JPH0730685B2 - Method and apparatus for controlling steam injection system in combined cycle power plant - Google Patents

Method and apparatus for controlling steam injection system in combined cycle power plant

Info

Publication number
JPH0730685B2
JPH0730685B2 JP25920987A JP25920987A JPH0730685B2 JP H0730685 B2 JPH0730685 B2 JP H0730685B2 JP 25920987 A JP25920987 A JP 25920987A JP 25920987 A JP25920987 A JP 25920987A JP H0730685 B2 JPH0730685 B2 JP H0730685B2
Authority
JP
Japan
Prior art keywords
steam
steam injection
drain
turbine device
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25920987A
Other languages
Japanese (ja)
Other versions
JPH01100303A (en
Inventor
裕 有吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25920987A priority Critical patent/JPH0730685B2/en
Publication of JPH01100303A publication Critical patent/JPH01100303A/en
Publication of JPH0730685B2 publication Critical patent/JPH0730685B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は複合サイクル発電プラントにおける蒸気噴射系
統の制御方法およびその装置に係り、特に発電プラント
の起動時に、蒸気噴射流量制御装置の上流側に発生する
ドレンを効率よく排除できるようにした蒸気噴射系統の
制御方法およびその装置に関する。
The present invention relates to a method and apparatus for controlling a steam injection system in a combined cycle power plant, and more particularly to a steam injection flow rate control at the time of starting the power plant. The present invention relates to a control method for a steam injection system capable of efficiently removing drainage generated on the upstream side of the device, and the device.

(従来の技術) 第3図は複合サイクル発電プラントの全体の構成を示し
ている。
(Prior Art) FIG. 3 shows the overall configuration of a combined cycle power plant.

この種の従来の発電プラントは、ガスタービン装置1
と、排熱回収ボイラ装置7と、蒸気タービン装置17とを
備えている。
A conventional power plant of this type is a gas turbine device 1
And the exhaust heat recovery boiler device 7 and the steam turbine device 17.

ガスタービン装置1は、圧縮機2と燃焼器3とガスター
ビン5とで構成されている。吸入ダクト系統Aから吸入
される空気は圧縮機2により圧縮され、ここから吐出さ
れる圧縮空気と燃料配管系統Bから供給される燃料とは
燃焼器3により混合、燃焼され、この燃焼器3からの燃
焼ガスはガスタービン5に流入し、ここで仕事をする。
The gas turbine device 1 is composed of a compressor 2, a combustor 3, and a gas turbine 5. The air sucked from the suction duct system A is compressed by the compressor 2, and the compressed air discharged from this is mixed with the fuel supplied from the fuel pipe system B by the combustor 3 and burned. The combustion gas of the above flows into the gas turbine 5 and performs work there.

ガスタービン5を出た燃焼ガスは排ガスダクト6を通し
て排熱回収ボイラ7に導入される。ここで燃焼ガスは蒸
気発生用の熱源として利用される。排熱回収ボイラ7に
は、低圧節炭器8と、低圧ドラム9と、低圧循環ポンプ
10と、低圧蒸発器11と、高圧節炭器12と、高圧ドラム13
と、高圧循環ポンプ14と、高圧蒸発器15と、加熱器16と
が組込まれている。
The combustion gas leaving the gas turbine 5 is introduced into the exhaust heat recovery boiler 7 through the exhaust gas duct 6. Here, the combustion gas is used as a heat source for generating steam. The exhaust heat recovery boiler 7 includes a low pressure economizer 8, a low pressure drum 9, and a low pressure circulation pump.
10, low pressure evaporator 11, high pressure economizer 12, high pressure drum 13
A high pressure circulation pump 14, a high pressure evaporator 15, and a heater 16 are incorporated.

蒸気タービン装置17は、蒸気タービン18と復水器19とで
構成されている。蒸気タービン18で仕事をした蒸気は復
水器19で復水となり、給水ポンプ21を介して上記低圧節
炭器8に送られる。ここでは加熱されて低圧ドラム9に
入り、低圧循環ポンプ10を介して低圧蒸発器11に入り、
ここで蒸発されて、低圧主蒸気配管22及び低圧蒸気弁23
を通して蒸気タービン17の低圧部に入る。
The steam turbine device 17 includes a steam turbine 18 and a condenser 19. The steam that has worked in the steam turbine 18 is condensed in a condenser 19 and sent to the low pressure economizer 8 via a water supply pump 21. Here, it is heated and enters the low-pressure drum 9, enters the low-pressure evaporator 11 through the low-pressure circulation pump 10,
Evaporated here, low-pressure main steam pipe 22 and low-pressure steam valve 23
Through the low pressure part of the steam turbine 17.

