例における工程は、レーザ光吸収
層形成、レーザ光照射、超音波洗浄の各段階からな
る。以下、被加工フィルムとして、0.1μm 径の石英
微粒子を充填材とするテフロンフィルム(厚み20μm
)を用いた場合に付き加工条件等を詳細に述べる。
The process in this embodiment comprises the steps of forming a laser light absorption layer, irradiating laser light, and ultrasonic cleaning. Hereafter, as a film to be processed, a Teflon film containing silica fine particles with a diameter of 0.1 μm as a filler (thickness: 20 μm
) Is used to describe the processing conditions in detail.

【0030】第1工程では、テフロンフィルム1の上に
レーザ吸収層2を形成する。膜形成には、スパッタ法を
用い、金の薄膜を厚み300A形成した。この厚さは、
後に述べるアルゴンレーザの波長での吸収長に相当し、
この厚みで、次工程では照射されるアルゴンレーザ光
は、反射分を除きほぼ吸収される。第2工程には、アル
ゴンレーザを光源とするレーザ描画装置を用いた。この
装置は、光源のアルゴンレーザの照射位置を走査するた
めのX−Yステージから成る。レーザ光源からの光は、
可変減衰器、オン/オフ変調用の超音波変調器、集光レ
ンズを順に通って、基板上にビーム径(1/e2 強度に
なる径)8μm のレーザ光3を集光照射させる構成とな
っている。この装置により、所要の加工部にレーザ光照
射強度30kW/cm2 、フィルムに対するレーザ光の走
査速度を1cm/sとして、レーザ照射工程を行った。レ
ーザ光3の照射により、テフロンフィルム1のレーザ光
照射部の下側に、変性層4が形成される。この装置によ
り、5mm角基板を100個切り出すのに要するレーザ光
照射時間は位置合わせの時間を含めて約100秒であっ
た。
In the first step, the laser absorption layer 2 is formed on the Teflon film 1. A gold thin film having a thickness of 300 A was formed by using a sputtering method. This thickness is
Corresponds to the absorption length at the wavelength of the argon laser described later,
With this thickness, the argon laser light irradiated in the next step is almost absorbed except for the reflected portion. A laser drawing device using an argon laser as a light source was used in the second step. This apparatus comprises an XY stage for scanning the irradiation position of an argon laser as a light source. The light from the laser source is
A structure in which a laser beam 3 having a beam diameter (diameter of 1 / e 2 intensity) of 8 μm is condensed and irradiated on a substrate through a variable attenuator, an ultrasonic modulator for on / off modulation, and a condenser lens in this order. Has become. With this apparatus, the laser irradiation step was performed with a laser beam irradiation intensity of 30 kW / cm 2 and a laser beam scanning speed of 1 cm / s with respect to the film on a required processed part. By the irradiation with the laser light 3, the modified layer 4 is formed below the laser light irradiation portion of the Teflon film 1. With this apparatus, the laser light irradiation time required to cut out 100 5 mm square substrates was about 100 seconds including the alignment time.

【0031】第3工程では、水を満たした超音波洗浄器
に基板を入れ、5分間超音波洗浄を行った。超音波発振
器には、出力100W、周波数100kHzのものを用
いた。超音波5の伝搬により、変性層4のテフロンフィ
ルムは、水溶液中に分散され、フィルムが切断される。
なお、上記のレーザ照射条件は、典型的な加工条件であ
り、照射強度を100kW/cm2 に高めれば、レーザ走
査速度10cm/sでも切断加工が可能となり、また、照
射強度を10kW/cm2 程度に弱めても、100μm /
s程度に走査速度を遅くすれば、切断加工が可能であ
り、基板の厚みや、所要スループットに合わせ、レーザ
照射条件を広い範囲で選択可能である。また、超音波洗
浄時においては、複数枚の基板を1回の洗浄で行うこと
により、スループットの低下を抑えることができること
は言うまでもない。切断形状は、エッジ部の垂直性に優
れ、幅20μm 、深さ20μm の縦横比が1に近い、形
状制御性に優れたものである。また、切断部周辺のバリ
や、フィルムのそり等は皆無で、また側壁周辺部の熱変
性層も残留することはなかった。
In the third step, the substrate was placed in an ultrasonic cleaner filled with water and ultrasonically cleaned for 5 minutes. An ultrasonic oscillator with an output of 100 W and a frequency of 100 kHz was used. Due to the propagation of the ultrasonic waves 5, the Teflon film of the modified layer 4 is dispersed in the aqueous solution and the film is cut.
The above laser irradiation conditions are typical processing conditions. If the irradiation intensity is increased to 100 kW / cm 2 , cutting can be performed even at a laser scanning speed of 10 cm / s, and the irradiation intensity is 10 kW / cm 2. Even if weakened to a certain degree, 100 μm /
If the scanning speed is slowed down to about s, the cutting process can be performed, and the laser irradiation condition can be selected in a wide range according to the thickness of the substrate and the required throughput. Further, it is needless to say that a decrease in throughput can be suppressed by cleaning a plurality of substrates with one cleaning at the time of ultrasonic cleaning. The cut shape is excellent in verticality of the edge portion, has a width of 20 μm and a depth of 20 μm and an aspect ratio close to 1, and is excellent in shape controllability. Further, there was no burr around the cut portion, warpage of the film, and the like, and the heat-denatured layer around the side wall was not left.

