JPH01100303A - Control method and device for steam injection system in combined-cycle generating plant - Google Patents

Control method and device for steam injection system in combined-cycle generating plant

Info

Publication number
JPH01100303A
JPH01100303A JP25920987A JP25920987A JPH01100303A JP H01100303 A JPH01100303 A JP H01100303A JP 25920987 A JP25920987 A JP 25920987A JP 25920987 A JP25920987 A JP 25920987A JP H01100303 A JPH01100303 A JP H01100303A
Authority
JP
Japan
Prior art keywords
steam
steam injection
gas turbine
drain
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25920987A
Other languages
Japanese (ja)
Other versions
JPH0730685B2 (en
Inventor
Yutaka Ariyoshi
裕 有吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25920987A priority Critical patent/JPH0730685B2/en
Publication of JPH01100303A publication Critical patent/JPH01100303A/en
Publication of JPH0730685B2 publication Critical patent/JPH0730685B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PURPOSE:To avoid such an improper phenomenon where the drain is injected into a combustion chamber by discharging the heated steam, which is introduced from an auxiliary steam system prior to the start of a gas turbine device, from a forced, drain discharge system, so that the drain in a steam injection pipe can be discharged in advance. CONSTITUTION:In the captioned plant, in which steam is injected from a steam injecting piping system C into a combustion chamber 3 in order to decrease the nitrogen oxide produced in the combustion chamber 3 of the captioned plant, a steam injection piping system C is provided with a steam injection backup system C1 as a steam source for steam injection, an extracted-steam- injection-extraction system C2, and a drain discharging system C3, which discharges the drain produced during the early period of steam introduction. In this case, an auxiliary steam system P, which introduces the heated steam from the outside, and a forced, drain discharging system Q, which contains a steam separator 55, are provided. Prior to the start of the gas turbine, the auxiliary steam system P is actuated, so that the heated steam is discharged from the forced, drain discharging system Q.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は複合サイクル発電プラントにおける蒸気噴射系
統の制御方法およびその装置に係り、特に発電プラント
の起動時に、蒸気噴射流量制御装置の上流側に発生する
ドレンを効率よく排除できるようにした蒸気噴射系統の
制御方法およびその装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method and device for controlling a steam injection system in a combined cycle power plant, and particularly to a steam injection flow rate control method at the startup of a power plant. The present invention relates to a method for controlling a steam injection system and an apparatus for controlling a steam injection system that can efficiently eliminate drain generated on the upstream side of the apparatus.

(従来の技術) 第3図は複合サイクル発電プラントの全体の構成を示し
ている。
(Prior Art) FIG. 3 shows the overall configuration of a combined cycle power plant.

この種の従来の発電プラントは、ガスタービン装置1と
、排熱回収ボイラ装置7と、蒸気タービン装置17とを
備えている。
This type of conventional power plant includes a gas turbine device 1, an exhaust heat recovery boiler device 7, and a steam turbine device 17.

ガスタービン装置1は、圧縮機2と燃焼器3とガスター
ビン5とで構成されている。吸入ダクト系統Aから吸入
される空気は圧縮機2により圧縮され、ここから吐出さ
れる圧縮空気と燃料配管系統Bから供給される燃料とは
燃焼器3により混合、燃焼され、この燃焼器3からの燃
焼ガスはガスタービン5に流入し、ここで仕事をする。
The gas turbine device 1 includes a compressor 2, a combustor 3, and a gas turbine 5. The air taken in from the suction duct system A is compressed by the compressor 2, and the compressed air discharged from here and the fuel supplied from the fuel piping system B are mixed and combusted by the combustor 3. The combustion gas flows into the gas turbine 5 and does work there.

ガスタービン5を出た燃焼ガスは排ガスダクト6を通し
て排熱回収ボイラ7に導入される。ここで燃焼ガスは蒸
気発生用の熱源として利用される。
Combustion gas exiting the gas turbine 5 is introduced into an exhaust heat recovery boiler 7 through an exhaust gas duct 6. Here, the combustion gas is used as a heat source for steam generation.

排熱回収ボイラ7には、低圧節炭器8と、低圧ドラム9
と、低圧循環ポンプ10と、低圧蒸発器11と、高圧節
炭器12と、高圧ドラム13と、高圧循環ポンプ14と
、高圧蒸発器15と、加熱器16とが組込まれている。
The exhaust heat recovery boiler 7 includes a low pressure energy saver 8 and a low pressure drum 9.
A low-pressure circulation pump 10, a low-pressure evaporator 11, a high-pressure economizer 12, a high-pressure drum 13, a high-pressure circulation pump 14, a high-pressure evaporator 15, and a heater 16 are incorporated.