また、低圧ドラム9からの蒸気の一部は移送ポンプ25を
介して高圧節炭器12に送られる。ここでは加熱されて高
圧ドラム13に入り、高圧循環ポンプ14を介して高圧蒸発
器15に入り、ここで蒸発されて加熱器16に入り、加熱さ
れて高圧主蒸気配管26及び高圧蒸気弁27を通して蒸気タ
ービン17の高圧部に入る。
Further, a part of the steam from the low pressure drum 9 is sent to the high pressure economizer 12 via the transfer pump 25. Here, it is heated and enters the high-pressure drum 13, and then enters the high-pressure evaporator 15 through the high-pressure circulation pump 14, where it is evaporated and enters the heater 16, and is heated and passed through the high-pressure main steam pipe 26 and the high-pressure steam valve 27. Enters the high pressure section of the steam turbine 17.

これらの蒸気は蒸気タービン17内で仕事をし、上記ガス
タービン装置1と共に、発電機28を駆動する。
These steams work in the steam turbine 17 and drive the generator 28 together with the gas turbine device 1.

また、上記複合サイクル発電プラントにあっては、蒸気
噴射配管系統Cが設けられている。これは燃焼器3内で
燃焼中に発生する窒素酸化物を低減させるためのもので
あり、この蒸気噴射配管系統Cを介して燃焼器3内に蒸
気が噴射される。この蒸気噴射配管系統Cは、蒸気噴射
用蒸気源としての蒸気噴射バックアップ系統C1と抽気噴
射抽気系統C2とを備えている。
Further, in the above combined cycle power plant, a steam injection piping system C is provided. This is for reducing nitrogen oxides generated during combustion in the combustor 3, and steam is injected into the combustor 3 via the steam injection piping system C. The steam injection piping system C includes a steam injection backup system C1 as a steam source for steam injection and a bleed air injection bleed system C2.

第4図は蒸気噴射配管系統Cの構成機器の詳細を示して
いる。
FIG. 4 shows the details of the components of the steam injection piping system C.

蒸気噴射バックアップ系統C1は、バックアップ止め弁30
と、必要蒸気圧力に調整する圧力調整弁31と、バックア
ップ逆止弁32とからなり、抽気噴射抽気系統C2は、抽気
逆止弁34と、抽気止め弁35とからなっている。
The steam injection backup system C1 has a backup stop valve 30
And a backup check valve 32, and the extraction injection extraction system C2 includes an extraction check valve 34 and an extraction stop valve 35.

また、蒸気噴射配管系統Cは、減温装置36と、流量検出
器37と、蒸気噴射流量止め弁38と、蒸気噴射流量調整弁
39と、さらに蒸気噴射用蒸気を分配する蒸気噴射管リン
グヘッダ40とを備えている。この蒸気噴射管リングヘッ
ダ40を介して上記燃焼器3内に蒸気を噴射するわけであ
るが、ここに噴射される蒸気の温度及び流量は次のよう
に制御される。
Further, the steam injection piping system C includes a temperature reducing device 36, a flow rate detector 37, a steam injection flow rate stop valve 38, and a steam injection flow rate adjusting valve.
39 and a steam injection pipe ring header 40 for distributing steam for steam injection. The steam is injected into the combustor 3 through the steam injection pipe ring header 40, and the temperature and flow rate of the steam injected here are controlled as follows.

減温装置36の下流側にある減温装置用温度検出器43の信
号により、冷却水調整弁44が制御され、これにより減温
装置36が作動して、噴射される蒸気は規定の温度に制御
される。また、流量検出器37の検出値に基づいて蒸気噴
射流量調節弁39が作動して、噴射される蒸気は規定の流
量に制御される。蒸気噴射流量止め弁38は蒸気噴射許可
用温度検出器43により制御される。
The cooling water regulating valve 44 is controlled by the signal of the temperature detector 43 for the temperature reducing device located on the downstream side of the temperature reducing device 36, whereby the temperature reducing device 36 is operated and the injected steam reaches a prescribed temperature. Controlled. Further, the steam injection flow rate control valve 39 operates based on the detection value of the flow rate detector 37, and the injected steam is controlled to a prescribed flow rate. The steam injection flow stop valve 38 is controlled by a steam injection permission temperature detector 43.

