JPH07304345A - Four-wheel drive - Google Patents
Four-wheel driveInfo
- Publication number
- JPH07304345A JPH07304345A JP9254594A JP9254594A JPH07304345A JP H07304345 A JPH07304345 A JP H07304345A JP 9254594 A JP9254594 A JP 9254594A JP 9254594 A JP9254594 A JP 9254594A JP H07304345 A JPH07304345 A JP H07304345A
- Authority
- JP
- Japan
- Prior art keywords
- fluid pressure
- drive
- driven
- side fluid
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Arrangement And Driving Of Transmission Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、主原動機の回転駆動力
を前輪及び後輪に伝達するようにした四輪駆動車に係
り、特に駆動力の伝達を流体圧伝動機構で行うようにし
た四輪駆動車に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a four-wheel drive vehicle in which a rotational driving force of a main engine is transmitted to front wheels and rear wheels, and particularly, the driving force is transmitted by a fluid pressure transmission mechanism. It relates to four-wheel drive vehicles.
【0002】[0002]
【従来の技術】この種の四輪駆動車にあっては、パート
タイム式のように手動で二輪駆動と四輪駆動との機械的
な連結を切換える四輪駆動車の場合、その切換え操作が
面倒である他、タイトコーナーブレーキング現象などの
不具合を生じ乗用車には不向きである。これに対してフ
ルタイム式四輪駆動車はタイトコーナーブレーキング現
象は解消できるが、センタデフに差動制限装置が必要と
なり装置が複雑になる。また、パートタイム式及びフル
タイム式にかかわらず現在の乗用車に用いられている駆
動方式ではプロペラシャフトを有することから、これが
前輪駆動車に対する重量の増加、車室内スペースへの悪
影響、燃費の悪化、騒音や振動の悪化をもたらし、後輪
駆動車の場合でも重量増、燃費の悪化を免れない。2. Description of the Related Art In a four-wheel drive vehicle of this type, in the case of a four-wheel drive vehicle in which the mechanical connection between two-wheel drive and four-wheel drive is manually switched like a part-time system, the switching operation is Besides being troublesome, it is not suitable for passenger cars due to problems such as tight corner braking. On the other hand, a full-time four-wheel drive vehicle can eliminate the tight corner braking phenomenon, but it requires a differential limiting device for the center differential, which complicates the device. Further, regardless of the part-time type and the full-time type, since the drive system used in the current passenger cars has a propeller shaft, this increases the weight of the front-wheel drive vehicle, adversely affects the vehicle interior space, and deteriorates fuel efficiency. Noise and vibration are worsened, and even in the case of a rear-wheel drive vehicle, there is an unavoidable increase in weight and fuel consumption.
【0003】そこで、従来、構成部材の重量軽減を図る
目的で、例えば特開平3−224830号公報(以下、
第1従来例と称す)に記載されているように、原動機で
直接的に駆動される前輪と、流体圧で作動するクラッチ
を介して駆動される後輪とを有する四輪駆動車両の動力
伝達装置であって、前記前輪に連動して駆動される第1
流体圧ポンプと、前記後輪に連動して駆動される第2流
体圧ポンプと、前記第1流体圧ポンプの吐出ポートと前
記第2流体圧ポンプの吸入ポートとを連通接続する連結
油路と、この連結油路と前記流体圧クラッチの作動油圧
室とを連通接続する油圧供給油路とを備えた構成を有
し、前輪側及び後輪側の回転速度差による第1流体圧ポ
ンプ及び第2流体圧ポンプの流量差に応じてクラッチを
制御することにより、駆動力の伝達を制御するようにし
た四輪駆動車が提案されている。[0003] Therefore, conventionally, for the purpose of reducing the weight of the constituent members, for example, JP-A-3-224830 (hereinafter, referred to as
Power transmission of a four-wheel drive vehicle having front wheels that are directly driven by a prime mover and rear wheels that are driven via a clutch operated by fluid pressure, as described in the first conventional example). A device, which is driven in association with the front wheels
A fluid pressure pump, a second fluid pressure pump that is driven in conjunction with the rear wheel, and a connecting oil passage that connects the discharge port of the first fluid pressure pump and the suction port of the second fluid pressure pump. A first fluid pressure pump and a first fluid pressure pump due to a difference in rotation speed between the front wheel side and the rear wheel side, and a hydraulic pressure supply oil passage that connects and connects the connecting oil passage and the working hydraulic chamber of the fluid pressure clutch. A four-wheel drive vehicle has been proposed in which the transmission of driving force is controlled by controlling a clutch according to the flow rate difference between two fluid pressure pumps.
【0004】また、プロペラシャフトに代えて油圧伝動
装置を利用して駆動力の伝達を行う目的で、例えば特開
平1−223030号公報(以下、第2従来例と称す)
に記載されているように、前輪と連動回転し、回転速度
に応じた油圧を発生する例えばベーンポンプで構成され
る第1の油圧ポンプと、後輪と連動回転し、回転速度に
応じた油圧を発生する同様にベーンポンプで構成される
第2の油圧ポンプと、前記第1,第2の油圧ポンプの一
方の吐出口と他方の吸込口とを夫々連通する油路とを備
えた構成を有するものが提案されている。Further, for the purpose of transmitting a driving force by using a hydraulic power transmission device instead of a propeller shaft, for example, Japanese Patent Laid-Open No. 1-223030 (hereinafter referred to as a second conventional example).
As described in (1), the first hydraulic pump configured by, for example, a vane pump that rotates in conjunction with the front wheels and generates oil pressure according to the rotation speed, and the rotation in conjunction with the rear wheels generate oil pressure according to the rotation speed. A configuration having a second hydraulic pump that is similarly formed of a vane pump and an oil passage that connects one of the discharge ports of the first and second hydraulic pumps and the other suction port, respectively. Is proposed.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記第
1従来例の四輪駆動車にあっては、伝達トルクを制限す
ることにより、プロペラシャフトを軽量化することはで
きるが、プロペラシャフトを省略することはできないの
で、軽量化には一定の限度があり、また車室内スペース
への悪影響に対しては全く改善することができないとい
う未解決の課題がある。However, in the four-wheel drive vehicle of the first conventional example, the propeller shaft can be reduced in weight by limiting the transmission torque, but the propeller shaft is omitted. Therefore, there is an unsolved problem that the weight reduction has a certain limit, and the adverse effect on the vehicle interior space cannot be improved at all.
【0006】また、第2従来例の四輪駆動車にあって
は、油圧伝動装置を利用しているので、プロペラシャフ
トを省略して軽量化、車室内スペースの確保、燃費の向
上、騒音や振動の低下等を図ることができるが、高速走
行時には前後輪が共に高速回転することにより、油圧ポ
ンプの吐出流量が多くなり、これによって配管抵抗が増
大し、そのためシステムの引きずり抵抗が増大して圧力
損失が増大することにより、燃費の悪化を招く他、シス
テムにおける油温の上昇や第2の油圧ポンプの吸入口で
作動油の吸込みが追いつかなくなり圧力が異常に低下す
ることにより気泡が発生するキャビテーションを起こし
易くなるという未解決の課題がある。ここで、流量増大
時の配管抵抗を減じるには配管を大径化すればよいが、
スペースやコスト等を考えるとそれにも一定の限度があ
る。In addition, in the four-wheel drive vehicle of the second conventional example, since the hydraulic transmission is used, the propeller shaft is omitted and the weight is reduced, the vehicle interior space is secured, the fuel consumption is improved, and noise and noise are reduced. Although vibration can be reduced, the front and rear wheels both rotate at high speed during high-speed travel, which increases the discharge flow rate of the hydraulic pump, which increases pipe resistance, which increases drag resistance of the system. The increase in pressure loss causes deterioration of fuel consumption, and also causes bubbles due to an increase in oil temperature in the system and an abnormal decrease in pressure because the suction of hydraulic oil cannot catch up at the suction port of the second hydraulic pump. There is an unsolved problem that cavitation is likely to occur. Here, in order to reduce the piping resistance when the flow rate increases, the diameter of the piping should be increased,
Considering space and cost, there is a certain limit.
【0007】このような高速走行時の燃費悪化を抑制す
るために、図12に示すように、駆動側の第1の油圧ポ
ンプを可変容量化し、その流量特性を特性曲線L11で示
すように四輪駆動状態を必要としない高速走行時に相当
する回転数NF2で流量を頭打ちにさせて最大流量Q1MAX
に制限したり、従動側の第2の油圧ポンプも可変容量化
して、その流量特性を特性曲線L12で示すように最大流
量Q1MAXより高い最大流量Q2MAXに制限することが考え
られるが、このような流量特性をもたせた場合トルクを
伝達させるためには、第1の油圧ポンプ流量が第2の油
圧ポンプ流量を上回る必要があるが従動側の第2の油圧
ポンプ流量が駆動側となる第1の油圧ポンプの最大流量
Q2MAXに達した回転数NR1で最大伝達トルクは、図12
で特性曲線L13で示すように、急激に減少するため運転
者に違和感を与える可能性があるという新たな課題を生
じる。In order to suppress such deterioration of fuel consumption during high-speed traveling, as shown in FIG. 12, the first hydraulic pump on the drive side has a variable capacity, and its flow rate characteristic is represented by a characteristic curve L 11. Maximum flow rate Q 1MAX with flow rate peaked at a rotation speed N F2 equivalent to high-speed running that does not require four-wheel drive
It is conceivable to limit the flow rate characteristic to a maximum flow rate Q 2MAX higher than the maximum flow rate Q 1MAX as shown by a characteristic curve L 12 by limiting the flow rate characteristic to the second hydraulic pump on the driven side and changing the second hydraulic pump to a variable capacity. In order to transmit the torque when such a flow rate characteristic is provided, the first hydraulic pump flow rate needs to exceed the second hydraulic pump flow rate, but the second hydraulic pump flow rate on the driven side becomes the drive side. The maximum transmission torque at the rotational speed N R1 when the maximum flow rate Q 2MAX of the first hydraulic pump is reached is shown in FIG.