【0032】以上述べた実施例では、第1工程に金のス
パッタ膜を用いたが、レーザ光に対する吸収がある薄膜
であれば、他の材料、例えばTi、Ni、銅等の金属膜
やTiN等の絶縁膜や、αシリコンなどの半導体、炭素
系材料等適用できることは言うまでもない。また、真空
蒸着法、スパッタ法、CVD法等の真空成膜法を用いて
テフロン上に成膜する代わりに、テフロンのエッチャン
トであるナトリウムナフタリンでテフロンフィルムを処
理すれば、処理した基板表面が、炭素を主とする0.1
μm 厚程度の茶色の吸収体となるので、本発明の第1工
程に適用することができる。
In the embodiments described above, the gold sputtered film was used in the first step, but other materials such as a metal film of Ti, Ni or copper, or TiN may be used as long as it is a thin film that absorbs laser light. It goes without saying that an insulating film such as, a semiconductor such as α silicon, a carbon-based material, and the like can be applied. Further, instead of forming a film on Teflon using a vacuum film forming method such as a vacuum vapor deposition method, a sputtering method, or a CVD method, if the Teflon film is treated with sodium naphthalene, which is an etchant of Teflon, the treated substrate surface becomes Mainly carbon 0.1
Since it becomes a brown absorber having a thickness of about μm, it can be applied to the first step of the present invention.

【0033】次に、フィルムの吸収波長にあるレーザ光
源を用いる場合について本発明の一実施例(第4の実施
例)について説明する。図6は、この場合の各プロセス
工程とその時の、フィルムの状態を示す模式図である。
フィルム7には、基材に感光性エポキシ樹脂、充填材
に、炭酸カルシウム、硫酸バリウム、ガラス粒子を混合
した厚み70μm のものを用いた。光源は、波長515
nmのアルゴンレーザを用いた。波長515nmにおけるこ
の絶縁フィルムの吸収厚(強度が1/eになる厚み)
は、およそ50μm であった。変性層の形成は、照射パ
ワー1W、X−Yステージ走査速度1cm/s、照射ビー
ム径6μm で行った。超音波洗浄の条件は、第3の実施
例と同じにした。その結果、切りしろ幅20μm 、深さ
70μm の、エッジ垂直性のよい切断面を形成すること
ができた。第3の実施例に比べ、レーザ光の吸収がフィ
ルムの中の深い部分にまで浸透した状態で起こるため、
切りしろに比べ、深さの深い、アスペクト比の大きな切
断を実現することができた。
Next, one embodiment (fourth embodiment) of the present invention will be described for the case of using a laser light source having an absorption wavelength of the film. FIG. 6 is a schematic diagram showing each process step in this case and the state of the film at that time.
As the film 7, a film having a thickness of 70 μm was used, in which a photosensitive epoxy resin was used as the base material and calcium carbonate, barium sulfate and glass particles were mixed as the filler. The light source has a wavelength of 515
A nm argon laser was used. Absorption thickness of this insulating film at a wavelength of 515 nm (thickness at which the strength becomes 1 / e)
Was about 50 μm. The modified layer was formed with an irradiation power of 1 W, an XY stage scanning speed of 1 cm / s, and an irradiation beam diameter of 6 μm. The conditions of ultrasonic cleaning were the same as in the third embodiment. As a result, it was possible to form a cut surface having a cutting margin width of 20 μm and a depth of 70 μm and good edge verticality. Compared to the third embodiment, absorption of laser light occurs in a state where it penetrates deep into the film.
We were able to achieve deeper cutting with a larger aspect ratio than the cutting margin.