さらに蒸気噴射配管系統Cは、蒸気導入の初期に発生す
るドレンを排除するためのドレン排出系統C3を備えてい
る。
Further, the steam injection piping system C is provided with a drain discharge system C3 for eliminating the drain generated in the initial stage of steam introduction.

第5図は上記ドレン排出系統C3の各ドレン弁50〜54の運
転タイミングを示している。ガスタービン5の着火、起
動後、バックアップ止め弁30が全開し、蒸気噴射配管系
統Cへの通気条件が確立すると、蒸気噴射流量止め弁38
はガスタービン5への通気準備のために全開となり、ド
レン排出系統C3の各ドレン弁50〜54は滞留ドレン排除の
ために全開となる。
FIG. 5 shows the operation timing of each drain valve 50 to 54 of the drain discharge system C3. After the gas turbine 5 is ignited and started, the backup stop valve 30 is fully opened, and when the ventilation conditions for the steam injection piping system C are established, the steam injection flow stop valve 38
Is fully opened to prepare for ventilation of the gas turbine 5, and the drain valves 50 to 54 of the drain discharge system C3 are fully opened to eliminate stagnant drain.

蒸気噴射配管系統Cには、初期の段階で、高圧主蒸気配
管26に接続された蒸気噴射バックアップ系統C1より蒸気
が導入されウォーミング運転が行われ、この間に、高圧
主蒸気の蒸気条件は徐々に改善されていく。
In the initial stage of the steam injection piping system C, steam is introduced from the steam injection backup system C1 connected to the high-pressure main steam piping 26 to perform warming operation. During this period, the steam condition of the high-pressure main steam is gradually increased. Will be improved to.

発電プラントの併入後、ガスタービン5への通気条件が
整うと、減温装置入口ドレン弁50と、減温装置出口ドレ
ン弁51とは全閉になる。その後、燃焼器3へ蒸気を噴射
するために蒸気噴射流量調整弁39の制御が開始される。
このとき蒸気噴射流量止め弁52は全閉になる。蒸気噴射
流量調整弁39が微開し制御状態に入ると、蒸気噴射流量
調整弁入口ドレン弁53が全閉になり、時限をおいて、蒸
気噴射流量調整弁出口ドレン弁54が全閉になり、燃焼器
3への蒸気噴射運転に移行する。
When the ventilation conditions for the gas turbine 5 are satisfied after the power plant is installed, the temperature reducing device inlet drain valve 50 and the temperature reducing device outlet drain valve 51 are fully closed. After that, the control of the steam injection flow rate adjusting valve 39 for injecting steam to the combustor 3 is started.
At this time, the steam injection flow stop valve 52 is fully closed. When the steam injection flow rate adjusting valve 39 is slightly opened and enters the control state, the steam injection flow rate adjusting valve inlet drain valve 53 is fully closed, and after a lapse of time, the steam injection flow rate adjusting valve outlet drain valve 54 is fully closed. , The steam injection operation to the combustor 3 is started.

(発明が解決しようとする問題点) ところで、蒸気噴射バックアップ系統C1から蒸気を導入
し、ウォーミング運転を行う初期の段階では、加熱度の
低い蒸気が導入されるので、蒸気噴射配管内にドレンが
多く発生し易く、また蒸気噴射配管からの放熱に起因し
てドレンが多く発生し易くなる。そのため、従来のドレ
ン排出系統C3では、これらドレンを充分に排出すること
ができないという問題がある。
(Problems to be Solved by the Invention) By the way, in the initial stage of introducing the steam from the steam injection backup system C1 and performing the warming operation, the steam with a low degree of heating is introduced, so the drain is injected into the steam injection pipe. Is likely to occur, and more drainage is likely to occur due to heat radiation from the steam injection pipe. Therefore, the conventional drain discharge system C3 has a problem that these drains cannot be discharged sufficiently.