Then, as indicated by the characteristic curve L 13 , there is a new problem that the driver may feel uncomfortable due to the rapid decrease.
【0008】そこで、本発明は、上記従来例の未解決の
課題に着目してなされたものであり、最大伝達トルクを
緩やかに低下させて運転者に違和感を生じさせることな
く高速走行時の燃費悪化を抑制することができる四輪駆
動車を提供することを目的としている。Therefore, the present invention has been made by paying attention to the unsolved problem of the above-mentioned conventional example, and the maximum transmission torque is gently reduced to reduce the fuel consumption at high speed without causing the driver to feel uncomfortable. It is an object of the present invention to provide a four-wheel drive vehicle that can suppress deterioration.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る四輪駆動車は、主原動機により駆動
される駆動車軸と、該駆動車軸に連動して駆動される駆
動側流体圧駆動手段と、従動車軸に連動して駆動される
従動側流体圧駆動手段とを有し、前記駆動側流体圧駆動
手段及び従動側流体圧駆動手段を互いの吐出口と吸込口
とを連通する流路を設けて流体圧伝動機構を構成し、前
記駆動側流体圧駆動手段の流量を前記従動側流体圧駆動
手段の流量以下に設定した四輪駆動車において、前記従
動側流体圧駆動手段の容量が最大伝達トルクを低下させ
始める第1の回転数より容量を減少させ、且つ前記駆動
側流体圧駆動手段の流量を伝達トルクの必要のなくなる
第2の回転数で最大値となるように設定されていること
を特徴としている。In order to achieve the above-mentioned object, a four-wheel drive vehicle according to a first aspect of the present invention comprises a drive axle driven by a main motor and a drive side driven in conjunction with the drive axle. A fluid pressure drive means and a driven side fluid pressure drive means that is driven in conjunction with a driven axle, wherein the drive side fluid pressure drive means and the driven side fluid pressure drive means are provided with a discharge port and a suction port of each other. In a four-wheel drive vehicle in which a fluid pressure transmission mechanism is configured by providing a flow path communicating with each other, and the flow rate of the drive side fluid pressure drive means is set to be equal to or less than the flow rate of the driven side fluid pressure drive means, the driven side fluid pressure drive The capacity of the means reduces the capacity from the first rotational speed at which the maximum transmission torque starts to decrease, and the flow rate of the drive side fluid pressure drive means becomes the maximum value at the second rotational speed at which transmission torque is not required. Is set to
【0010】また、請求項2に係る四輪駆動車は、主原
動機により駆動される駆動車軸と、該駆動車軸に連動し
て駆動される駆動側流体圧駆動手段と、従動車軸に連動
して駆動される従動側流体圧駆動手段とを有し、前記駆
動側流体圧駆動手段及び従動側流体圧駆動手段を互いの
吐出口と吸込口とを連通する流路を設けて流体圧伝動機
構を構成し、前記駆動側流体圧駆動手段の流量を前記従
動側流体圧駆動手段の流量以下に設定した四輪駆動車に
おいて、前記従動側流体圧駆動手段の容量が最大伝達ト
ルクを低下させ始める第1の回転数より容量を減少さ
せ、且つ前記駆動側流体圧駆動手段の流量を前記従動側
流体圧駆動手段の容量特性に合わせて第1の回転数より
高い回転数より容量を減少させ、さらに伝達トルクの必
要のなくなる第2の回転数で最大値となるように設定さ
れていることを特徴としている。According to another aspect of the present invention, there is provided a four-wheel drive vehicle having a drive axle driven by a main motor, a drive side fluid pressure drive means driven in conjunction with the drive axle, and a driven axle. A driven-side fluid pressure driving means to be driven, and a fluid-pressure transmission mechanism is provided by providing a flow path that connects the driving-side fluid pressure driving means and the driven-side fluid pressure driving means to each other's discharge port and suction port. In a four-wheel drive vehicle configured such that the flow rate of the drive side fluid pressure drive means is set to be equal to or less than the flow rate of the driven side fluid pressure drive means, the capacity of the driven side fluid pressure drive means starts decreasing the maximum transmission torque. The capacity is reduced from the number of revolutions of 1, and the capacity is reduced from the number of revolutions higher than the first number of revolutions in accordance with the flow rate of the drive side fluid pressure drive means in accordance with the capacity characteristic of the driven side fluid pressure drive means. The second, which eliminates the need for transmission torque It is characterized in that it is set to be the maximum value in a converter number.
【0011】さらに、請求項3に係る四輪駆動車は、主
原動機により駆動される駆動車軸と、該駆動車軸に連動
して駆動される駆動側流体圧駆動手段と、従動車軸に連
動して駆動される従動側流体圧駆動手段とを有し、前記
駆動側流体圧駆動手段及び従動側流体圧駆動手段を互い
の吐出口と吸込口とを高圧側流路及び低圧側流路で連通
して流体圧伝動機構を構成し、前記駆動側流体圧駆動手
段の流量を前記従動側流体圧駆動手段の流量以下に設定
した四輪駆動車において、前記従動側流体圧駆動手段の
容量が最大伝達トルクを低下させ始める第1の回転数よ
り容量を減少させ、且つ前記駆動側流体圧駆動手段の流
量を伝達トルクの必要のなくなる第2の回転数で最大値
となるように設定すると共に、前記高圧流路及び低圧流
路間に開弁圧を前記第1の回転数及び第2の回転数間で
回転数の増加に対して減少させるリリーフ弁を介挿した
ことを特徴としている。Further, in the four-wheel drive vehicle according to a third aspect of the present invention, the drive axle driven by the main prime mover, the drive side fluid pressure drive means driven in conjunction with the drive axle, and the driven axle are interlocked. Driven side fluid pressure driving means, and the driving side fluid pressure driving means and the driven side fluid pressure driving means communicate with each other's discharge port and suction port through a high pressure side passage and a low pressure side passage. In a four-wheel drive vehicle in which the flow rate of the drive side fluid pressure drive means is set to be equal to or less than the flow rate of the driven side fluid pressure drive means, the capacity of the driven side fluid pressure drive means is maximum transmitted. The capacity is reduced from the first rotational speed at which the torque starts to be reduced, and the flow rate of the drive-side fluid pressure drive means is set to a maximum value at the second rotational speed at which transmission torque is no longer required. Before opening the valve between the high pressure passage and the low pressure passage It is characterized in that interposed a relief valve to reduce with increasing rotational speed between the first speed and the second speed.
【0012】さらにまた、請求項4に係る四輪駆動車
は、主原動機により駆動される駆動車軸と、該駆動車軸
に連動して駆動される駆動側流体圧駆動手段と、従動車
軸に連動して駆動される従動側流体圧駆動手段とを有
し、前記駆動側流体圧駆動手段及び従動側流体圧駆動手
段を互いの吐出口と吸込口とを高圧側流路及び低圧側流
路で連通して流体圧伝動機構を構成し、前記駆動側流体
圧駆動手段の流量を前記従動側流体圧駆動手段の流量以
下に設定した四輪駆動車において、前記従動側流体圧駆
動手段の容量が最大伝達トルクを低下させ始める第1の
回転数より容量を減少させ、且つ前記駆動側流体圧駆動
手段の流量を伝達トルクの必要のなくなる第2の回転数
で最大値となるように設定し、且つ前記高圧流路及び低
圧流路間に開弁圧を前記第1の回転数及び第2の回転数
間で回転数の増加に対して減少させるリリーフ弁を介挿
すると共に、前記駆動側流体圧駆動手段の吐出圧が前記
リリーフ弁の最大開弁圧より低い設定圧を越えたときに
当該駆動側流体圧駆動手段の吸入量を減少させる吸入量
制限手段を設けたことを特徴としている。Furthermore, a four-wheel drive vehicle according to a fourth aspect of the present invention includes a drive axle driven by a main prime mover, drive side fluid pressure drive means driven in conjunction with the drive axle, and interlocked with a driven axle. Driven side fluid pressure driving means, and the driving side fluid pressure driving means and the driven side fluid pressure driving means communicate with each other's discharge port and suction port through a high pressure side passage and a low pressure side passage. In the four-wheel drive vehicle in which the fluid pressure transmission mechanism is configured to set the flow rate of the drive side fluid pressure drive means to be equal to or less than the flow rate of the driven side fluid pressure drive means, the capacity of the driven side fluid pressure drive means is maximum. The capacity is reduced from the first rotation speed at which the transmission torque starts to be reduced, and the flow rate of the drive side fluid pressure drive means is set to the maximum value at the second rotation speed at which the transmission torque is no longer required, and Before opening the valve opening pressure between the high pressure passage and the low pressure passage A relief valve that reduces the rotation speed between the first rotation speed and the second rotation speed is inserted, and the discharge pressure of the drive-side fluid pressure drive means is greater than the maximum valve opening pressure of the relief valve. It is characterized in that suction amount limiting means for reducing the suction amount of the drive side fluid pressure driving means is provided when the set pressure exceeds a low level.