蒸気タービン装置17は、蒸気タービン18と復水器1
9とで構成されている。蒸気タービン18で仕事をした
蒸気は復水器19で復水となり、給水ポンプ21を介し
て上記低圧節炭器8に送られる。ここでは加熱されて低
圧ドラム9に入り、低圧循環ポンプ10を介して低圧蒸
発器11に入り、ここで蒸発されて、低圧主蒸気配管2
2及び低圧蒸気弁23を通して蒸気タービン17の低圧
部に入る。
The steam turbine device 17 includes a steam turbine 18 and a condenser 1
It consists of 9. The steam that has done work in the steam turbine 18 becomes condensed water in the condenser 19, and is sent to the low-pressure economizer 8 via the water supply pump 21. Here, it is heated and enters the low-pressure drum 9, passes through the low-pressure circulation pump 10 and enters the low-pressure evaporator 11, where it is evaporated and the low-pressure main steam pipe 2
2 and enters the low pressure section of the steam turbine 17 through the low pressure steam valve 23.

また、低圧ドラム9からの蒸気の一部は移送ポンプ25
を介して高圧節炭器12に送られる。ここでは加熱され
て高圧ドラム13に入り、高圧循環ポンプ14を介して
高圧蒸発器15に入り、ここで蒸発されて加熱器16に
入り、加熱されて高圧主蒸気配管26及び高圧蒸気弁2
7を通して蒸気タービン17の高圧部に入る。
In addition, part of the steam from the low pressure drum 9 is transferred to the transfer pump 25.
is sent to the high-pressure economizer 12 via. Here, it is heated and enters the high-pressure drum 13, passes through the high-pressure circulation pump 14, enters the high-pressure evaporator 15, is evaporated here, enters the heater 16, is heated, and enters the high-pressure main steam pipe 26 and the high-pressure steam valve 2.
7 into the high pressure section of the steam turbine 17.

これら蒸気は蒸気タービン17内で仕事をし、上記ガス
タービン装置1と共に、発電機28を駆動する。
These steams perform work in the steam turbine 17 and drive the generator 28 together with the gas turbine device 1 .

また、上記複合サイクル発電プラントにあっては、蒸気
噴射配管系統Cが設けられている。これは燃焼器3内で
燃焼中に発生する窒素酸化物を低減させるためのもので
あり、この蒸気噴射配管系統Cを介して燃焼器3内に蒸
気が噴射される。この蒸気噴射配管系統Cは、蒸気噴射
用蒸気源としての蒸気噴射バックアップ系統C1と抽気
噴射抽気系統C2とを備えている。
Moreover, in the above-mentioned combined cycle power plant, a steam injection piping system C is provided. This is to reduce nitrogen oxides generated during combustion within the combustor 3, and steam is injected into the combustor 3 via this steam injection piping system C. This steam injection piping system C includes a steam injection backup system C1 as a steam source for steam injection and an air extraction extraction system C2.

第4図は蒸気噴射配管系統Cの構成機器の詳細を示して
いる。
FIG. 4 shows details of the components of the steam injection piping system C.

蒸気噴射バックアップ系統C1は、バックアップ止め弁
30と、必要蒸気圧力に調整する圧力調整弁31と、バ
ックアップ逆上弁32とからなり、抽気噴射抽気系統C
2は、抽気逆止弁34と、抽気止め弁35とからなって
いる。
The steam injection backup system C1 includes a backup stop valve 30, a pressure regulating valve 31 that adjusts to the required steam pressure, and a backup reverse valve 32.
2 consists of a bleed check valve 34 and a bleed check valve 35.

また、蒸気噴射配管系統Cは、減温装置36と、流量検
出器37と、蒸気噴射流量止め弁38と、蒸気噴射流量
調整弁39と、さらに蒸気噴射用蒸気を分配する蒸気噴
射管リングヘッダ40とを備えている。この蒸気噴射管
リングヘッダ40を介して上記燃焼器3内に蒸気を噴射
するわけであるが、ここに噴射される蒸気の温度及び流
量は次のように制御される。
Further, the steam injection piping system C includes a temperature reducing device 36, a flow rate detector 37, a steam injection flow stop valve 38, a steam injection flow rate adjustment valve 39, and a steam injection pipe ring header that distributes steam for steam injection. 40. Steam is injected into the combustor 3 through the steam injection pipe ring header 40, and the temperature and flow rate of the steam injected here are controlled as follows.