また、減温装置36内で噴霧される冷却水が少流量の領域
においては、制御特性が悪化してドレンが発生すること
もあり、さらに減温装置36の配置上の制約から冷却水と
蒸気との混合距離が十分に得られなかった場合にはドレ
ンが発生することもあり、このような場合には、燃焼器
3内にドレンが運ばれてしまい、失火あるいは火炎温度
偏差大となり、安定した燃焼運転特性が得られなくな
り、さらには燃焼器3の破損に繋がるという問題があ
る。
Further, in a region where the cooling water sprayed in the temperature reducing device 36 has a small flow rate, the control characteristics may deteriorate and drain may be generated. If a sufficient mixing distance with is not obtained, drain may be generated, and in such a case, the drain will be carried into the combustor 3, resulting in misfire or large flame temperature deviation and stable. There is a problem that the combustion operation characteristics described above cannot be obtained, and further the combustor 3 is damaged.

そこで、本発明の目的は、上述した従来の技術が有する
問題点を解消し、発電プラントの起動時において、蒸気
噴射配管系統内に発生するドレンを積極的に排除し、安
定した燃焼運転特性が得られるようにした複合サイクル
発電プラントにおける蒸気噴射系統の制御方法およびそ
の装置を提供することにある。
Therefore, an object of the present invention is to solve the problems of the above-described conventional technology, to positively eliminate the drain generated in the steam injection piping system at the time of starting the power plant, and to provide stable combustion operation characteristics. An object of the present invention is to provide a control method and apparatus for a steam injection system in a combined cycle power generation plant that is obtained.

〔発明の構成〕[Structure of Invention]

(問題点を解決するための手段) 上記目的を達成するために、本発明は、ガスタービン装
置と、このガスタービン装置からの排出ガスを熱源とし
て蒸気を発生させる排熱回収ボイラ装置と、このボイラ
装置により発生する蒸気を駆動源とする蒸気タービン装
置と、上記ガスタービン装置の燃焼器内に燃焼により発
生する窒素酸化物を低減させるための蒸気を噴射する蒸
気噴射配管系統とを備え、上記ガスタービン装置の運転
中に、蒸気噴射配管系統内に上記蒸気タービン装置から
のタービン抽気蒸気及び高圧主蒸気を導入するようにし
た、複合サイクル発電プラントにおける蒸気噴射系統の
制御方法およびその装置において、上記蒸気噴射配管系
統に、外部からの加熱蒸気を蒸気噴射配管内に導入する
ための補助蒸気系統と、蒸気噴射配管内の蒸気からドレ
ンを分離するための気水分離装置を含むドレン強制排出
系統とを設け、上記ガスタービン装置の起動に先立っ
て、上記補助蒸気系統を動作させ、ここから導入される
加熱蒸気を上記ドレン強制排出系統から排出させ、蒸気
噴射配管内のドレンを予め排除できるようにしたことを
特徴とするものである。
(Means for Solving Problems) In order to achieve the above object, the present invention provides a gas turbine device, an exhaust heat recovery boiler device that generates steam by using exhaust gas from the gas turbine device as a heat source, and A steam turbine device using steam generated by a boiler device as a drive source, and a steam injection piping system for injecting steam for reducing nitrogen oxides generated by combustion in the combustor of the gas turbine device, During operation of the gas turbine device, the turbine extraction steam and the high-pressure main steam from the steam turbine device are introduced into the steam injection piping system, in the method and device for controlling the steam injection system in the combined cycle power plant, In the steam injection piping system, an auxiliary steam system for introducing heating steam from the outside into the steam injection piping, and in the steam injection piping And a drain forced discharge system including a steam separation device for separating drain from the steam of, the auxiliary steam system is operated prior to the start of the gas turbine device, and the heating steam introduced from the auxiliary steam system is operated as described above. It is characterized in that the drain is discharged from the forced drainage system so that the drain in the steam injection pipe can be eliminated in advance.

(作 用) 本発明によれば、ガスタービン装置の起動に先立って、
補助蒸気系統が動作されると、ここから蒸気噴射配管内
に加熱蒸気が導入され、この加熱蒸気により発電プラン
トのウォーミングアップ運転が行われる。この加熱蒸気
はドレン強制排出系統から排出され、蒸気噴射配管内に
滞留するドレンは予め外部へ排除される。また、蒸気噴
射配管内において、気水分離装置によりドレンは蒸気か
ら確実に分離され、この分離動作は発電プラントの運転
中継続して行われる。
(Operation) According to the present invention, prior to starting the gas turbine device,
When the auxiliary steam system is operated, heated steam is introduced into the steam injection pipe from here, and the warmed-up operation of the power plant is performed by the heated steam. The heated steam is discharged from the drain forced discharge system, and the drain accumulated in the steam injection pipe is removed to the outside in advance. Further, in the steam injection pipe, the drain is reliably separated from the steam by the steam separator, and this separating operation is continuously performed during the operation of the power generation plant.