【0034】上記の本発明の第4の実施例の説明におい
て、レーザ光の吸収長が切断加工に必要な膜の厚み程度
とすると、切りしろを小さくした上で厚いフィルムを切
断するために好都合であることを述べたが、このため
に、レーザ光の波長、基材の種類及び基材分子への感光
基の付加等の化学的な修飾、もしくは、レーザ光の吸収
のある充填材の種類などを適宜、選択して組み合わせる
ことが可能である。これらの適切な選択により、信頼性
が高く、安価な実用性の高いレーザ照射装置の使用が可
能となる。
In the above description of the fourth embodiment of the present invention, assuming that the absorption length of the laser beam is about the thickness of the film required for cutting, it is convenient to cut a thick film after reducing the cutting margin. However, for this reason, the wavelength of the laser beam, the type of substrate and the chemical modification such as the addition of a photosensitive group to the substrate molecule, or the type of filler that absorbs the laser beam. It is possible to appropriately select and combine the above. With proper selection of these, it becomes possible to use a highly reliable, inexpensive and highly practical laser irradiation apparatus.

【0035】上記の第3及び第4の実施例において、光
源にアルゴンレーザを用いた場合について説明したが、
その代わりに、KrレーザやNd:YAGレーザ及びそ
の第2高調波光源を使用することも可能である。また近
赤外もしくは、可視光を発生する半導体レーザを使用す
ることも可能である。半導体レーザを用いれば、光源一
個当りのコスト並びに大きさが小さいうえ、出力の変調
が容易であるので、複数の光源を装置に備えて、同時に
複数の加工点にレーザ光を照射することにより、照射時
間をさらに大幅に短縮することが可能である。
In the above third and fourth embodiments, the case where the argon laser is used as the light source has been described.
Alternatively, a Kr laser, Nd: YAG laser, or its second harmonic light source can be used. It is also possible to use a semiconductor laser that emits near infrared light or visible light. If a semiconductor laser is used, the cost and size per light source are small, and the output can be easily modulated. Therefore, by equipping the apparatus with a plurality of light sources and simultaneously irradiating a plurality of processing points with laser light, It is possible to further shorten the irradiation time.

【0036】以上の本発明のフィルム切断法の説明にお
いてはフィルムの基材をテフロン、及びエポキシ樹脂を
用いた場合について述べたが、そのほかに基材にポリイ
ミドを用い、充填材に石英やガラス微粒子を用いる場合
や、テフロン基材にポリイミド微粒子の充填材を用いる
フィルムについても、本発明を適用して、切りしろが小
さく切断形状の切断加工を実現することができた。ま
た、フィルムに、充填材を含有しないポリイミド樹脂、
及び、エポキシ樹脂においても、切断加工を行うことが
できた。この場合、加工の起こる閾照射強度が、ビーム
サイズ及び照射時間が同じ条件では、充填材がない時に
比べ、30%程度高くなるが、得られる切断形状は、充
填材のあるものの場合とほとんど差がなく、側壁垂直性
のよい切断面を得ることができた。テフロン基材と石英
粒子から成るフィルムは、高周波特性等に優れるので、
大型コンピュータのCPUボード等の高付加価値のプリ
ント基板向けに適したものであり、ポリイミド基材に石
英粒子を充填したフィルムやポリイミドフィルムは、テ
フロン系基板に比べ、安価で、耐熱性に優れる利点があ
る。また、エポキシフィルムやエポキシ基材にガラス粒
子を充填したフィルムは、値段が安くでき、広い応用分
野を持つ利点がある。
In the above description of the film cutting method of the present invention, the case where Teflon and the epoxy resin are used as the base material of the film has been described. In addition to this, polyimide is used as the base material and quartz or glass fine particles are used as the filler. The present invention was also applied to the case of using, or a film using a filler of polyimide fine particles as a Teflon base material, and it was possible to realize a cutting process with a small cutting margin. Also, the film, a polyimide resin containing no filler,
Also, the epoxy resin can be cut. In this case, the threshold irradiation intensity at which processing occurs is about 30% higher under the same beam size and irradiation time than when there is no filler, but the cut shape obtained is almost the same as that with the filler. It was possible to obtain a cut surface with good sidewall verticality. Since the film made of Teflon base material and quartz particles has excellent high frequency characteristics,
It is suitable for high value-added printed circuit boards such as CPU boards of large computers. Films and polyimide films in which quartz particles are filled in a polyimide substrate are cheaper and have better heat resistance than Teflon-based substrates. There is. Further, the epoxy film and the film in which the epoxy base material is filled with glass particles are advantageous in that the price can be reduced and the application field is wide.