【0013】なおさらに、請求項5に係る四輪駆動車
は、請求項3又は4に記載の四輪駆動車において前記リ
リーフ弁の開弁圧を第2の回転数において略零となるよ
うに設定したことを特徴としている。また、請求項6に
係る四輪駆動車は、請求項3乃至5の何れかに記載の四
輪駆動車において前記リリーフ弁は、その開弁圧が従動
側流体圧駆動手段と低圧側流路との間に介挿した絞りの
従動側流体圧駆動手段側圧力により開弁圧を制御するよ
うに構成されていることを特徴としている。Furthermore, a four-wheel drive vehicle according to a fifth aspect is the four-wheel drive vehicle according to the third or fourth aspect, wherein the valve opening pressure of the relief valve is substantially zero at the second rotational speed. The feature is that it is set. A four-wheel drive vehicle according to a sixth aspect is the four-wheel drive vehicle according to any one of the third to fifth aspects, wherein the relief valve has a valve opening pressure of a driven fluid pressure drive means and a low pressure side flow passage. It is characterized in that the valve opening pressure is controlled by the pressure on the driven side fluid pressure driving means side of the throttle inserted between and.
【0014】さらに、請求項7に係る四輪駆動車は、請
求項3乃至6の何れかに記載の四輪駆動車において前記
駆動側流体圧駆動手段は、回転数に対する流量特性の異
なる複数のポンプを組み合わせて構成されていることを
特徴としている。Further, a four-wheel drive vehicle according to a seventh aspect is the four-wheel drive vehicle according to any one of the third to sixth aspects, wherein the drive-side fluid pressure drive means has a plurality of different flow rate characteristics with respect to rotation speed. It is characterized by being configured by combining pumps.
【0015】[0015]
【作用】請求項1に係る四輪駆動車においては、主原動
機により駆動される駆動車軸の回転によって駆動側流体
圧駆動手段から回転速度に応じた流量の作動流体が吐出
され、これが一方の連通流路を通じて従動車軸の回転に
よって駆動される従動側流体圧駆動手段の吸込側に供給
され、この従動側流体圧駆動手段から吐出される作動流
体が他方の連通流路を通じて駆動側流体圧駆動手段に戻
される。このとき、駆動車軸及び従動車軸の回転数差が
小さいときには、伝達トルクは殆どなく二輪駆動状態を
維持するが、回転数差が大きくなるに従って、伝達トル
クが大きくなって四輪駆動状態に移行する。このとき、
従動側流体圧駆動手段の容量を、最大伝達トルクを低下
させ始める第1の回転数より減少させ、且つ前記駆動側
流体圧駆動手段の流量を伝達トルクの必要のなくなる第
2の回転数で最大値となるように設定しているので、従
動側流体圧駆動手段が第1の回転数を越えた場合でも、
従動側流体圧駆動手段の流量が駆動側流体圧駆動手段の
最大流量に達するまでは徐々に最大伝達トルクを徐々に
減少させる。In the four-wheel drive vehicle according to the first aspect of the present invention, the rotation of the drive axle driven by the main prime mover causes the drive-side fluid pressure drive means to discharge a working fluid at a flow rate corresponding to the rotational speed, and the one-way communication is established. The working fluid supplied to the suction side of the driven fluid pressure driving means driven by the rotation of the driven axle through the flow passage, and discharged from this driven fluid pressure driving means, drives the fluid pressure driving means through the other communication passage. Returned to. At this time, when the rotational speed difference between the drive axle and the driven axle is small, there is almost no transmission torque and the two-wheel drive state is maintained. However, as the rotational speed difference increases, the transmission torque increases and shifts to the four-wheel drive state. . At this time,
The capacity of the driven-side fluid pressure driving means is reduced from a first rotational speed at which the maximum transmission torque is started to decrease, and the flow rate of the driving-side fluid pressure driving means is maximized at a second rotational speed at which transmission torque is not required. Since the value is set to be a value, even when the driven-side fluid pressure drive means exceeds the first rotation speed,
The maximum transmission torque is gradually reduced until the flow rate of the driven fluid pressure drive means reaches the maximum flow rate of the drive fluid pressure drive means.
【0016】請求項2に係る四輪駆動車においては、上
記請求項1の作用に加えて、駆動側流体圧駆動手段の流
量が従動側流体圧駆動手段の流量特性に合わせて第1の
回転数より高い回転数より容量が減少するため、駆動側
流体圧駆動手段及び従動側駆動手段の流量差を少なくし
て伝達トルクを発生し易くし、最大伝達トルクの急減を
抑制する。In the four-wheel drive vehicle according to the second aspect, in addition to the operation of the first aspect, the flow rate of the drive side fluid pressure drive means is adjusted to the first rotation in accordance with the flow rate characteristic of the driven side fluid pressure drive means. Since the capacity is reduced when the rotational speed is higher than the number, the flow rate difference between the drive side fluid pressure drive means and the driven side drive means is reduced to facilitate the generation of the transmission torque, and the maximum reduction of the transmission torque is suppressed.
【0017】請求項3に係る四輪駆動車においては、請
求項1の作用に加えて、高圧側流路及び低圧側流路間に
介挿したリリーフ弁の開弁圧が第1の回転数に達するま
では所定設定圧を維持するが、第1の回転数及び第2の
回転数間にあっては、回転数の増加に応じて減少し、こ
れによって、駆動側流体圧駆動手段及び従動側流体圧駆
動手段間における高圧側流路の圧力が低下して、第2の
回転数に向かってより滑らかに伝達トルクを減少させ
る。In the four-wheel drive vehicle according to the third aspect, in addition to the action of the first aspect, the opening pressure of the relief valve inserted between the high pressure side flow passage and the low pressure side flow passage has the first rotation speed. The predetermined set pressure is maintained until the temperature reaches the first rotation speed, but the pressure decreases as the rotation speed increases between the first rotation speed and the second rotation speed. The pressure in the high-pressure side passage between the pressure driving means is reduced, and the transmission torque is reduced more smoothly toward the second rotation speed.
【0018】請求項4に係る四輪駆動車においては、請
求項3の作用に加えて、リリーフ弁が開弁状態となる前
に、駆動側流体圧駆動手段の作動流体吸入量が吸入量制
限手段によって制限され、これによって駆動側流体圧駆
動手段の吐出流量が減少することになり、リリーフ弁が
開弁して高圧側流路から低圧側流路に作動油が放出する
場合の作動油の温度上昇を抑制する。In the four-wheel drive vehicle according to the fourth aspect, in addition to the action of the third aspect, before the relief valve is opened, the working fluid intake amount of the drive side fluid pressure drive means is the intake amount limit. Means that the discharge flow rate of the drive side fluid pressure drive means is reduced, and the relief valve opens to release the hydraulic oil from the high pressure side passage to the low pressure side passage. Controls temperature rise.
【0019】請求項5に係る四輪駆動車においては、第
2の回転数に達するとリリーフ弁の開弁圧が略零となっ
て、駆動側流体圧駆動手段及び従動側流体圧駆動手段間
を連通する高圧側流路の圧力がゲージ圧となり、伝達ト
ルクを段差を生じることなく滑らかに零とすることがで
きる。請求項6に係る四輪駆動車においては、従動側流
体圧駆動手段と低圧側流路との間に設けた絞りの従動側
流体圧駆動手段側圧に基づいてリリーフ弁の開弁圧が制
御されるため、別途他のセンサ等を設けずに開弁圧の制
御を行える。In the four-wheel drive vehicle according to the fifth aspect, when the second rotational speed is reached, the valve opening pressure of the relief valve becomes substantially zero, and the drive side fluid pressure drive means and the driven side fluid pressure drive means are connected. The pressure in the high-pressure side flow path communicating with each other becomes a gauge pressure, and the transmission torque can be smoothly zeroed without causing a step. In the four-wheel drive vehicle according to claim 6, the valve opening pressure of the relief valve is controlled based on the driven-side fluid pressure driving means side pressure of the throttle provided between the driven-side fluid pressure driving means and the low-pressure side passage. Therefore, the valve opening pressure can be controlled without separately providing another sensor or the like.
【0020】請求項7に係る四輪駆動車においては、駆
動側流体圧駆動手段が、回転数に対する流量特性の異な
る複数のポンプを組み合わせて構成することにより、単
独では多段回の流量制御が難しいポンプであっても流量
特性を多段回に設定することができる。In the four-wheel drive vehicle according to the seventh aspect, the drive-side fluid pressure drive means is configured by combining a plurality of pumps having different flow rate characteristics with respect to the number of revolutions, so that it is difficult to control the flow rate in multiple stages alone. Even with a pump, the flow rate characteristics can be set in multiple stages.
【0021】[0021]
【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は本発明を前輪駆動車をベースとした四輪駆
動車に適用した場合の第1実施例を示す概略構成図であ
って、図中、1は主原動機としてのエンジンであって、
このエンジン1の回転駆動力が変速機2を介して前輪側
差動装置3に入力され、この差動装置3の出力側に駆動
車軸としての前車軸4を介して前輪5が連結されてい
る。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a first embodiment when the present invention is applied to a four-wheel drive vehicle based on a front-wheel drive vehicle, in which 1 is an engine as a main engine,
The rotational driving force of the engine 1 is input to the front wheel side differential device 3 via the transmission 2, and the front wheels 5 are connected to the output side of the differential device 3 via a front axle 4 as a drive axle. .