(実施例) 以下、本発明による複合サイクル発電プラントにおける
蒸気噴射系統の制御方法およびその装置の一実施例を第
1図及び第2図を参照して説明する。なお、第4図で示
したものと同一部分には同一符号を付して示しその説明
を省略する。
(Embodiment) An embodiment of a method for controlling a steam injection system and a device therefor in a combined cycle power plant according to the present invention will be described below with reference to FIGS. 1 and 2. The same parts as those shown in FIG. 4 are designated by the same reference numerals and the description thereof will be omitted.

先ず、蒸気噴射系統の制御装置の一実施例を説明する。First, an embodiment of the control device for the steam injection system will be described.

第1図に示されるように、この複合サイクル発電プラン
トにおける蒸気噴射配管系統Cは、従来のもの(第4図
参照)と同様にして、蒸気噴射バックアップ系統C1と抽
気噴射抽気系統C2とドレン排出系統C3とを備え、それ以
外に、本実施例の特徴として、外部から加熱蒸気を導入
するための補助蒸気系統Pと、気水分離装置55を含むド
レン強制排出系統Qとを備えている。そして、補助蒸気
系統Pは補助蒸気逆止弁57と、補助蒸気元弁58とを備
え、ドレン強制排出系統Qは気水分離装置ドレン弁59を
備えている。
As shown in FIG. 1, the steam injection piping system C in this combined cycle power plant is similar to the conventional one (see FIG. 4), and a steam injection backup system C1, a bleed air injection bleed air system C2, and a drain discharge. In addition to the system C3, the present embodiment is characterized by an auxiliary steam system P for introducing heating steam from the outside and a drain forced discharge system Q including a steam separator 55. The auxiliary steam system P includes an auxiliary steam check valve 57 and an auxiliary steam source valve 58, and the drain forced discharge system Q includes a steam separator drain valve 59.

次に、本実施例の作用を第2図を参照して説明する。Next, the operation of this embodiment will be described with reference to FIG.

複合サイクル発電プラントの起動に先立って、補助蒸気
元弁58を開き、ウォーミングアップ用の加熱蒸気を補助
蒸気系統Pから蒸気噴射配管系統C内へ導入する。この
とき、蒸気噴射流量止め弁38は閉じ、この止め弁38の上
流に位置するドレン弁50、51、52及び59は全て開く。こ
れにより蒸気配管内に滞留しているドレンは全て排出さ
れる。しかも加熱蒸気によりウォーミングアップされて
いるので、その後、蒸気条件の低い蒸気噴射バックアッ
プ系統C1に切替わってもドレンの発生ぱ抑えられる。
Prior to starting the combined cycle power plant, the auxiliary steam source valve 58 is opened to introduce the warming-up heated steam from the auxiliary steam system P into the steam injection piping system C. At this time, the steam injection flow stop valve 38 is closed, and the drain valves 50, 51, 52 and 59 located upstream of the stop valve 38 are all opened. As a result, all the drain accumulated in the steam pipe is discharged. Moreover, since it is warmed up by the heated steam, drain generation can be suppressed even after switching to the steam injection backup system C1 under low steam conditions.

高圧主蒸気が規定圧力以上になった場合には、従来のも
の(第5図参照)と同様に、蒸気噴射流量止め弁38の下
流に位置するドレン弁53、54を含めて全てのドレン弁を
開き、これと一緒に蒸気噴射流量止め弁38を開く。
When the high-pressure main steam exceeds the specified pressure, all drain valves including the drain valves 53 and 54 located downstream of the steam injection flow stop valve 38 are used as in the conventional one (see FIG. 5). And the steam injection flow stop valve 38 is opened together therewith.