【0037】[0037]

【発明の効果】本発明のビアホール形成法によれば、通
常のメカニカルなドリル法や、エキシマレーザを用いた
アブレーション加工法に比べ、構成が簡単で、安価な装
置を用いて、従来法に比べ2桁程度の高いスループット
が得られ、かつ、直径20μm、深さ100μm 程度ま
での微細なビアホールを鋭いエッジ垂直性を持つ優れた
加工形状で、精度よく、高い再現性を持って加工する優
れたビアホール形成法を提供することができる。
According to the via hole forming method of the present invention, as compared with the conventional mechanical drilling method and the ablation processing method using the excimer laser, the structure is simple and the cost is low, and the via hole forming method is compared with the conventional method. It is possible to obtain high throughput of about 2 digits and to process fine via holes with a diameter of 20 μm and a depth of 100 μm with an excellent processing shape with sharp edge verticality, with high precision and high reproducibility. A via hole forming method can be provided.

【0038】本発明のフィルム切断法によれば、通常の
メカニカルな切断法や、炭酸ガスレーザを用いた溶融切
断加工法に比べ、切断側壁が滑らかで、かつ、断面垂直
性に優れ、切りしろが20μm 程度と小さく、厚み10
0μm 程度までのフィルムを、精度よく、高い再現性を
持って加工する優れたフィルム切断方法を提供すること
ができる。
According to the film cutting method of the present invention, the cutting side wall is smoother and the cross sectional verticality is excellent, as compared with the usual mechanical cutting method and the melt cutting method using the carbon dioxide gas laser. Small, about 20 μm, thickness 10
It is possible to provide an excellent film cutting method for processing a film of up to about 0 μm with high accuracy and high reproducibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す模式図であり、ビ
アホール形成法の工程と、加工部の構成を示す図であ
る。
FIG. 1 is a schematic diagram showing a first embodiment of the present invention, which is a diagram showing a step of a via hole forming method and a configuration of a processed portion.

【図2】本発明により得られるテフロンフィルムへのビ
アホールの形成の形状を示す電子顕微鏡写真の模式図で
ある。
FIG. 2 is a schematic diagram of an electron micrograph showing the shape of the formation of via holes in the Teflon film obtained by the present invention.

【図3】本発明の第2の実施例を示す模式図である。FIG. 3 is a schematic diagram showing a second embodiment of the present invention.

【図4】本発明の第3の実施例を示す模式図であり、フ
ィルム切断法の工程と、加工部の構成を示す図である。
FIG. 4 is a schematic diagram showing a third embodiment of the present invention, which is a diagram showing a process of a film cutting method and a configuration of a processing portion.

【図5】本発明により得られるテフロンフィルムへの切
断加工部の形状の模式図である。
FIG. 5 is a schematic view of the shape of a cut processed portion into a Teflon film obtained by the present invention.

【図6】本発明の第4の実施例を示す模式図である。FIG. 6 is a schematic view showing a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 テフロンフィルム 2 レーザ光吸収層 3 レーザ光 4 変性層 5 超音波 6 ビアホール 7 絶縁フィルム 11 テフロンフィルム 12 レーザ光吸収層 13 レーザ光 14 変性層 15 超音波 16 切断部 17 フィルム 1 Teflon film 2 Laser light absorption layer 3 Laser light 4 Modified layer 5 Ultrasonic wave 6 Beer hole 7 Insulating film 11 Teflon film 12 Laser light absorption layer 13 Laser light 14 Modified layer 15 Ultrasonic wave 16 Cut part 17 Film

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05K 3/46 T 6921−4E Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H05K 3/46 T 6921-4E

Claims (24)