減温装置36の下流側にある減温装置用温度検出器43
の信号により、冷却水調整弁44が制御され、これによ
り減温装置36が作動して、噴射される蒸気は規定の温
度に制御される。また、流・量検出器37の検出値に基
づいて蒸気噴射流量調節弁39が作動して、噴射される
蒸気は規定の流量に制御される。蒸気噴射流量止め弁3
8は蒸気噴射許可用温度検出器45により制御される。
Temperature detector 43 for temperature reduction device located downstream of temperature reduction device 36
The cooling water regulating valve 44 is controlled by the signal, which activates the temperature reduction device 36 and controls the temperature of the injected steam to a specified temperature. Further, the steam injection flow rate control valve 39 is operated based on the detected value of the flow/amount detector 37, and the injected steam is controlled to a specified flow rate. Steam injection flow stop valve 3
8 is controlled by a steam injection permission temperature detector 45.

さらに蒸気噴射配管系統Cは、蒸気導入の初期に発生す
るドレンを排除するためのドレン排出系統C3を備えて
いる。
Furthermore, the steam injection piping system C is equipped with a drain discharge system C3 for removing drain generated at the initial stage of steam introduction.

第5図は上記ドレン排出系統C3の各ドレン弁50〜5
4の運転タイミングを示している。ガスタービン59着
火、起動後、バックアップ止め弁30が全開し、蒸気噴
射配管系統Cへの通気条件が確立すると、蒸気噴射流量
止め弁38はガスタービン5への通気準備のために全開
となり、ドレン排出系統C3の各ドレン弁50〜54は
滞留ドレン排除のために全開となる。
FIG. 5 shows each drain valve 50 to 5 of the drain discharge system C3.
4 shows the operation timing. After the gas turbine 59 is ignited and started, the backup stop valve 30 is fully opened and the ventilation conditions to the steam injection piping system C are established.The steam injection flow rate stop valve 38 is fully opened in preparation for ventilation to the gas turbine 5, and the drain is closed. Each of the drain valves 50 to 54 of the discharge system C3 is fully opened to remove accumulated drain.

蒸気噴射配管系統Cには、初期の段階で、高圧主蒸気配
管26に接続された蒸気噴射バックアップ系統C1より
蒸気が導入されウオーミング運転か行われ、この間に、
高圧主蒸気の蒸気条件は除々に改筈されていく。
At an initial stage, steam is introduced into the steam injection piping system C from the steam injection backup system C1 connected to the high pressure main steam piping 26 and a warming operation is performed, during which time,
Steam conditions for high-pressure main steam were gradually changed.

発電プラントの併入後、ガスタービン5への通気条件が
整うと、減温装置人口ドレン弁50と、減温装置出口ド
レン弁51とは全閉になる。その後、燃焼器3へ蒸気を
噴射するために蒸気噴射流量調整弁39の制御が開始さ
れる。このとき蒸気噴射流量止め弁52は全開になる。
After the power generation plant is installed, when the ventilation conditions to the gas turbine 5 are established, the temperature reduction device artificial drain valve 50 and the temperature reduction device outlet drain valve 51 are fully closed. After that, control of the steam injection flow rate regulating valve 39 is started in order to inject steam into the combustor 3. At this time, the steam injection flow stop valve 52 is fully opened.

蒸気噴射流量調整弁39が微開し制御状態に入ると、蒸
気噴射流量調整弁入口ドレン弁53が全開になり、時限
をおいて、蒸気噴射流量調整弁出口ドレン弁54が全閉
になり、燃焼器3への蒸気噴射運転に移行する。
When the steam injection flow rate adjustment valve 39 opens slightly and enters the control state, the steam injection flow rate adjustment valve inlet drain valve 53 becomes fully open, and after a time limit, the steam injection flow rate adjustment valve outlet drain valve 54 fully closes. Shift to steam injection operation to the combustor 3.

(発明が解決しようとする問題点) ところで、蒸気噴射バックアップ系統C1から蒸気を導
入し、ウオーミング運転を行う初期の段階では、加熱度
の低い蒸気が導入されるので、蒸気噴射配管内にドレン
が多く発生し易く、また蒸気噴射配管からの放熱に起因
してドレンが多く発生し易くなる。そのため、従来のド
レン排出系統C3では、これらドレンを充分に排出する
ことができないという問題がある。
(Problems to be Solved by the Invention) By the way, in the initial stage of introducing steam from the steam injection backup system C1 and performing a warming operation, steam with a low degree of heating is introduced, so there is a possibility that drainage may occur in the steam injection piping. A large amount of condensate is likely to be generated, and a large amount of drainage is likely to be generated due to heat radiation from the steam injection piping. Therefore, there is a problem in that the conventional drain discharge system C3 cannot sufficiently discharge these drains.