発電プラントの併入後、ガスタービン5(第3図参照)
への通気条件が整うと、減温装置入口ドレン弁50と、減
温装置出口ドレン弁51とは全閉になる。その後、燃焼器
3へ蒸気を噴射するために蒸気噴射流量調整弁39の制御
が開始される。このとき蒸気噴射流量止め弁52及び気水
分離装置ドレン弁59は全閉になる。
After joining the power plant, gas turbine 5 (see Figure 3)
When the ventilation conditions for the temperature reducing device are adjusted, the temperature reducing device inlet drain valve 50 and the temperature reducing device outlet drain valve 51 are fully closed. After that, the control of the steam injection flow rate adjusting valve 39 for injecting steam to the combustor 3 is started. At this time, the steam injection flow rate stop valve 52 and the steam / water separator drain valve 59 are fully closed.

蒸気噴射流量調整弁39が微開し制御状態に入ると、蒸気
噴射流量調整弁入口ドレン弁53が全閉になり、時限をお
いて、蒸気噴射流量調整弁出口ドレン弁54が全閉にな
り、燃焼器3への蒸気噴射運転に移行する。
When the steam injection flow rate adjusting valve 39 is slightly opened and enters the control state, the steam injection flow rate adjusting valve inlet drain valve 53 is fully closed, and after a lapse of time, the steam injection flow rate adjusting valve outlet drain valve 54 is fully closed. , The steam injection operation to the combustor 3 is started.

一方、蒸気噴射運転に移行した後には、燃焼器3へ噴射
される蒸気の温度を制御するため、上述したように冷却
水調整装置44が制御されて、給水ポンプより減温装置36
へ冷却水が供給される。この減温装置36が制御運転され
ると、ここでもドレンが発生する。しかしながら、本実
施例によれば、ドレン強制排出系統Qに気水分離装置55
が設けられているので、ドレンはこの気水分離装置55で
分離され、ドレントラップ60を介して外部へ排出され
る。また、この気水分離装置55を設けたので、蒸気噴射
許可用温度検出器45の信頼性も向上する等の効果が得ら
れる。
On the other hand, after shifting to the steam injection operation, in order to control the temperature of the steam injected to the combustor 3, the cooling water adjustment device 44 is controlled as described above, and the temperature control device 36 is controlled by the water supply pump.
Is supplied with cooling water. When the temperature reducing device 36 is controlled and operated, drainage also occurs here. However, according to the present embodiment, the steam / water separator 55 is installed in the drain forced discharge system Q.
Is provided, the drain is separated by the steam separator 55 and discharged to the outside through the drain trap 60. Further, since the steam / water separator 55 is provided, the reliability of the steam injection permission temperature detector 45 can be improved.