【0022】前輪側差動装置3は、デファレンシャギヤ
ケース3aに形成されたリングギヤ3bが変速機2の出
力側に連結されたギヤ2aに噛合されて回転駆動され、
このディファレンシャルギヤケース3a内に形成された
一対のピニオンシャフト3cにピニオン3dが取付けら
れ、これらピニオン3dに一対のサイドギヤ3eが噛合
し、これらサイドギヤ3eに前車軸4が連結されてい
る。The front wheel side differential device 3 is rotationally driven by a ring gear 3b formed in a differential gear case 3a meshing with a gear 2a connected to the output side of the transmission 2.
A pinion 3d is attached to a pair of pinion shafts 3c formed in the differential gear case 3a, a pair of side gears 3e mesh with these pinion 3d, and a front axle 4 is connected to these side gears 3e.
【0023】また、ディファレンシャルギヤケース3a
にリングギヤ3bと並列に形成されたリングギヤ3fが
これに噛合するギヤ3gを介して流体圧ポンプとしての
吸入絞り型ピストンポンプ6の回転軸6aに連結されて
いる。この吸入絞り型ピストンポンプ6は、その吸込口
6bがリザーバタンク7内に配設されたストレーナ7a
に連結されていると共に、低圧流路としての低圧配管8
Lを通じて2位置4ポートの電磁方向切換弁9のタンク
ポートTに接続され、吐出口6cが高圧流路としての高
圧配管8Hを通じて前後進切換用の電磁方向切換弁9の
ポンプポートPに接続されている。Further, the differential gear case 3a
A ring gear 3f formed in parallel with the ring gear 3b is connected to a rotary shaft 6a of a suction throttle piston pump 6 as a fluid pressure pump via a gear 3g meshing with the ring gear 3f. The suction throttle type piston pump 6 has a suction port 6b, which is a strainer 7a having a reservoir tank 7 disposed therein.
Is connected to the low pressure pipe 8 as a low pressure flow path.
It is connected to the tank port T of the two-position four-port electromagnetic directional control valve 9 through L, and the discharge port 6c is connected to the pump port P of the electromagnetic directional control valve 9 for forward / backward switching through the high pressure pipe 8H as a high pressure passage. ing.
【0024】ここで、吸入絞り型ピストンポンプ6は、
回転軸6aの回転方向によって吸入口と吐出口とが入れ
替わることがなく、その吐出流量は、図2で特性曲線L
1 で示すように、前車軸4の回転数が“0”から後述す
る最大伝達トルクが減少し始める後車軸18の回転数N
R1より高い所定値NF1に達するまでの間では、回転数の
増加に比例して比較的大きな増加率で増加し、所定値N
F1以上では回転数の増加に比例して比較的小さな増加率
で増加し、高速走行状態となって四輪駆動状態を必要と
しない前車軸4の回転数NF2で最大吐出流量Q1MAXで飽
和するように設定されている。Here, the suction throttle type piston pump 6 is
The suction port and the discharge port do not interchange depending on the rotation direction of the rotating shaft 6a, and the discharge flow rate is shown by the characteristic curve L in FIG.
As indicated by 1 , the number of revolutions N of the rear axle 18 at which the maximum transmission torque described below starts to decrease from the number of revolutions of the front axle 4 being "0".
Until reaching a predetermined value N F1 higher than R1, it increases at a relatively large rate of increase in proportion to the increase of the rotation speed, and reaches a predetermined value N F1.
The above F1 increases at a relatively small rate of increase in proportion to the increase of the rotational speed, saturated at the maximum discharge flow rate Q 1MAX at a rotational speed N F2 axle 4 before that it does not require a four-wheel drive state becomes faster running state Is set to.
【0025】前後進切換用の電磁方向切換弁9は、ソレ
ノイド9aが非通電状態であるノーマル位置でポンプポ
ートPを出力ポートAに、タンクポートTを出力ポート
Bに夫々連通し、ソレノイド9aが通電状態であるオフ
セット位置でポンプポートPを出力ポートBに、タンク
ポートTを出力ポートAに夫々連通し、出力ポートA及
びBが流体圧ポンプモータとしての斜板型可変容量ポン
プモータ10の吸入・吐出口10a及び10bに接続さ
れており、ノーマル位置で高圧配管8Hの高圧油を可変
容量ポンプモータ10の吸入・吐出口10aに、低圧配
管8Lを吸入・吐出口10bに連通させて回転軸10c
を前進走行時の回転方向例えば左側面からみて時計方向
に回転駆動し、逆にオフセット位置で高圧配管8Hの高
圧油を可変容量ポンプモータ10の吸入・吐出口10b
に、低圧配管8Lを吸入・吐出口10aに連通させて回
転軸10cを前進走行時の回転方向例えば左側面からみ
て反時計方向に回転駆動する。In the electromagnetic directional control valve 9 for switching between forward and reverse, the pump port P communicates with the output port A and the tank port T communicates with the output port B at the normal position where the solenoid 9a is in the non-energized state, and the solenoid 9a is connected. The pump port P communicates with the output port B and the tank port T communicates with the output port A at the offset position in the energized state, and the output ports A and B suction the swash plate type variable displacement pump motor 10 as a fluid pressure pump motor. Connected to the discharge ports 10a and 10b, the high-pressure oil of the high-pressure pipe 8H is connected to the suction / discharge port 10a of the variable displacement pump motor 10 and the low-pressure pipe 8L is connected to the suction / discharge port 10b in the normal position to rotate the rotary shaft. 10c
Is rotationally driven in a forward rotation direction, for example, clockwise as viewed from the left side surface, and conversely, the high pressure oil in the high pressure pipe 8H is sucked and discharged from the variable displacement pump motor 10b at the offset position.
Further, the low-pressure pipe 8L is connected to the suction / discharge port 10a, and the rotary shaft 10c is rotationally driven in the rotation direction during forward traveling, for example, counterclockwise when viewed from the left side surface.
【0026】なお、電磁方向切換弁9は、斜板型可変容
量ポンプモータ10に内蔵され、出力ポートA及びBが
配管を介することなくポンプモータ10の吸入・吐出口
10a及び10bに連結されている。また、電磁方向切
換弁9のソレノイド9aへの通電、ソレノイド9aが図
示しないがシフトレバーで後進を選択したときに、オン
状態となるシフト位置検出スイッチ9bを介して直流電
源9cに接続されることにより、前進走行時には非通電
状態に、後進走行時には通電状態に夫々制御される。The electromagnetic directional control valve 9 is built in the swash plate type variable displacement pump motor 10, and the output ports A and B are connected to the suction / discharge ports 10a and 10b of the pump motor 10 without a pipe. There is. Further, the solenoid 9a of the electromagnetic directional control valve 9 is energized, and the solenoid 9a is connected to the DC power source 9c via the shift position detection switch 9b which is turned on when the reverse lever is selected by the shift lever (not shown). Thus, the vehicle is controlled to be in a non-energized state during forward traveling and to be energized during backward traveling.
【0027】この可変容量ポンプモータ10の流量は、
電磁方向切換弁9のタンクポートT近傍の低圧配管8L
に介挿された差圧検出用オリフィス11の両端に発生す
る差圧で油圧シリンダ12aを含んで構成される可変制
御機構としての斜板可変機構12を制御することによ
り、図2で特性曲線L2 で示すように、後車軸回転数が
最大伝達トルクが減少し始める第1の回転数NR1に達す
るまでの間では回転数の増加に比例して駆動側のピスト
ンポンプ6の増加率より高い増加率で増加して回転数N
R1に達したときに、ピストンポンプ6の最大吐出流量Q
1MAXより低い吐出流量Q21となり、その後回転数の増加
に伴って前述したピストンポンプ6の回転数NF1〜NF2
間の増加率と略等しい比較的低い増加率で増加するよう
に設定されている。The flow rate of the variable displacement pump motor 10 is
Low pressure pipe 8L near the tank port T of the electromagnetic directional control valve 9
By controlling the swash plate variable mechanism 12 as a variable control mechanism configured to include the hydraulic cylinders 12a by the differential pressure generated at both ends of the differential pressure detecting orifice 11 inserted in the characteristic curve L in FIG. As shown by 2 , until the rear axle rotation speed reaches the first rotation speed N R1 at which the maximum transmission torque begins to decrease, it is higher than the increase rate of the drive side piston pump 6 in proportion to the increase in the rotation speed. Rotation speed N increases at an increasing rate
Maximum flow rate Q of piston pump 6 when R1 is reached
The discharge flow rate Q 21 becomes lower than 1MAX , and as the number of revolutions increases thereafter, the number of revolutions N F1 to N F2 of the piston pump 6 described above increases.
It is set to increase at a relatively low rate of increase, which is approximately equal to the rate of increase between.
【0028】ここで、可変容量ポンプモータ10の吐出
流量とピストンポンプ6の吐出流量とは、図2に示すよ
うに、同一車軸回転数に対して可変容量ポンプモータ1
0の吐出流量がピストンポンプ6の吐出流量より多くな
るように固有吐出流量、回転軸に連結されたギヤのギヤ
比が設定され、回転数が“0”から所定値NF2に達する
までの可変容量ポンプモータ10及びピストンポンプ6
の吐出流量差が数%程度に設定することが伝達トルクを
良好に発生させる意味で好ましく、両者の流量差が大き
すぎるとそれだけ伝達トルクを発生しずらくなる。Here, the discharge flow rate of the variable displacement pump motor 10 and the discharge flow rate of the piston pump 6 are, as shown in FIG.
The unique discharge flow rate and the gear ratio of the gear connected to the rotary shaft are set so that the discharge flow rate of 0 is higher than the discharge flow rate of the piston pump 6, and the rotation speed is variable from "0" to a predetermined value N F2. Capacity pump motor 10 and piston pump 6
It is preferable to set the discharge flow rate difference to about several percent in order to satisfactorily generate the transmission torque, and if the flow rate difference between the two is too large, the transmission torque is less likely to be generated.