また、減温装置36内で噴霧される冷却水が少流量の領
域においては、制御特性が悪化してドレンが発生するこ
ともあり、ざらに減温装置36の配置上の制約から冷却
水と蒸気との混合距離が十分に得られなかった場合には
ドレンが発生することもあり、このような場合には、燃
焼器3内にドレンが運ばれてしまい、失火あるいは火炎
温度偏差大となり、安定した燃焼運転特性が得られなく
なり、さらには燃焼器3の破損に繋がるという問題があ
る。
Furthermore, in areas where the cooling water sprayed in the temperature reduction device 36 has a small flow rate, the control characteristics may deteriorate and drainage may occur. If a sufficient distance for mixing with steam is not obtained, drainage may occur, and in such a case, the drainage may be carried into the combustor 3, causing a misfire or a large flame temperature deviation. There is a problem that stable combustion operation characteristics cannot be obtained and furthermore, the combustor 3 may be damaged.

そこで、本発明の目的は、上述した従来の技術が有する
問題点を解消し、発電プラントの起動時において、蒸気
噴射配管系統内に発生するドレンを積極的に排除し、安
定した燃焼運転特性が得られるようにした複合サイクル
発電プラントにおける蒸気噴射系統の制御方法およびそ
の装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the problems of the above-mentioned conventional technology, to actively eliminate condensate generated in the steam injection piping system at the time of startup of a power plant, and to maintain stable combustion operation characteristics. An object of the present invention is to provide a method and apparatus for controlling a steam injection system in a combined cycle power plant.

〔発明の構成〕[Structure of the invention]

(間図点を解決するための手段) 上記目的を達成するために、本発明は、ガスタービン装
置と、このガスタービン装置からの排出ガスを熱源とし
て蒸気を発生させる排熱回収ボイラ装置と、このボイラ
装置により発生する蒸気を駆動源とする蒸気タービン装
置と、上記ガスタービン装置の燃焼器内に燃焼により発
生する窒素酸化物を低減させるための蒸気を噴射する蒸
気噴射配管系統とを備え、上記ガスタービン装置の運転
中に、蒸気噴射配管系統内に上記蒸気タービン装置から
のタービン抽気蒸気及び高圧主蒸気を導入するようにし
た、複合サイクル発電プラントにおける蒸気噴射系統の
制御方法およびその装置において、上記蒸気噴射配管系
統に、外部からの加熱蒸気を蒸気噴射配管内に導入する
ための補助蒸気系統と、蒸気噴射配管内の蒸気からドレ
ンを分離するための気水分離装置を含むドレン強制排出
系統とを設け、上記ガスタービン装置の起動に先立って
、上記補助蒸気系統を動作させ、ここから導入される加
熱蒸気を上記ドレン強制υト出系統から排出させ、蒸気
噴射配管内のドレンを予め排除できるようにしたことを
特徴とするものである。
(Means for solving the problem) In order to achieve the above object, the present invention includes a gas turbine device, an exhaust heat recovery boiler device that generates steam using exhaust gas from the gas turbine device as a heat source, A steam turbine device that uses steam generated by the boiler device as a driving source, and a steam injection piping system that injects steam for reducing nitrogen oxides generated by combustion into the combustor of the gas turbine device, A method and apparatus for controlling a steam injection system in a combined cycle power plant, wherein turbine bleed steam and high-pressure main steam from the steam turbine device are introduced into the steam injection piping system during operation of the gas turbine device. , the above steam injection piping system includes an auxiliary steam system for introducing heated steam from the outside into the steam injection piping, and a forced drain discharge system that includes a steam separation device for separating condensate from the steam in the steam injection piping. Prior to starting up the gas turbine device, the auxiliary steam system is operated to discharge the heated steam introduced from the auxiliary steam system from the forced drain outlet system, and the drain in the steam injection pipe is cleared in advance. It is characterized by being able to be eliminated.