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかなように、本発明によれば、ガス
タービン装置の燃焼器内に燃焼により発生する窒素酸化
物を低減させるための蒸気を噴射する蒸気噴射配管系統
を備え、この蒸気噴射配管系統に、外部からの加熱蒸気
を蒸気噴射配管内に導入するための補助蒸気系統と、蒸
気噴射配管内の蒸気からドレンを分離するための気水分
離装置を含むドレン強制排出系統とを設け、ガスタービ
ン装置の起動に先立って、補助蒸気系統を動作させ、こ
こから導入される加熱蒸気をドレン強制排出系統から排
出させ、蒸気噴射配管内のドレンを予め排除できるよう
にしたから、蒸気噴射配管系統内に発生するドレンを積
極的に排除することができ、ガスタービン装置の燃焼器
内にドレンが噴射される等の不都合を回避することがで
き、これにより発電プラントの安定した燃焼運転特性を
得ることができる等の効果を奏する。
As is apparent from the above description, according to the present invention, a steam injection piping system for injecting steam for reducing nitrogen oxides generated by combustion is provided in the combustor of the gas turbine device, and the steam injection piping is provided. The system is provided with an auxiliary steam system for introducing heating steam from the outside into the steam injection pipe, and a drain forced discharge system including a steam separator for separating drain from the steam in the steam injection pipe, Prior to starting the gas turbine device, the auxiliary steam system was operated and the heated steam introduced from this was discharged from the drain forced discharge system so that the drain in the steam injection pipe could be eliminated in advance. Drain generated in the system can be positively removed, and inconveniences such as the injection of drain into the combustor of the gas turbine device can be avoided. The effect of such can be obtained a stable combustion operation characteristics of the plant.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による複合サイクル発電プラントの蒸気
噴射系統の制御装置の一実施例を示す系統図、第2図は
同蒸気噴射系統でのドレン弁の開閉のタイミングを示す
線図、第3図は従来の複合サイクル発電プラントの全体
の構成を示す系統図、第4図は同複合サイクル発電プラ
ントの蒸気噴射系統を示す系統図、第5図は同蒸気噴射
系統でのドレン弁の開閉のタイミングを示す線図であ
る。 1……ガスタービン装置、7……排熱回収ボイラ、17…
…蒸気タービン装置、28……燃焼器、38……蒸気噴射流
量止め弁、39……蒸気噴射流量調整弁、50〜54……ドレ
ン弁、55……気水分離装置、C……蒸気噴射配管系統、
C1……蒸気噴射バックアップ系統、C2……蒸気噴射抽気
系統、C3……ドレン排出系統、P……補助蒸気系統、Q
……ドレン強制排出系統。
FIG. 1 is a system diagram showing an embodiment of a control device for a steam injection system of a combined cycle power plant according to the present invention, and FIG. 2 is a diagram showing the opening / closing timing of a drain valve in the steam injection system. Fig. 4 is a system diagram showing the overall configuration of a conventional combined cycle power plant, Fig. 4 is a system diagram showing the steam injection system of the same combined cycle power plant, and Fig. 5 is a diagram showing opening / closing of a drain valve in the steam injection system. It is a diagram showing a timing. 1 ... Gas turbine equipment, 7 ... Exhaust heat recovery boiler, 17 ...
… Steam turbine equipment, 28 …… combustor, 38 …… Steam injection flow stop valve, 39 …… Steam injection flow adjustment valve, 50 to 54 …… Drain valve, 55 …… Steam separation device, C …… Steam injection Piping system,
C1 ... Steam injection backup system, C2 ... Steam injection extraction system, C3 ... Drain discharge system, P ... Auxiliary steam system, Q
...... Drain forced discharge system.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ガスタービン装置と、このガスタービン装
置からの排出ガスを熱源として蒸気を発生させる排熱回
収ボイラ装置と、このボイラ装置により発生する蒸気を
駆動源とする蒸気タービン装置と、上記ガスタービン装
置の燃焼器内に燃焼により発生する窒素酸化物を低減さ
せるための蒸気を噴射する蒸気噴射配管系統とを備え、
上記ガスタービン装置の運転中に、蒸気噴射配管系統内
に上記蒸気タービン装置からのタービン抽気蒸気及び高
圧主蒸気を導入するようにした複合サイクル発電プラン
トにおける蒸気噴射系統の制御方法において、上記蒸気
噴射配管系統に、外部からの加熱蒸気を蒸気噴射配管内
に導入するための補助蒸気系統と、蒸気噴射配管内の蒸
気からドレンを分離するための気水分離装置を含むドレ
ン強制排出系統とを設け、上記ガスタービン装置の起動
に先立って、上記補助蒸気系統を動作させ、ここから導
入される加熱蒸気を上記ドレン強制排出系統から排出さ
せ、蒸気噴射配管内のドレンを予め排除するようにした
ことを特徴とする複合サイクル発電プラントにおける蒸
気噴射系統の制御方法。
1. A gas turbine device, an exhaust heat recovery boiler device for generating steam by using exhaust gas from the gas turbine device as a heat source, a steam turbine device using steam generated by the boiler device as a drive source, and And a steam injection piping system for injecting steam for reducing nitrogen oxides generated by combustion in the combustor of the gas turbine device,
During operation of the gas turbine device, in the method for controlling a steam injection system in a combined cycle power plant, which introduces turbine extracted steam and high-pressure main steam from the steam turbine device into the steam injection piping system, the steam injection The piping system is provided with an auxiliary steam system for introducing heated steam from the outside into the steam injection pipe, and a drain forced discharge system including a steam separator for separating drain from the steam in the steam injection pipe. Prior to starting the gas turbine device, the auxiliary steam system is operated, the heating steam introduced from here is discharged from the drain forced discharge system, and the drain in the steam injection pipe is eliminated in advance. And a method for controlling a steam injection system in a combined cycle power plant.
【請求項2】ガスタービン装置と、このガスタービン装
置からの排出ガスを熱源として蒸気を発生させる排熱回
収ボイラ装置と、このボイラ装置により発生する蒸気を
駆動源とする蒸気タービン装置と、上記ガスタービン装
置の燃焼器内に燃焼により発生する窒素酸化物等を低減
させるための蒸気を噴射する蒸気噴射配管系統とを備え
た複合サイクル発電プラントにおいて、上記蒸気噴射配
管系統は、蒸気噴射配管内に蒸気タービン装置からの抽
気蒸気を導入する抽気蒸気配管系統と、蒸気噴射配管内
に高圧主蒸気を導入するバックアップ蒸気配管系統と、
蒸気噴射配管内に外部からの加熱蒸気を導入する補助蒸
気系統と、蒸気噴射配管内の蒸気からドレンを分離する
ための気水分離装置を含むドレン強制排出系統とを具備
したことを特徴とする複合サイクル発電プラントにおけ
る蒸気噴射系統の制御装置。
2. A gas turbine device, an exhaust heat recovery boiler device for generating steam using exhaust gas from the gas turbine device as a heat source, a steam turbine device using the steam generated by the boiler device as a drive source, and In a combined cycle power plant including a steam injection piping system for injecting steam for reducing nitrogen oxides generated by combustion in a combustor of a gas turbine device, the steam injection piping system is a steam injection piping system. An extraction steam piping system for introducing extraction steam from the steam turbine device to the backup steam piping system for introducing high-pressure main steam into the steam injection pipe,
An auxiliary steam system for introducing heating steam from the outside into the steam injection pipe, and a drain forced discharge system including a steam separation device for separating drain from the steam in the steam injection pipe are provided. Controller for steam injection system in combined cycle power plant.
JP25920987A 1987-10-14 1987-10-14 Method and apparatus for controlling steam injection system in combined cycle power plant Expired - Lifetime JPH0730685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25920987A JPH0730685B2 (en) 1987-10-14 1987-10-14 Method and apparatus for controlling steam injection system in combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25920987A JPH0730685B2 (en) 1987-10-14 1987-10-14 Method and apparatus for controlling steam injection system in combined cycle power plant