【特許請求の範囲】[Claims] 【請求項1】有機物質を含有する絶縁フィルムからなる
基板へのビアホール形成法において、レーザ光をビアホ
ール形成を行う基板の所要部に照射し、照射による基板
の温度上昇を介して、基板のレーザ光照射部を変性、熱
分解、熱分解に伴うガス発生のいずれかの反応を起こさ
せた後、超音波洗浄を行うことを特徴とするビアホール
形成法。
1. In a method of forming a via hole in a substrate made of an insulating film containing an organic substance, a laser beam is applied to a required portion of the substrate on which the via hole is formed, and the temperature of the substrate is raised by the irradiation to increase the laser beam of the substrate. A method of forming a via hole, which comprises subjecting a light-irradiated portion to any reaction of denaturation, thermal decomposition, and gas generation due to thermal decomposition, and then performing ultrasonic cleaning.
【請求項2】照射光源として可視光レーザ光源もしく
は、近赤外レーザ光源を適用することを特徴とする請求
項1記載のビアホール形成法。
2. The via hole forming method according to claim 1, wherein a visible light laser light source or a near infrared laser light source is applied as the irradiation light source.
【請求項3】絶縁フィルムの基板上にレーザ光の吸収層
を形成する工程を、レーザ光を基板に照射する工程の前
に設けることを特徴とする請求項1記載のビアホール形
成法。
3. The method of forming a via hole according to claim 1, wherein the step of forming a laser light absorption layer on the substrate of the insulating film is provided before the step of irradiating the substrate with the laser light.
【請求項4】レーザ光の吸収層をスパッタ法、蒸着法、
CVD法のいずれかの手法を用いて形成することを特徴
とする請求項3記載のビアホール形成法。
4. A laser light absorption layer is formed by a sputtering method, a vapor deposition method,
The via hole forming method according to claim 3, wherein the via hole is formed by using any one of the CVD methods.
【請求項5】絶縁フィルム中にテフロン(登録商標)を
含む場合のレーザ光の吸収層を形成する方法として、ナ
フタリンナトリウム液により絶縁フィルムを処理するこ
とを特徴とする請求項3記載のビアホール形成法。
5. The method of forming a via hole according to claim 3, wherein the insulating film is treated with a sodium naphthalene solution as a method for forming a laser light absorption layer when the insulating film contains Teflon (registered trademark). Law.
【請求項6】絶縁フィルムはテフロンを基材とし、ガラ
ス粒子を充填材とすることを特徴とする請求項3記載の
ビアホール形成法。
6. The method of forming a via hole according to claim 3, wherein the insulating film has Teflon as a base material and glass particles as a filler.
【請求項7】絶縁フィルムに吸収のある波長のレーザ光
源を用いることを特徴とする請求項1記載のビアホール
形成法。
7. The method for forming via holes according to claim 1, wherein a laser light source having a wavelength having absorption is used for the insulating film.
【請求項8】絶縁フィルムはポリイミド樹脂であること
を特徴とする請求項7記載のビアホール形成法。
8. The method of forming a via hole according to claim 7, wherein the insulating film is a polyimide resin.
【請求項9】絶縁フィルムはエポキシ樹脂であることを
特徴とする請求項7記載のビアホール形成法。
9. The method of forming a via hole according to claim 7, wherein the insulating film is an epoxy resin.
【請求項10】エポキシ樹脂を基材とし、複数もしくは
単一のガラス粒子等の絶縁性化合物粒子を充填材とする
絶縁フィルムを用いることを特徴とする請求項7記載の
ビアホール形成法。
10. The method of forming a via hole according to claim 7, wherein an insulating film having an epoxy resin as a base material and having a plurality of or single insulating particles such as glass particles as a filler is used.
【請求項11】ポリイミドを基材とし、1種類もしくは
複数種のガラス粒子等の絶縁性化合物を充填材とする絶
縁フィルムを用いることを特徴とする請求項7記載のビ
アホール形成法。
11. The method of forming a via hole according to claim 7, wherein an insulating film containing polyimide as a base material and one or more kinds of insulating particles such as glass particles as a filler is used.
【請求項12】テフロンを基材とし、1種類もしくは複
数種のガラス粒子もしくはポリイミド微粒子等の絶縁性
化合物を充填材とする絶縁フィルムを用いることを特徴
とする請求項7記載のビアホール形成法。
12. The method of forming a via hole according to claim 7, wherein an insulating film having Teflon as a base material and one or more kinds of glass particles or polyimide fine particles as an insulating compound as a filler is used.
【請求項13】有機物質を含有するフィルムの切断法に
おいて、レーザ光を所望の切断パターン通りに照射し、
照射による基板の温度上昇を介して、基板のレーザ光照
射部を変性、熱分解、熱分解に伴うガス発生のいずれか
の反応を起こさせた後、超音波洗浄を行うことを特徴と
するフィルム切断法。
13. A method for cutting a film containing an organic substance, which comprises irradiating a laser beam in a desired cutting pattern,