(作 用) 本発明によれば、ガスタービン装置の起動に先立って、
補助蒸気系統が動作されると、ここから蒸気噴射配管内
に加熱蒸気が導入され、この加熱蒸気により発電プラン
トのウオーミングアツプ運転が行われる。この加熱蒸気
はドレン強制排出系統から排出され、蒸気噴射配管内に
滞留するドレンは予め外部へ排除される。また、蒸気噴
射配管内において、気水分離装置によりドレンは蒸気か
ら確実に分離され、この分離動作は発電プラントの運転
中継続して行われる。
(Function) According to the present invention, prior to starting the gas turbine device,
When the auxiliary steam system is operated, heated steam is introduced into the steam injection pipe from the auxiliary steam system, and this heated steam performs warming-up operation of the power generation plant. This heated steam is discharged from the drain forced discharge system, and the drain remaining in the steam injection pipe is previously discharged to the outside. Further, in the steam injection piping, condensate is reliably separated from steam by a steam/water separator, and this separation operation is continuously performed during operation of the power plant.

(実施例) 以下、本発明による複合サイクル発電プラントにおける
蒸気噴射系統の制御方法およびその装置の一実施例を第
1図及び第2図を参照して説明する。なお、第4図で示
したものと同一部分には同一符号を付して示しその説明
を省略する。
(Embodiment) Hereinafter, an embodiment of a method and apparatus for controlling a steam injection system in a combined cycle power plant according to the present invention will be described with reference to FIGS. 1 and 2. Note that the same parts as those shown in FIG. 4 are denoted by the same reference numerals, and the explanation thereof will be omitted.

先ず、蒸気噴射系統の制御装置の一実施例を説明する。First, an embodiment of a control device for a steam injection system will be described.

第1図に示されるように、この複合サイクル発電プラン
トにおける蒸気噴射配管系統Cは、従来のもの(第4図
参照)と同様にして、蒸気噴射バックアップ系統C1と
抽気噴射抽気系統C2とドレン排出系統C3とを備え、
それ以外に、本実施例の特徴として、外部から加熱蒸気
を導入するための補助蒸気系統Pと、気水分離装置55
を含むドレン強制排出系統Qとを備えている。そして、
補助蒸気系統Pは補助蒸気逆止弁57と、補助蒸気元弁
58とを備え、ドレン強制排出系統Qは気水分離装置ド
レン弁59を備えている。
As shown in Figure 1, the steam injection piping system C in this combined cycle power plant consists of a steam injection backup system C1, a bleed air injection bleed system C2, and a drain discharge system, similar to the conventional system (see Figure 4). Equipped with system C3,
Other features of this embodiment include an auxiliary steam system P for introducing heating steam from the outside, and a steam/water separator 55.
It is equipped with a forced drain discharge system Q including: and,
The auxiliary steam system P includes an auxiliary steam check valve 57 and an auxiliary steam source valve 58, and the forced drain discharge system Q includes a steam-water separator drain valve 59.

次に、本実施例の作用を第2図を参照して説明する。Next, the operation of this embodiment will be explained with reference to FIG.

複合サイクル発電プラントの起動に先立って、補助蒸気
元弁58を開き、ウォ・−・ミングアップ用の加熱蒸気
を補助蒸気系統Pから蒸気噴射配管系統C内へ導入する
。このとき、蒸気噴射流量止め弁38は閉じ、この止め
弁38の上流に位置するドレン弁50.51.52及び
59は全て開く。
Prior to starting up the combined cycle power plant, the auxiliary steam source valve 58 is opened to introduce heating steam for warming up from the auxiliary steam system P into the steam injection piping system C. At this time, the steam injection flow stop valve 38 is closed, and all the drain valves 50, 51, 52, and 59 located upstream of this stop valve 38 are opened.

これにより蒸気配管内に滞留しているドレンは全て排出
される。しかも加熱蒸気によりウオーミングアツプされ
ているので、その後、蒸気条件の低い蒸気噴射バックア
ップ系統C1に切替わってもドレンの発生は抑えられる
As a result, all condensate remaining in the steam piping is discharged. Furthermore, since the system is warmed up by heated steam, the generation of condensate can be suppressed even if the system is subsequently switched to the steam injection backup system C1 with lower steam conditions.

高圧主蒸気が規定圧力以上になった場合には、従来のも
の(第5図参照)と同様に、蒸気噴射流量止め弁38の
下流に位置するドレン弁53.54を含めて全てのドレ
ン弁を開き、これと−緒に蒸気噴射流量止め弁38を開
く。
When the high pressure main steam exceeds the specified pressure, all drain valves including the drain valves 53 and 54 located downstream of the steam injection flow stop valve 38, as in the conventional system (see Fig. 5). , and at the same time open the steam injection flow stop valve 38.