【0029】また、吸入絞り型ピストンポンプ6の吸込
口6b及び吐出口6c間にトルク制限手段としてのピス
トンポンプ6の吐出圧の上限を定めるリリーフ弁13が
介挿されていると共に、油圧ポンプ6及び電磁方向切換
弁9間における高圧配管8H及び低圧配管8L間を連通
する連通配管14Aに低圧配管8L側から高圧配管8H
側への流体流れを許容する逆止弁15が介挿されている
と共に、連通配管14Aと並列に配設された連通配管1
4Bに逆止弁15と並列関係に固定オリフィス16が接
続されている。Further, a relief valve 13 for defining the upper limit of the discharge pressure of the piston pump 6 as a torque limiting means is interposed between the suction port 6b and the discharge port 6c of the suction throttle type piston pump 6, and the hydraulic pump 6 is also provided. And the high-pressure pipe 8H from the low-pressure pipe 8L side to the communication pipe 14A that communicates between the high-pressure pipe 8H and the low-pressure pipe 8L between the electromagnetic direction switching valves 9.
A communication pipe 1 in which a check valve 15 that allows a fluid flow to the side is inserted and is arranged in parallel with the communication pipe 14A.
A fixed orifice 16 is connected to 4B in parallel relationship with the check valve 15.
【0030】一方、斜板型可変容量ポンプモータ10の
回転軸10cにギヤ10dが取付けられ、このギヤ10
dに後輪側差動装置17のディファレンシャルギヤケー
ス17aに形成されたリングギヤ17bが噛合されてい
る。この後輪側差動装置17は、前述した前輪側差動装
置3と略同様の構成を有し、ディファレンシャルギヤケ
ース17a内に形成された一対のピニオンシャフト17
cにピニオン17dが取付けられ、これらピニオン17
dに一対のサイドギヤ17eが噛合し、これらサイドギ
ヤ17eに後車軸18が連結され、この後車軸18に後
輪19が連結されている。On the other hand, a gear 10d is attached to the rotary shaft 10c of the swash plate type variable displacement pump motor 10.
A ring gear 17b formed in a differential gear case 17a of the rear wheel side differential device 17 is meshed with d. The rear wheel side differential device 17 has a configuration similar to that of the front wheel side differential device 3 described above, and a pair of pinion shafts 17 formed in the differential gear case 17a.
pinion 17d is attached to c, and these pinion 17
A pair of side gears 17e meshes with d, a rear axle 18 is connected to these side gears 17e, and a rear wheel 19 is connected to this rear axle 18.
【0031】次に、上記実施例の動作を説明する。今、
車両が乾燥路面等の高摩擦係数路で停車して、エンジン
1がアイドリング状態にある制動状態で、前進走行を開
始する場合には、シフトレバーを前進走行側に切換える
ことにより、発進可能状態とすることができるが、この
とき後進走行側のシフト位置検出スイッチ9bはオフ状
態を維持するため、前後進切換用電磁方向切換弁9のソ
レノイド9aは非通電状態を維持して、切換位置が図1
に示すノーマル位置を継続する。この状態で、ブレーキ
ペダルを解放してアクセルペダルを踏込むことにより、
エンジン1の回転力が変速機2を介して前輪側差動装置
3に伝達され、この前輪側作動装置3で前輪5を前進方
向に回転駆動することにより、前進を開始する。Next, the operation of the above embodiment will be described. now,
When the vehicle stops on a high friction coefficient road such as a dry road surface and starts forward traveling in a braking state in which the engine 1 is in an idling state, by switching the shift lever to the forward traveling side, the vehicle can be started. However, at this time, the shift position detection switch 9b on the reverse traveling side is maintained in the OFF state, so that the solenoid 9a of the forward / reverse switching electromagnetic directional control valve 9 is maintained in the non-energized state, and the switching position is changed. 1
Continue the normal position shown in. In this state, release the brake pedal and step on the accelerator pedal,
The rotational force of the engine 1 is transmitted to the front wheel side differential device 3 via the transmission 2, and the front wheel side actuating device 3 rotationally drives the front wheels 5 in the forward direction to start the forward movement.
【0032】このとき、吸入絞り型ピストンポンプ6の
回転軸6aが左側面からみて時計方向に回転駆動される
ことにより、このピストンポンプ6から回転速度に応じ
た吐出流量の作動油が吐出され、これが高圧配管8Hを
介し、前後進切換用電磁方向切換弁9を介して斜板型可
変容量ポンプモータ10の吸入・吐出口10aに供給さ
れるが、車両の発進により後輪19も前輪5と同方向に
同一回転速度で回転駆動されるので、後輪側差動装置1
7を介して斜板型可変容量ポンプモータ10の回転軸1
0cが左側面からみて時計方向に回転し、これによって
吸入・吐出口10aから作動油が吸入され、吸入・吐出
口10bから作動油が吐出される。At this time, the rotary shaft 6a of the suction throttle type piston pump 6 is rotationally driven in the clockwise direction as viewed from the left side surface, so that the piston pump 6 discharges hydraulic oil at a discharge flow rate according to the rotational speed. This is supplied to the suction / discharge port 10a of the swash plate type variable displacement pump motor 10 through the high-pressure pipe 8H and the forward / reverse switching electromagnetic directional switching valve 9, but the rear wheel 19 and the front wheel 5 are connected to each other when the vehicle starts. Since it is driven to rotate in the same direction at the same rotation speed, the rear wheel side differential device 1
Rotating shaft 1 of swash plate type variable displacement pump motor 10
0c rotates clockwise as viewed from the left side surface, whereby the working oil is sucked from the suction / discharge port 10a and the working oil is discharged from the suction / discharge port 10b.
【0033】ここで、吸入絞り型ピストンポンプ6と斜
板型可変容量ポンプモータ10の吐出流量は、図2に示
すように、同一回転数では、可変容量ポンプモータ10
の吐出流量が常にピストンポンプ6に比較して多くなる
ように設定されているので、ピストンポンプ6から吐出
された高圧作動油は可変容量ポンプモータ10により吸
い込まれてしまうため、高圧配管8Hの圧力は上がらな
い。即ち、可変容量ポンプモータ10は油圧モータとし
て作用せず後輪19に駆動力が伝達されることはなく、
前輪駆動車と同様な状態で前進走行する。このとき、可
変容量ポンプモータ10の吸入流量は、ピストンポンプ
6の吐出流量を上回ることになるため、不足分は低圧配
管8L、連通配管14A、逆止弁15を介して補給され
る。Here, the discharge flow rates of the suction throttle type piston pump 6 and the swash plate type variable displacement pump motor 10 are, as shown in FIG.
Since the discharge flow rate of the high pressure hydraulic fluid is set to be always larger than that of the piston pump 6, the high pressure hydraulic oil discharged from the piston pump 6 is sucked by the variable displacement pump motor 10, so that the pressure of the high pressure pipe 8H is reduced. Does not go up. That is, the variable displacement pump motor 10 does not act as a hydraulic motor and the driving force is not transmitted to the rear wheel 19,
It travels forward in the same manner as a front-wheel drive vehicle. At this time, since the suction flow rate of the variable displacement pump motor 10 exceeds the discharge flow rate of the piston pump 6, the shortage is replenished via the low pressure pipe 8L, the communication pipe 14A, and the check valve 15.
【0034】このピストンポンプ6及び可変容量ポンプ
モータ10の吐出流量差は、タイヤの摩耗による径変化
などにより生じる前後車軸4,18の回転数差を許容す
ることにもなり、異径タイヤで生じる回転数差程度では
駆動力は伝達されず、前輪駆動車状態が維持され、燃費
を悪化させることを抑制することができる。次に、凍結
路、降雪路等の低摩擦係数路で発進する場合には、前述
したように、先ず前輪5が回転駆動されるが、低摩擦係
数路であるため、前輪5がスリップして、前輪5及び後
輪19との間に前輪5が高回転数となる回転数差が生じ
て、吸入絞り型ピストンポンプ6の吐出流量が斜板型可
変容量ポンプモータ10の吐出流量を上回ることになる
と、可変容量ポンプモータ10の抵抗が負荷となり高圧
配管8Hの作動油圧が上昇することになるため、可変容
量ポンプモータ10が油圧モータとして作動することな
って、高圧配管8Hの圧力に応じた駆動力が後輪側差動
装置17を介して後輪19に伝達される。The difference in the discharge flow rate between the piston pump 6 and the variable displacement pump motor 10 also allows a difference in the number of rotations of the front and rear axles 4 and 18 caused by a diameter change due to wear of the tire, and occurs in a tire having a different diameter. The driving force is not transmitted when the rotational speed difference is about the same, the front-wheel drive vehicle state is maintained, and it is possible to suppress deterioration of fuel consumption. Next, when the vehicle starts on a low friction coefficient road such as an icy road or a snowfall road, the front wheels 5 are first driven to rotate as described above, but since the road is a low friction coefficient road, the front wheels 5 slip. , The front wheel 5 and the rear wheel 19 have a high rotational speed difference between the front wheel 5 and the rear wheel 19, and the discharge flow rate of the suction throttle type piston pump 6 exceeds the discharge flow rate of the swash plate type variable displacement pump motor 10. Then, the resistance of the variable displacement pump motor 10 becomes a load, and the operating oil pressure of the high-pressure pipe 8H rises. Therefore, the variable displacement pump motor 10 operates as a hydraulic motor, and the pressure of the high-pressure pipe 8H is adjusted accordingly. The driving force is transmitted to the rear wheel 19 via the rear wheel side differential device 17.