A film characterized by carrying out ultrasonic cleaning after denaturing, thermally decomposing, or generating gas associated with thermal decomposition of the laser light irradiation part of the substrate through temperature rise of the substrate due to irradiation. Cutting method.
【請求項14】照射光源として可視光レーザ光源もしく
は、近赤外レーザ光源を適用することを特徴とする請求
項13記載のフィルム切断法。
14. The film cutting method according to claim 13, wherein a visible light laser light source or a near infrared laser light source is applied as the irradiation light source.
【請求項15】フィルム上にレーザ光の吸収層を形成す
る工程を、レーザ光をフィルムに照射する工程の前に設
けることを特徴とする請求項13記載のフィルム切断
法。
15. The film cutting method according to claim 13, wherein the step of forming the absorption layer of laser light on the film is provided before the step of irradiating the film with laser light.
【請求項16】レーザ光の吸収層をスパッタ法、蒸着
法、CVD法のいずれかの手法を用いて形成することを
特徴とする請求項15記載のフィルム切断法。
16. The film cutting method according to claim 15, wherein the laser light absorption layer is formed by any one of a sputtering method, a vapor deposition method and a CVD method.
【請求項17】フィルム中にテフロンを含む場合のレー
ザ光の吸収層を形成する方法として、ナフタリンナトリ
ウム液によりフィルムを処理することを特徴とする請求
項15記載のフィルム切断法。
17. The film cutting method according to claim 15, wherein the film is treated with a sodium naphthalene solution as a method of forming a laser light absorption layer in the case where the film contains Teflon.
【請求項18】フィルムはテフロンを基材とし、ガラス
粒子を充填材とすることを特徴とする請求項15記載の
フィルム切断法。
18. The film cutting method according to claim 15, wherein the film has Teflon as a base material and glass particles as a filler.
【請求項19】フィルムに吸収のある波長のレーザ光源
を用いることを特徴とする請求項13記載のフィルム切
断法。
19. The method of cutting a film according to claim 13, wherein a laser light source having a wavelength having absorption in the film is used.
【請求項20】フィルムはポリイミド樹脂であることを
特徴とする請求項19記載のフィルム切断法。
20. The film cutting method according to claim 19, wherein the film is a polyimide resin.
【請求項21】フィルムはエポキシ樹脂であることを特
徴とする請求項19記載のフィルム切断法。
21. The film cutting method according to claim 19, wherein the film is an epoxy resin.
【請求項22】エポキシ樹脂を基材とし、複数もしくは
単一のガラス粒子等の絶縁性化合物粒子を充填材とする
フィルムを用いることを特徴とする請求項19記載のフ
ィルム切断法。
22. The film cutting method according to claim 19, wherein a film containing an epoxy resin as a base material and a plurality of or a single glass particle as an insulating compound particle as a filler is used.
【請求項23】ポリイミドを基材とし、1種類もしくは
複数種のガラス粒子等の絶縁性化合物を充填材とするフ
ィルムを用いることを特徴とする請求項19記載のフィ
ルム切断法。
23. The film cutting method according to claim 19, wherein a film having polyimide as a base material and one or more kinds of insulating particles such as glass particles as a filler is used.
【請求項24】テフロンを基材とし、1種類もしくは複
数種のガラス粒子もしくはポリイミド微粒子等の絶縁性
化合物を充填材とする請求項19記載のフィルムを用い
ることを特徴とするフィルム切断法。
24. A film cutting method using the film according to claim 19, wherein Teflon is used as a base material, and one type or a plurality of types of glass particles or an insulating compound such as polyimide fine particles is used as a filler.
JP6174413A 1993-12-28 1994-07-26 Via hole forming method and film cutting method Expired - Fee Related JP2760288B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6174413A JP2760288B2 (en) 1993-12-28 1994-07-26 Via hole forming method and film cutting method
US08/364,451 US5628926A (en) 1993-12-28 1994-12-27 Method of forming via holes in a insulation film and method of cutting the insulation film
EP94120674A EP0661734B1 (en) 1993-12-28 1994-12-27 Method of forming via holes in an insulation film and method of cutting the insulation film
DE69424393T DE69424393T2 (en) 1993-12-28 1994-12-27 Process for forming contact holes in an insulating membrane and process for cutting the membrane
KR94040716A KR0139708B1 (en) 1993-12-28 1994-12-28 Method of forming via holes in an insulation film and method of cutting the insulation film