発電プラントの併入後、ガスタービン5(第3図参照)
への通気条件が整うと、減温装置人口ドレン弁50と、
減温装置出口ドレン弁51とは全閉になる。その後、燃
焼器3へ蒸気を噴射するために蒸気噴射流量調整弁39
の制御が開始される。
After adding the power plant, gas turbine 5 (see Figure 3)
When the ventilation conditions are established, the detemperature device artificial drain valve 50,
The detemperature device outlet drain valve 51 is fully closed. After that, the steam injection flow rate adjustment valve 39 is used to inject steam into the combustor 3.
control is started.

このとき蒸気噴射流量止め弁52及び気水分離装置ドレ
ン弁59は全閉になる。蒸気噴射流量調整弁39か微開
し制御状態に入ると、蒸気噴射流量調整弁入口トレン弁
53が全閉になり、時限をおいて、蒸気噴射流量調整弁
出口ドレン弁5−4か全閉になり、燃焼器3への蒸気噴
射運転に移行する。
At this time, the steam injection flow stop valve 52 and the steam/water separator drain valve 59 are fully closed. When the steam injection flow rate adjustment valve 39 is slightly opened and enters the control state, the steam injection flow rate adjustment valve inlet drain valve 53 is fully closed, and after a time limit, the steam injection flow rate adjustment valve outlet drain valve 5-4 is fully closed. , and the steam injection operation to the combustor 3 is started.

一方、蒸気噴射運転に移行した後には、燃焼器3へ噴射
される蒸気の温度を制御するため、上述したように冷却
水調整装置44が制御されて、給水ポンプより減温装置
36へ冷却水が供給される。
On the other hand, after shifting to steam injection operation, in order to control the temperature of the steam injected to the combustor 3, the cooling water adjustment device 44 is controlled as described above, and the cooling water is sent from the water supply pump to the temperature reduction device 36. is supplied.

この減温装置36が制御運転されると、ここでもドレン
が発生する。しかしながら、本実施例によれば、ドレン
強制排出系統Qに気水分離装置55が設けられているの
で、ドレンはこの気水分離装置55で分離され、ドレン
トラップ60を介して外部へ排出される。また、この気
水分離装置55を設けたので、蒸気噴射許可用温度検出
器45の信頼性も向上する等の効果が得られる。
When this temperature reduction device 36 is operated in a controlled manner, drainage is also generated here. However, according to this embodiment, since the forced drain discharge system Q is provided with the steam/water separator 55, the drain is separated by the steam/water separator 55 and discharged to the outside via the drain trap 60. . Further, since the steam/water separator 55 is provided, effects such as improved reliability of the steam injection permission temperature detector 45 can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、ガス
タービン装置の燃焼器内に燃焼により発生する窒素酸化
物を低減させるための蒸気を噴射する蒸気噴射配管系統
を備え、この蒸気噴射配管系統に、外部からの加熱蒸気
を蒸気噴射配管内に導入するための補助蒸気系統と、蒸
気噴射配管内の蒸気からドレンを分離するための気水分
離装置を含むドレン強制排出系統とを設け、ガスタービ
ン装置の起動に先立って、補助蒸気系統を動作させ、こ
こから導入される加熱蒸気をドレン強制排出系統から排
出させ、蒸気噴射配管内のドレンを予め排除できるよう
にしたから、蒸気噴射配管系統内に発生するドレンを積
極的に排除することができ、ガスタービン装置の燃焼器
内にドレンが噴射される等の不都合を回避することがで
き、これにより発電プラントの安定した燃焼運転特性を
得ることができる等の効果を奏する。
As is clear from the above description, the present invention includes a steam injection piping system that injects steam for reducing nitrogen oxides generated by combustion into a combustor of a gas turbine device. The system is provided with an auxiliary steam system for introducing heated steam from the outside into the steam injection piping, and a forced drain discharge system including a steam/water separator for separating condensate from the steam in the steam injection piping, Prior to the start-up of the gas turbine equipment, the auxiliary steam system is operated, and the heated steam introduced from this system is discharged from the drain forced discharge system, so that the condensate in the steam injection piping can be removed in advance. It is possible to actively eliminate condensate generated within the system, and it is possible to avoid inconveniences such as condensate being injected into the combustor of the gas turbine equipment, thereby improving the stable combustion operation characteristics of the power plant. It is possible to obtain the following effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による複合サイクル発電プラントの蒸気
噴射系統の制御装置の一実施例を示す系統図、第2図は
同蒸気噴射系統でのドレン弁の開閉のタイミングを示す
線図、第3図は従来の複合サイクル発電プラントの全体
の構成を示す系統図、第4図は同複合サイクル発電プラ
ントの蒸気噴射系統を示す系統図、第5図は同蒸気噴射
系統でのドレン弁の開閉のタイミングを示す線図である
。 1・・・ガスタービン装置、7・・・排熱回収ボイラ、
17・・・蒸気タービン装置、28・・・燃焼器、38
・・・蒸気噴射流量止め弁、3つ・・・蒸気噴射流量調
整弁、50〜54・・・ドレン弁、55・・・気水分離
装置、C・・・蒸気噴射配管系統、C1・・・蒸気噴射
バックアップ系統、C2・・・蒸気噴射抽気系統、C3
・・・ドレン排出系統、P・・・補助蒸気系統、Q・・
・ドレン強制排出系統。 出願人代理人  佐  藤  −雄
FIG. 1 is a system diagram showing an embodiment of the control device for the steam injection system of a combined cycle power plant according to the present invention, FIG. 2 is a diagram showing the timing of opening and closing of the drain valve in the steam injection system, and FIG. Figure 4 is a system diagram showing the overall configuration of a conventional combined cycle power plant, Figure 4 is a system diagram showing the steam injection system of the same combined cycle power plant, and Figure 5 shows the opening and closing of the drain valve in the same steam injection system. FIG. 3 is a diagram showing timing. 1... Gas turbine device, 7... Exhaust heat recovery boiler,
17...Steam turbine device, 28...Combustor, 38
...Steam injection flow rate stop valve, 3...Steam injection flow rate adjustment valve, 50-54...Drain valve, 55...Steam water separation device, C...Steam injection piping system, C1...・Steam injection backup system, C2...Steam injection extraction system, C3
...Drain discharge system, P...Auxiliary steam system, Q...
・Drain forced discharge system. Applicant's agent Mr. Sato