Publications (2)

Publication Number Publication Date
JPH01100303A JPH01100303A (en) 1989-04-18
JPH0730685B2 true JPH0730685B2 (en) 1995-04-10

Family

ID=17330906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25920987A Expired - Lifetime JPH0730685B2 (en) 1987-10-14 1987-10-14 Method and apparatus for controlling steam injection system in combined cycle power plant

Country Status (1)

Country Link
JP (1) JPH0730685B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018017480A (en) * 2016-07-29 2018-02-01 三菱日立パワーシステムズ株式会社 Steam injection gas turbine and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018017480A (en) * 2016-07-29 2018-02-01 三菱日立パワーシステムズ株式会社 Steam injection gas turbine and control method thereof

Also Published As

Publication number Publication date
JPH01100303A (en) 1989-04-18

Similar Documents

Publication Publication Date Title
KR100284392B1 (en) Method of effecting start-up of a cold steam turbine system in a combined cycle plant.
US6945052B2 (en) Methods and apparatus for starting up emission-free gas-turbine power stations
US6233940B1 (en) Dual-pressure stem injection partial-regeneration-cycle gas turbine system
JPH06264763A (en) Combined plant system
JPH08114104A (en) Composite gas-steam turbine power plant
JPH094417A (en) Composite cycle-system
JPH11200816A (en) Combined cycle power generation plant
JP2005534883A (en) Waste heat steam generator
US8327615B2 (en) Combined cycle powered generating plant having reduced start-up time
RU2148725C1 (en) Method and device for cooling down gas-turbine coolant
JPH06323162A (en) Steam-cooled gas turbine power plant
JPH0730685B2 (en) Method and apparatus for controlling steam injection system in combined cycle power plant
JPS5993907A (en) Quick starting device for combined-cycle power generation plant
JP3641030B2 (en) Safety valve operation test method for combined cycle power plant
JPH0275731A (en) Turbine plant
JPH0688502A (en) Power generating plant
JP2558855B2 (en) Method of operating steam-gas combined cycle power plant and its power plant
JP2001303974A (en) Combined-cycle generator set
JP3117392B2 (en) Start-up method of an exhaust gas re-combustion complex plant
TW202012767A (en) Combined cycle power plant
JP2708406B2 (en) Startup control method for thermal power plant
JP2716442B2 (en) Waste heat recovery boiler device
JP3026561B1 (en) Hot water production equipment
JPH06317107A (en) Feedwater heating device
JPS59180011A (en) Heat recovering apparatus of steam turbine plant