【0035】すなわち、後輪19側に伝達されるトルク
は、図3に示すように、前後輪にある回転数差が生じて
初めて発生し、回転数差の増大と共に急増し、リリーフ
弁13による圧力制限によって最大トルクTMAX が規制
されることになる。このトルク制限作用により、後輪側
差動装置17、ドライブシャフトなどの構成部材の強度
を従来の四輪駆動車に比べて下げることが可能となり、
重量、燃費、コストの低減を図ることができる。That is, as shown in FIG. 3, the torque transmitted to the rear wheel 19 side is generated only when there is a difference in the number of rotations between the front and rear wheels, and rapidly increases with an increase in the difference in the number of rotations. The pressure limit limits the maximum torque T MAX . Due to this torque limiting action, it becomes possible to reduce the strength of the components such as the rear wheel differential device 17 and the drive shaft, as compared with the conventional four-wheel drive vehicle.
Weight, fuel consumption, and cost can be reduced.
【0036】また、後輪19側に伝達されるトルクは、
図3に示すように、低速時ほど少ない回転数差で駆動力
を発生し易い特性を有し、これは図2に示すように、吸
入絞り型ピストンポンプ6と斜板型可変容量ポンプモー
タ10の吐出流量特性の固有域における流量が、車輪速
がVR1に達するまでの間で車輪速が高いほどその流量差
が大きくなることにより起因している。The torque transmitted to the rear wheel 19 side is
As shown in FIG. 3, it has a characteristic that a driving force is easily generated with a smaller rotational speed difference at lower speeds. As shown in FIG. 2, this is due to the suction throttle piston pump 6 and the swash plate type variable displacement pump motor 10. This is because the flow rate in the proper range of the discharge flow rate characteristic is that the flow rate difference increases as the wheel speed increases until the wheel speed reaches V R1 .
【0037】一方、図2に示すように、斜板型可変容量
ポンプモータ10の容量は、後輪車輪速VR がVR1即ち
後輪回転数が第1の回転数NR1に達した後には徐々に減
少し、このため、最大伝達トルクも図2で特性曲線L3
で示すように、車輪速が増加するにしたがって減少する
ことになり、後輪車輪速VR が所定値VR2即ち後輪車軸
回転数NR が第2の回転数NR2に達すると、可変容量ポ
ンプモータ10の吐出流量がピストンポンプ6の最大流
量Q1MAXを越えることになって、伝達トルクを発生でき
なくなり、最大伝達トルクが零となる。On the other hand, as shown in FIG. 2, the swash plate type variable displacement pump motor 10 has a displacement after the rear wheel speed V R reaches V R1, that is, the rear wheel rotational speed reaches the first rotational speed N R1. decreases gradually, Therefore, the characteristic curve L 3 maximum torque transfer in FIG. 2
As shown by, the wheel speed decreases as the wheel speed increases, and when the rear wheel speed V R reaches a predetermined value V R2, that is, the rear wheel axle rotation speed N R reaches the second rotation speed N R2, it changes. Since the discharge flow rate of the displacement pump motor 10 exceeds the maximum flow rate Q 1MAX of the piston pump 6, transmission torque cannot be generated and the maximum transmission torque becomes zero.
【0038】このように、ピストンポンプ6及び可変容
量ポンプモータ10の流量特性を図2の特性曲線L1 及
びL2 のように設定することにより、最大伝達トルクが
車輪速VR1即ち第1の回転数NR1を越えたときに徐々に
低下することになり、従来例のように最大伝達トルクが
急激に低下することを確実に防止することができ、四輪
駆動状態から急激に二輪駆動状態に変化することを抑制
して、運転者に違和感を生じさせることを確実に防止す
ることができる。As described above, by setting the flow rate characteristics of the piston pump 6 and the variable displacement pump motor 10 as shown by the characteristic curves L 1 and L 2 in FIG. 2, the maximum transmission torque is the wheel speed V R1 or the first. It gradually decreases when the number of revolutions N R1 is exceeded, and it is possible to reliably prevent the maximum transmission torque from sharply decreasing as in the conventional example. It is possible to reliably prevent the driver from feeling uncomfortable by suppressing the change to.
【0039】さらに、図3におけるトルクの立ち上がり
は、高圧配管8H及び低圧配管8Lを連通する連通配管
14Bに介挿された固定オリフィス16により高圧配管
8Hから低圧配管8Lへの漏れ量を管理し、圧力の立ち
上がりを変えることで特性を任意に設定可能である。そ
して、オリフィスが有する作動油の粘性変化に伴う温度
特性により高温時に比べて低温時は漏れ量が減り駆動力
が発生し易い特性になるため、四輪駆動車としての機能
を要求される機会の多い冬期に四輪駆動になり易くなる
という利点がある。Further, in the rise of torque in FIG. 3, the amount of leakage from the high pressure pipe 8H to the low pressure pipe 8L is controlled by the fixed orifice 16 inserted in the communication pipe 14B which connects the high pressure pipe 8H and the low pressure pipe 8L. The characteristics can be set arbitrarily by changing the rise of pressure. Due to the temperature characteristics associated with the viscosity change of the hydraulic oil possessed by the orifice, the amount of leakage decreases and the driving force is more likely to be generated at low temperatures than at high temperatures. There is an advantage that it becomes easy to use four-wheel drive in winter.
【0040】次に、車両を後進させる場合には、シフト
レバーを後進位置に切換えることにより、シフト位置検
出スイッチ9bがオン状態となるため、前後進切換用電
磁方向切換弁9のソレノイド9aが通電状態となり、図
4に示すように、切換位置がノーマル位置からオフセッ
ト位置に切換えられ、これによって高圧配管8Hの作動
油を斜板型可変容量ポンプモータ10の吸入・吐出口1
0bに供給し、吸入・吐出口10aから吐出される作動
油を低圧配管8L側に戻すことにより、可変容量ポンプ
モータ10の回転軸10cを前進走行時とは逆転させ
て、後輪19を逆回転させる。このため、後進時におい
ても、駆動力の伝達については前進時と全く同様であ
り、前輪5がスリップして前後車軸4,18にある回転
数差が生じた時のみ高圧配管8Hに圧力が発生し、駆動
力が後輪19に伝達されると共に、前後車軸4,18の
回転数差が小さい場合における斜板型可変容量ポンプモ
ータ10の吸入量不足分は低圧配管8L、連通配管14
A及び逆止弁15を介して補給される。Next, when the vehicle is moved backward, the shift position detection switch 9b is turned on by switching the shift lever to the reverse position, so that the solenoid 9a of the forward-reverse switching electromagnetic directional control valve 9 is energized. As shown in FIG. 4, the switching position is switched from the normal position to the offset position, whereby the working oil in the high-pressure pipe 8H is transferred to the suction / discharge port 1 of the swash plate type variable displacement pump motor 10.
0b, and the working oil discharged from the suction / discharge port 10a is returned to the low-pressure pipe 8L side, whereby the rotary shaft 10c of the variable displacement pump motor 10 is reversed from that during forward traveling, and the rear wheel 19 is reversed. Rotate. Therefore, when the vehicle is moving backward, the transmission of the driving force is exactly the same as when moving forward, and pressure is generated in the high-pressure pipe 8H only when the front wheel 5 slips and the rotational speed difference between the front and rear axles 4 and 18 occurs. However, when the driving force is transmitted to the rear wheel 19 and the difference in the rotational speeds of the front and rear axles 4 and 18 is small, the insufficient intake amount of the swash plate type variable displacement pump motor 10 is the low pressure pipe 8L and the communication pipe 14.
It is replenished via A and the check valve 15.
【0041】このとき、前輪側の吸入絞り型ピストンポ
ンプ6は、前述したように、回転方向が逆転してもポン
プの吸入口と吐出口とが入れ替わることはないと共に、
前後進切換用電磁方向切換弁9が可変容量ポンプモータ
10に内蔵されているため、高価な高耐圧配管は高圧配
管8Hに使用するだけで済むと共に、リリーフ弁13、
逆止弁15、オリフィス16なども一方向の流れのみに
対応できるように設ければよいので、他の方式のポンプ
を用いた場合に比べて油路構成を極めて簡略化すること
ができる。At this time, as described above, in the suction throttle type piston pump 6 on the front wheel side, the suction port and the discharge port of the pump are not interchanged even if the rotation direction is reversed, and
Since the forward / backward switching electromagnetic directional switching valve 9 is built in the variable displacement pump motor 10, expensive high pressure piping can be used only for the high pressure piping 8H, and the relief valve 13,
Since the check valve 15, the orifice 16 and the like may be provided so as to handle only one direction of flow, the oil passage structure can be extremely simplified as compared with the case of using a pump of another system.
【0042】また、前輪駆動車ベースのアンチスキッド
制御装置装着車においては、制動時に前輪の回転数は後
輪の回転数より小さくなるため、油圧伝達機構による駆
動力は発生されず、アンチスキッド制御装置との干渉を
小さくすることができる利点がある。なお、上記第1実
施例においては、駆動側流体圧駆動手段としての吸入絞
り型ピストンポンプ6の流量特性を図2の特性曲線L1
で示すように、2段折れ線状に設定した場合について説
明したが、これに限定されるものではなく、図2で一点
鎖線図示の特性線L21に示すように、回転数が“0”か
ら所定値NF2までの間で回転数の増加に応じて増加する
特性とすることもでき、要は図2の斜線を施した範囲内
で任意の流量特性を設定することができる。この場合、
ピストンポンプ6と可変容量ポンプモータ10の吐出流
量差が大きすぎると伝達トルクを生じづらくすることに
なるため、現実的には特性線L21より特性曲線L2 側の
範囲内で設定することが好ましい。In a vehicle equipped with an anti-skid control device based on a front-wheel drive vehicle, the rotational speed of the front wheels becomes smaller than the rotational speed of the rear wheels during braking, so that no driving force is generated by the hydraulic transmission mechanism and the anti-skid control is performed. There is an advantage that interference with the device can be reduced. In the first embodiment, the flow characteristic of the suction throttle type piston pump 6 as the drive side fluid pressure driving means is shown by the characteristic curve L 1 in FIG.