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP33464693 1993-12-28
JP5083794 1994-03-22
JP5-334646 1994-03-22
JP6-50837 1994-03-22
JP6174413A JP2760288B2 (en) 1993-12-28 1994-07-26 Via hole forming method and film cutting method

Publications (2)

Publication Number Publication Date
JPH07308791A true JPH07308791A (en) 1995-11-28
JP2760288B2 JP2760288B2 (en) 1998-05-28

Family

ID=27294093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6174413A Expired - Fee Related JP2760288B2 (en) 1993-12-28 1994-07-26 Via hole forming method and film cutting method

Country Status (1)

Country Link
JP (1) JP2760288B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535701A (en) * 1999-01-14 2002-10-22 スリーエム イノベイティブ プロパティズ カンパニー Method of forming pattern on thin film
JP2006245380A (en) * 2005-03-04 2006-09-14 Toshiba Corp Semiconductor light emitting device and manufacturing method thereof
CN1299549C (en) * 2003-11-27 2007-02-07 中国航天时代电子公司第七七一研究所 Method of processing before hole metallization process of polytetrafluoroethylene printed board
EP1764831A3 (en) * 2005-09-15 2008-03-12 Plastic Logic Limited Forming holes using laser energy
US7396742B2 (en) 2000-09-13 2008-07-08 Hamamatsu Photonics K.K. Laser processing method for cutting a wafer-like object by using a laser to form modified regions within the object
GB2446875A (en) * 2007-02-23 2008-08-27 Intense Ltd Production of fine geometric openings in thin film materials
JP2010162606A (en) * 1996-11-08 2010-07-29 W L Gore & Assoc Inc Multiple frequency processing to minimize manufacturing variability of high aspect ratio micro through-via
KR101243269B1 (en) * 2010-12-22 2013-03-13 한국기계연구원 Laser processing system and laser processing method using the same
DE102012201959B4 (en) * 2011-02-10 2013-07-18 Honda Motor Co., Ltd. Cutting device for a cylindrical workpiece
US8865566B2 (en) 2002-12-03 2014-10-21 Hamamatsu Photonics K.K. Method of cutting semiconductor substrate
US8889525B2 (en) 2002-03-12 2014-11-18 Hamamatsu Photonics K.K. Substrate dividing method
US8969752B2 (en) 2003-03-12 2015-03-03 Hamamatsu Photonics K.K. Laser processing method
KR20200113650A (en) * 2019-03-26 2020-10-07 바론전자 주식회사 Hole boring device for flexible printed circuits board and hole boring method using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531860A (en) * 1976-06-29 1978-01-10 Nippon Electric Co Method of producing hybrid integrated circuit unit
JPH05185269A (en) * 1992-01-17 1993-07-27 Fujitsu Ltd Laser abrasion processing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531860A (en) * 1976-06-29 1978-01-10 Nippon Electric Co Method of producing hybrid integrated circuit unit
JPH05185269A (en) * 1992-01-17 1993-07-27 Fujitsu Ltd Laser abrasion processing method