Claims (1)

【特許請求の範囲】 1、ガスタービン装置と、このガスタービン装置からの
排出ガスを熱源として蒸気を発生させる排熱回収ボイラ
装置と、このボイラ装置により発生する蒸気を駆動源と
する蒸気タービン装置と、上記ガスタービン装置の燃焼
器内に燃焼により発生する窒素酸化物を低減させるため
の蒸気を噴射する蒸気噴射配管系統とを備え、上記ガス
タービン装置の運転中に、蒸気噴射配管系統内に上記蒸
気タービン装置からのタービン抽気蒸気及び高圧主蒸気
を導入するようにした複合サイクル発電プラントにおけ
る蒸気噴射系統の制御方法において、上記蒸気噴射配管
系統に、外部からの加熱蒸気を蒸気噴射配管内に導入す
るための補助蒸気系統と、蒸気噴射配管内の蒸気からド
レンを分離するための気水分離装置を含むドレン強制排
出系統とを設け、上記ガスタービン装置の起動に先立っ
て、上記補助蒸気系統を動作させ、ここから導入される
加熱蒸気を上記ドレン強制排出系統から排出させ、蒸気
噴射配管内のドレンを予め排除するようにしたことを特
徴とする複合サイクル発電プラントにおける蒸気噴射系
統の制御方法。 2、ガスタービン装置と、このガスタービン装置からの
排出ガスを熱源として蒸気を発生させる排熱回収ボイラ
装置と、このボイラ装置により発生する蒸気を駆動源と
する蒸気タービン装置と、上記ガスタービン装置の燃焼
器内に燃焼により発生する窒素酸化物等を低減させるた
めの蒸気を噴射する蒸気噴射配管系統とを備えた複合サ
イクル発電プラントにおいて、上記蒸気噴射配管系統は
、蒸気噴射配管内に蒸気タービン装置からの抽気蒸気を
導入する抽気蒸気配管系統と、蒸気噴射配管内に高圧主
蒸気を導入するバックアップ蒸気配管系統と、蒸気噴射
配管内に外部からの加熱蒸気を導入する補助蒸気系統と
、蒸気噴射配管内の蒸気からドレンを分離するための気
水分離装置を含むドレン強制排出系統とを具備したこと
を特徴とする複合サイクル発電プラントにおける蒸気噴
射系統の制御装置。
[Claims] 1. A gas turbine device, an exhaust heat recovery boiler device that generates steam using exhaust gas from the gas turbine device as a heat source, and a steam turbine device that uses the steam generated by the boiler device as a driving source. and a steam injection piping system for injecting steam for reducing nitrogen oxides generated by combustion into the combustor of the gas turbine device, wherein during operation of the gas turbine device, the steam injection piping system In the method for controlling a steam injection system in a combined cycle power plant in which turbine extracted steam and high-pressure main steam from the steam turbine device are introduced, heated steam from the outside is introduced into the steam injection piping system into the steam injection piping system. An auxiliary steam system for introducing the gas turbine, and a forced drain discharge system including a steam/water separator for separating the condensate from the steam in the steam injection piping are provided. A method for controlling a steam injection system in a combined cycle power plant, characterized in that the heated steam introduced therefrom is discharged from the forced drain discharge system, and the drain in the steam injection piping is removed in advance. . 2. A gas turbine device, an exhaust heat recovery boiler device that generates steam using the exhaust gas from the gas turbine device as a heat source, a steam turbine device that uses the steam generated by the boiler device as a driving source, and the gas turbine device In a combined cycle power plant equipped with a steam injection piping system for injecting steam to reduce nitrogen oxides etc. generated by combustion in a combustor, the steam injection piping system has a steam turbine installed in the steam injection piping. An extraction steam piping system that introduces extracted steam from the equipment, a backup steam piping system that introduces high-pressure main steam into the steam injection piping, an auxiliary steam piping system that introduces heated steam from outside into the steam injection piping, 1. A control device for a steam injection system in a combined cycle power plant, comprising: a forced drain discharge system including a steam/water separator for separating condensate from steam in an injection pipe.
JP25920987A 1987-10-14 1987-10-14 Method and apparatus for controlling steam injection system in combined cycle power plant Expired - Lifetime JPH0730685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25920987A JPH0730685B2 (en) 1987-10-14 1987-10-14 Method and apparatus for controlling steam injection system in combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25920987A JPH0730685B2 (en) 1987-10-14 1987-10-14 Method and apparatus for controlling steam injection system in combined cycle power plant