As described above, the case where the two-stage polygonal line is set has been described, but the present invention is not limited to this, and as shown by the characteristic line L 21 shown by the alternate long and short dash line in FIG. It is also possible to use a characteristic that increases in accordance with an increase in the number of revolutions up to a predetermined value N F2 . In short, it is possible to set an arbitrary flow rate characteristic within the shaded area in FIG. in this case,
If the difference between the discharge flow rates of the piston pump 6 and the variable displacement pump motor 10 is too large, it will be difficult to generate the transmission torque. Therefore, in reality, it can be set within the range on the characteristic curve L 2 side of the characteristic line L 21. preferable.
【0043】また、上記第1実施例においては、駆動側
流体圧駆動手段として吸入絞り型ピストンポンプ6を適
用した場合について説明したが、これに限定されるもの
ではなく、他の形式の可変容量ポンプを適用することも
でき、さらには、単独のポンプでは図2の特性曲線L1
の流量特性を得ることができない場合には、図4に示す
ように、特性曲線L13で示すように回転数NF1で飽和す
る例えばラジアルピストンポンプと、特性曲線L14で示
すように回転数NF2で飽和するラジアルピストンポンプ
とを前車軸4に並列に接続して、両者の吐出流量を加算
することにより、特性曲線L1 の特性を実現するように
してもよい。In the first embodiment, the case where the suction throttle type piston pump 6 is applied as the drive side fluid pressure drive means has been described, but the present invention is not limited to this and a variable capacity of another type. It is also possible to apply a pump, and furthermore, for a single pump, the characteristic curve L 1 of FIG.
When it is not possible to obtain the flow rate characteristic of, for example, as shown in FIG. 4, a radial piston pump that saturates at a rotation speed N F1 as shown by a characteristic curve L 13 and a rotation speed as shown by a characteristic curve L 14 are shown. The characteristic of the characteristic curve L 1 may be realized by connecting a radial piston pump saturated with N F2 in parallel to the front axle 4 and adding the discharge flow rates of both.
【0044】さらに、上記実施例においては、差圧検出
用オリフィス11の前後の差圧を斜板可変機構12に供
給する場合について説明したが、これに限定されるもの
ではなく、低圧配管8L側に差圧検出用オリフィス11
を介挿した場合には、差圧検出用オリフィス11の出側
の圧力は大気圧となるので、可変容量ポンプ10内のド
レーン圧と同一であるため、図5に示すように、差圧検
出用オリフィス11の高圧側即ち電磁方向切換弁9のタ
ンクポートT側の圧力のみを斜板可変機構12の油圧シ
リンダ12aのヘッドカバー側油圧室12bに導入する
ようにしてもよい。Further, in the above embodiment, the case where the differential pressure before and after the differential pressure detecting orifice 11 is supplied to the swash plate variable mechanism 12 has been described, but the invention is not limited to this, and the low pressure pipe 8L side. Differential pressure detection orifice 11
, The pressure on the outlet side of the differential pressure detection orifice 11 becomes the atmospheric pressure, which is the same as the drain pressure in the variable displacement pump 10. Therefore, as shown in FIG. Only the pressure on the high pressure side of the working orifice 11, that is, the pressure on the tank port T side of the electromagnetic directional control valve 9 may be introduced into the head cover side hydraulic chamber 12b of the hydraulic cylinder 12a of the swash plate variable mechanism 12.
【0045】また、上記第1実施例においては、伝達ト
ルク制限手段としてリリーフ弁13を適用した場合につ
いて説明したが、これに限らず図6に示すように、ピス
トンポンプ6の吐出圧を容量制御圧として入力し、これ
に応じてピストンポンプ6の吸入口6b側の吸入通路の
開度を吐出圧が所定圧以上となったときに小さく制御す
る吸入絞り弁21を設けるようにしてもよく、この場合
にはポンプ吐出流量が規定の圧力以上となるとポンプ吸
入量が減少することにより、ポンプ吐出圧が減少してト
ルク制限を行うことができ、これと同時にリリーフ弁を
用いた場合には連続高負荷使用時に油温上昇を生じる
が、吸入絞り弁21を設けた場合には、吐出流量が減少
することから発熱の抑制を図ることができる。Further, in the first embodiment, the case where the relief valve 13 is applied as the transmission torque limiting means has been described, but the present invention is not limited to this, and as shown in FIG. 6, the discharge pressure of the piston pump 6 is volume-controlled. A suction throttle valve 21 may be provided, which receives the pressure as a pressure and controls the opening of the suction passage on the suction port 6b side of the piston pump 6 to be small when the discharge pressure exceeds a predetermined pressure. In this case, when the pump discharge flow rate exceeds the specified pressure, the pump suction amount decreases, so the pump discharge pressure decreases and it is possible to limit the torque. At the same time, when the relief valve is used, continuous operation is possible. Although the oil temperature rises at the time of high load use, when the intake throttle valve 21 is provided, the discharge flow rate decreases, so that heat generation can be suppressed.
【0046】さらに、上記第1実施例においては、後輪
側差動装置17を設けた場合について説明したが、これ
に限定されるものではなく、図7に示すように、後輪差
動装置17を省略し、これに代えて左右後輪19L,1
9Rの左右車軸18L,18Rに個別に斜板型可変容量
ポンプモータ10L及び10Rを設けるように構成して
もよく、この場合には、旋回時などで左右輪で異なる負
荷となるときに、各可変容量ポンプモータ10L,10
Rで自然にその差に応じた吐出流量差を生じることから
差動装置と同等の差動機能を発揮することができ、この
場合もトルク制限手段としては、図示のリリーフ弁13
でも図6に示す吸入絞り弁21の何れであってもよい。Further, although the case where the rear wheel side differential device 17 is provided has been described in the first embodiment, the present invention is not limited to this, and as shown in FIG. 7, the rear wheel differential device is provided. 17 is omitted, and instead of this, the left and right rear wheels 19L, 1
The 9R left and right axles 18L, 18R may be individually provided with the swash plate type variable displacement pump motors 10L, 10R. In this case, when different loads are applied to the left and right wheels during turning, for example, Variable displacement pump motor 10L, 10
Since the discharge flow rate difference corresponding to the difference naturally occurs in R, the differential function equivalent to that of the differential device can be exerted. In this case also, the relief valve 13 shown in the figure serves as the torque limiting means.
However, any of the suction throttle valves 21 shown in FIG. 6 may be used.
【0047】さらにまた、流体圧ポンプとして回転軸6
aの回転方向にかかわらず吸入口6bと吐出口6cとが
変化しない吸入絞り型ピストンポンプ6を適用した場合
について説明したが、これに限定されるものではなく、
図8に示すように、回転軸30aがギヤ3gに連結され
た油圧ポンプ30の吸込口30b及び吐出口30cに夫
々ポンプポートP及びタンクポートTを接続し、出力ポ
ートA及びBを高圧配管8H及び8Lに接続した前後進
切換用電磁方向切換弁9と同様の前後進切換用電磁方向
切換弁31を設けるようにすれば、前後進で吐出方向が
切り換わるギヤポンプやベーンポンプ等の他の油圧ポン
プを適用することができ、この場合の油圧ポンプは前述
した図1に示す固定容量式や、図8に示すように低圧配
管8Lに介挿された差圧発生用オリフィス32の前後差
圧が入力される油圧シリンダ33aを含む可変機構33
を備えた可変容量式の何れであってもよい。Furthermore, the rotary shaft 6 is used as a fluid pressure pump.
The case where the suction throttle type piston pump 6 in which the suction port 6b and the discharge port 6c do not change regardless of the rotation direction of a is applied has been described, but the present invention is not limited to this.
As shown in FIG. 8, the pump port P and the tank port T are connected to the suction port 30b and the discharge port 30c of the hydraulic pump 30 whose rotary shaft 30a is connected to the gear 3g, and the output ports A and B are connected to the high pressure pipe 8H. And an electromagnetic directional control valve 31 for forward / reverse switching similar to the electromagnetic directional control valve 9 for forward / reverse switching connected to 8L and 8L, another hydraulic pump such as a gear pump or a vane pump whose discharge direction is switched by forward / backward movement. In this case, the hydraulic pump in this case is input with the fixed displacement type shown in FIG. 1 or the differential pressure across the differential pressure generating orifice 32 inserted in the low pressure pipe 8L as shown in FIG. Variable mechanism 33 including hydraulic cylinder 33a
It may be any of the variable capacitance type equipped with.
【0048】また、上記第1実施例においては、駆動側
流体圧駆動手段と従動側流体圧駆動手段とを高圧流路8
H及び低圧流路8Lで連通する場合について説明した
が、これに限定されるものではなく、前後進切換用電磁
方向切換弁9及び31を省略して、高圧流路と低圧流路
とを切り分けない場合でも本発明を適用し得る。次に、
本発明の第2実施例を図9及び図10について説明す
る。In the first embodiment, the drive side fluid pressure drive means and the driven side fluid pressure drive means are connected to the high pressure passage 8.