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162606A (en) * 1996-11-08 2010-07-29 W L Gore & Assoc Inc Multiple frequency processing to minimize manufacturing variability of high aspect ratio micro through-via
JP2002535701A (en) * 1999-01-14 2002-10-22 スリーエム イノベイティブ プロパティズ カンパニー Method of forming pattern on thin film
US8946592B2 (en) 2000-09-13 2015-02-03 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US9837315B2 (en) 2000-09-13 2017-12-05 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US7396742B2 (en) 2000-09-13 2008-07-08 Hamamatsu Photonics K.K. Laser processing method for cutting a wafer-like object by using a laser to form modified regions within the object
US8969761B2 (en) 2000-09-13 2015-03-03 Hamamatsu Photonics K.K. Method of cutting a wafer-like object and semiconductor chip
US8927900B2 (en) 2000-09-13 2015-01-06 Hamamatsu Photonics K.K. Method of cutting a substrate, method of processing a wafer-like object, and method of manufacturing a semiconductor device
US7615721B2 (en) * 2000-09-13 2009-11-10 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US10796959B2 (en) 2000-09-13 2020-10-06 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8946589B2 (en) 2000-09-13 2015-02-03 Hamamatsu Photonics K.K. Method of cutting a substrate, method of cutting a wafer-like object, and method of manufacturing a semiconductor device
US8946591B2 (en) 2000-09-13 2015-02-03 Hamamatsu Photonics K.K. Method of manufacturing a semiconductor device formed using a substrate cutting method
US8937264B2 (en) 2000-09-13 2015-01-20 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8933369B2 (en) 2000-09-13 2015-01-13 Hamamatsu Photonics K.K. Method of cutting a substrate and method of manufacturing a semiconductor device
US9553023B2 (en) 2002-03-12 2017-01-24 Hamamatsu Photonics K.K. Substrate dividing method
US9548246B2 (en) 2002-03-12 2017-01-17 Hamamatsu Photonics K.K. Substrate dividing method
US11424162B2 (en) 2002-03-12 2022-08-23 Hamamatsu Photonics K.K. Substrate dividing method
US10622255B2 (en) 2002-03-12 2020-04-14 Hamamatsu Photonics K.K. Substrate dividing method
US10068801B2 (en) 2002-03-12 2018-09-04 Hamamatsu Photonics K.K. Substrate dividing method
US8889525B2 (en) 2002-03-12 2014-11-18 Hamamatsu Photonics K.K. Substrate dividing method
US9711405B2 (en) 2002-03-12 2017-07-18 Hamamatsu Photonics K.K. Substrate dividing method
US9142458B2 (en) 2002-03-12 2015-09-22 Hamamatsu Photonics K.K. Substrate dividing method
US9287177B2 (en) 2002-03-12 2016-03-15 Hamamatsu Photonics K.K. Substrate dividing method
US9543207B2 (en) 2002-03-12 2017-01-10 Hamamatsu Photonics K.K. Substrate dividing method
US9543256B2 (en) 2002-03-12 2017-01-10 Hamamatsu Photonics K.K. Substrate dividing method
US8865566B2 (en) 2002-12-03 2014-10-21 Hamamatsu Photonics K.K. Method of cutting semiconductor substrate
US8969752B2 (en) 2003-03-12 2015-03-03 Hamamatsu Photonics K.K. Laser processing method
CN1299549C (en) * 2003-11-27 2007-02-07 中国航天时代电子公司第七七一研究所 Method of processing before hole metallization process of polytetrafluoroethylene printed board
JP2006245380A (en) * 2005-03-04 2006-09-14 Toshiba Corp Semiconductor light emitting device and manufacturing method thereof
EP1764831A3 (en) * 2005-09-15 2008-03-12 Plastic Logic Limited Forming holes using laser energy
US8546723B2 (en) 2005-09-15 2013-10-01 Plastic Logic Limited Forming holes using laser energy
GB2446875A (en) * 2007-02-23 2008-08-27 Intense Ltd Production of fine geometric openings in thin film materials
WO2008102140A1 (en) * 2007-02-23 2008-08-28 Gr Advanced Materials Ltd Method for cutting or perforating film
KR101243269B1 (en) * 2010-12-22 2013-03-13 한국기계연구원 Laser processing system and laser processing method using the same
US10052718B2 (en) 2011-02-10 2018-08-21 Honda Motor Co., Ltd. Cylindrical workpiece cutting apparatus
DE102012201959B4 (en) * 2011-02-10 2013-07-18 Honda Motor Co., Ltd. Cutting device for a cylindrical workpiece
KR20200113650A (en) * 2019-03-26 2020-10-07 바론전자 주식회사 Hole boring device for flexible printed circuits board and hole boring method using the same

Also Published As

Publication number Publication date
JP2760288B2 (en) 1998-05-28

Similar Documents

Publication Publication Date Title
US4959119A (en) Method for forming through holes in a polyimide substrate
US6576869B1 (en) Method and apparatus for drilling microvia holes in electrical circuit interconnection packages
JP2760288B2 (en) Via hole forming method and film cutting method
US6717101B2 (en) Method and apparatus for laser ablation of a target material
EP0661734B1 (en) Method of forming via holes in an insulation film and method of cutting the insulation film
KR20010112606A (en) Processing method of glass substrate and manufocturing method of high frequency circuit
JP2007508946A (en) Laser processing of locally heated target materials
JP2001347388A (en) Laser beam machining device and method of machining
JPH09107168A (en) Laser processing method of wiring board, laser processing device of wiring board and carbon dioxide gas laser oscillator for wiring board processing
Zheng et al. Investigation of laser via formation technology for the manufacturing of high density substrates
JPH10305374A (en) Laser processing method for transparent member
JP2710608B2 (en) Organic film processing method
KR100504234B1 (en) Laser drilling method
JP2000202664A (en) Lasder drilling method
JP2002035976A (en) Drilling method using ultraviolet laser
JP3830830B2 (en) Laser processing method
JP2005021917A (en) Method for boring resin layer
JP2002126886A (en) Laser perforating device
JP3245820B2 (en) Laser drilling method
JP3343812B2 (en) Via hole forming method and laser processing apparatus
JP2004074211A (en) Laser beam machining method
JP2001267720A (en) Method for machining laminated film substrate
JP2513279B2 (en) Thin film removal method
Venkat et al. Laser processing-the future of HDI manufacturing
JP2003260577A (en) Laser beam machining method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980217

LAPS Cancellation because of no payment of annual fees