Publications (2)

Publication Number Publication Date
JPH01100303A true JPH01100303A (en) 1989-04-18
JPH0730685B2 JPH0730685B2 (en) 1995-04-10

Family

ID=17330906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25920987A Expired - Lifetime JPH0730685B2 (en) 1987-10-14 1987-10-14 Method and apparatus for controlling steam injection system in combined cycle power plant

Country Status (1)

Country Link
JP (1) JPH0730685B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6626797B2 (en) * 2016-07-29 2019-12-25 三菱日立パワーシステムズ株式会社 Steam injection gas turbine and control method thereof

Also Published As

Publication number Publication date
JPH0730685B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
KR100284392B1 (en) Method of effecting start-up of a cold steam turbine system in a combined cycle plant.
US6945052B2 (en) Methods and apparatus for starting up emission-free gas-turbine power stations
US5148668A (en) Combined gas/steam turbine power station plant
JP4540472B2 (en) Waste heat steam generator
JPH06264763A (en) Combined plant system
EP1069282A2 (en) Dual-pressure steam injection partial-regeneration-cycle gas turbine system
JP5840559B2 (en) Exhaust gas recirculation type gas turbine power plant operating method and exhaust gas recirculation type gas turbine power plant
US8327615B2 (en) Combined cycle powered generating plant having reduced start-up time
JP2000130108A (en) Starting method for combined cycle power plant
US8534038B2 (en) Combined power plant
JPH06323162A (en) Steam-cooled gas turbine power plant
JPH01100303A (en) Control method and device for steam injection system in combined-cycle generating plant
JP4202583B2 (en) Denitration control method and apparatus for combined cycle power plant
JP3518252B2 (en) Closed steam cooled gas turbine combined plant and gas turbine combined plant
JPH0275731A (en) Turbine plant
JP4209060B2 (en) Steam cooling rapid start system
JP2001303974A (en) Combined-cycle generator set
JP2558855B2 (en) Method of operating steam-gas combined cycle power plant and its power plant
JPH0688502A (en) Power generating plant
JP3117392B2 (en) Start-up method of an exhaust gas re-combustion complex plant
JP2708406B2 (en) Startup control method for thermal power plant
TW202012767A (en) Combined cycle power plant
JP2003343213A (en) Combined plant constructed with closed steam cooling gas turbine
JPH1073008A (en) Combined cycle plant and start-stop method thereof
JP3026561B1 (en) Hot water production equipment