Although the case where the H and the low pressure passages 8L communicate with each other has been described, the present invention is not limited to this, and the forward / reverse switching electromagnetic directional control valves 9 and 31 are omitted and the high pressure passage and the low pressure passage are separated. The present invention can be applied even when there is no such a case. next,
A second embodiment of the present invention will be described with reference to FIGS.
【0049】この第2実施例は、第2の回転数NR2以上
となったときの伝達トルクの減少をより滑らかに行える
ようにしたものである。すなわち、第2実施例では、図
9に示すように、リリーフ弁13がパイロット作動形リ
リーフ弁13Pで構成され、このリリーフ弁13Pが高
圧配管8H及び低圧配管8L間に連通配管14A及び1
4Bと並列に接続された連通配管14Cの途中に介挿さ
れ、このリリーフ弁13Pのベントポートに差圧検出用
オリフィス11の高圧側即ち電磁方向切換弁9のタンク
ポートT側の圧力でなる斜板型可変容量ポンプモータ1
0の吐出圧がパイロット圧として入力されていることを
除いては、前述した図5の実施例と同様の構成を有し、
図5との対応部分には同一符号を付し、その詳細説明は
これを省略する。In the second embodiment, the transmission torque can be smoothly reduced when the second rotation speed N R2 or more is reached. That is, in the second embodiment, as shown in FIG. 9, the relief valve 13 is composed of a pilot operated relief valve 13P, and the relief valve 13P connects the high pressure pipe 8H and the low pressure pipe 8L to the communication pipes 14A and 1L.
4B, which is inserted in the middle of a communication pipe 14C connected in parallel with the vent port of the relief valve 13P and is formed by the pressure on the high pressure side of the differential pressure detecting orifice 11, that is, on the tank port T side of the electromagnetic directional control valve 9. Plate type variable displacement pump motor 1
Except that a discharge pressure of 0 is input as the pilot pressure, it has the same configuration as the above-described embodiment of FIG.
The parts corresponding to those in FIG. 5 are designated by the same reference numerals, and detailed description thereof will be omitted.
【0050】ここで、パイロット作動形リリーフ弁13
Pの開弁圧は、図10に示すように、斜板型可変容量ポ
ンプモータ10の吐出流量Q2 が吐出流量Q21となる第
1の回転数NR1に達するまでの間は、特性曲線L24で示
すように予め設定されたピストンポンプ6の最大吐出圧
を規制する最大設定圧PRMAXに維持されるが、この状態
から後輪車軸回転数NR が増加すると、これに応じて斜
板型可変容量ポンプモータ10の吐出流量Q2 が特性曲
線L2 に示すように緩やかに上昇すると、これに応じて
差圧検出用オリフィス11の高圧側の圧力が上昇し、こ
れがパイロット圧としてベントポートに供給されるた
め、後輪車軸回転数NR の増加に反比例して減少し、第
2の回転数NR2に達すると最小リリーフ圧PRMINに達
し、第2の回転数NR2以上で最小リリーフ圧PRMINを維
持する。Here, the pilot operated relief valve 13
As shown in FIG. 10, the valve opening pressure of P is a characteristic curve until the discharge flow rate Q 2 of the swash plate type variable displacement pump motor 10 reaches the first rotational speed N R1 at which the discharge flow rate Q 21 is reached. As shown by L 24 , the maximum discharge pressure of the piston pump 6 that is set in advance is maintained at the maximum set pressure P RMAX that regulates the maximum discharge pressure. However, when the rear wheel axle rotation speed N R increases from this state, the slope is correspondingly increased. When the discharge flow rate Q 2 of the plate type variable displacement pump motor 10 gradually rises as shown by the characteristic curve L 2 , the pressure on the high pressure side of the differential pressure detecting orifice 11 rises accordingly, and this is vented as pilot pressure. in order to be supplied to the port, and decreases in inverse proportion to the increase of the rear wheel axle rotation speed N R, reaches the second rotational speed N R2 reaches the minimum relief pressure P RMIN, second rotational speed N R2 or Maintain the minimum relief pressure P RMIN .
【0051】この第2実施例によると、車両が前進走行
又は後進走行を開始して、後輪車軸回転数NR が第1の
回転数NR1に達するまでの間は、パイロット作動形リリ
ーフ弁13Pの開弁圧が最大リリーフ圧PRMAXに設定さ
れていることから、前述した第1実施例と同様に、高摩
擦係数路を走行している状態では前後輪5及び19間に
回転数差を殆ど生じないので、可変容量ポンプ10は油
圧モータとして作動せず、後輪19に駆動力が伝達され
ずに、前輪駆動車と同様な二輪駆動状態を維持し、低摩
擦係数路では、前後輪5及び19間に回転数差を生じる
ことから可変容量ポンプ10が油圧モータとして作動し
て四輪駆動状態に移行し、そのときの最大伝達トルクT
MAX が図10の特性曲線L23で示すように最大リリーフ
圧PRMAXで規制されることになる。According to the second embodiment, the pilot-operated relief valve is operated until the vehicle starts traveling forward or backward and the rear wheel axle rotation speed N R reaches the first rotation speed N R1. Since the valve opening pressure of 13P is set to the maximum relief pressure P RMAX , the rotational speed difference between the front and rear wheels 5 and 19 is the same as in the first embodiment described above when the vehicle is traveling on a high friction coefficient road. Therefore, the variable displacement pump 10 does not operate as a hydraulic motor, the driving force is not transmitted to the rear wheels 19, the two-wheel drive state similar to that of the front wheel drive vehicle is maintained, and the low friction coefficient road Since the rotational speed difference is generated between the wheels 5 and 19, the variable displacement pump 10 operates as a hydraulic motor to shift to the four-wheel drive state, and the maximum transmission torque T at that time is transmitted.
MAX is regulated by the maximum relief pressure P RMAX as shown by the characteristic curve L 23 in FIG.
【0052】ところが、後輪車軸回転数NR が第1の回
転数NR1を越えると、可変容量ポンプモータ10の吐出
流量が設定値Q21を越えることになり、差圧検出用オリ
フィス11の高圧側の圧力が上昇することにより、パイ
ロット作動形リリーフ弁13Pの開弁圧が図10の特性
曲線L24で示すように後輪車軸回転数NR の増加に反比
例して減少することになる。このため、前輪側のピスト
ンポンプ6の吐出側と後輪側の可変容量ポンプモータ1
0の吸入側に接続される前後進切換用電磁方向切換弁9
のポンプポートPとの間を連通する高圧配管8Hの圧力
が制限されることにより、ピストンポンプ6及び可変容
量ポンプモータ10間の伝達トルクTも図10の特性曲
線L23で示すように前述した第1実施例における図2の
特性曲線L3 に比較して伝達トルクTの減少率が大きく
なり、可変容量ポンプモータ10の吐出流量Q2 がピス
トンポンプ6の最大吐出流量Q1MAXに達して伝達トルク
Tを発生できなくなる第2の回転数NR2に達する直前で
略零近傍の値となり、この間の伝達トルクTの減少が滑
らかに行われると共に、第2の回転数NR2に達したとき
に伝達トルクTが急に零となるが、このときの伝達トル
クTの減少量は極めて少ないので、運転者に違和感を与
えることを確実に防止することができる。However, when the rear wheel axle rotational speed N R exceeds the first rotational speed N R1 , the discharge flow rate of the variable displacement pump motor 10 exceeds the set value Q 21 , and the differential pressure detecting orifice 11 is opened. As the pressure on the high pressure side rises, the valve opening pressure of the pilot operated relief valve 13P decreases in inverse proportion to the increase of the rear wheel axle speed N R as shown by the characteristic curve L 24 of FIG. . Therefore, the discharge side of the piston pump 6 on the front wheel side and the variable displacement pump motor 1 on the rear wheel side
Forward / reverse switching electromagnetic directional control valve 9 connected to the suction side of 0
By the pressure of the high-pressure pipe 8H communicating between the pump port P of is limited, the transmission torque T between the piston pump 6 and a variable displacement pump motor 10 is also described above as shown by the characteristic curve L 23 in FIG. 10 As compared with the characteristic curve L 3 of FIG. 2 in the first embodiment, the decrease rate of the transmission torque T becomes large, and the discharge flow rate Q 2 of the variable displacement pump motor 10 reaches the maximum discharge flow rate Q 1MAX of the piston pump 6 and is transmitted. Immediately before reaching the second rotational speed N R2 at which the torque T cannot be generated, the value becomes approximately zero, and the transmission torque T is smoothly reduced during this time, and when the second rotational speed N R2 is reached. The transmission torque T suddenly becomes zero, but the amount of reduction of the transmission torque T at this time is extremely small, so it is possible to reliably prevent the driver from feeling uncomfortable.
【0053】しかも、第1の回転数NR1からパイロット
作動形リリーフ弁13Pの開弁圧が後輪車軸回転数NR
の増加に反比例して減少することにより、ピストンポン
プ6の吐出側及び可変容量ポンプモータ10の吸入側を
前後方向切換用電磁方向切換弁9を介して連通する高圧
配管8Hの最高圧使用範囲が第1の回転数NR1までとな
り、前述した第1実施例のようにリリーフ弁13の開弁
圧が一定であって、最高圧使用範囲が第2の回転数NR2
までとなる場合に比較して最大圧力の作用頻度及び高圧
運転領域を減少させることができ、高圧配管8Hの耐久
性を確保するために必要とされる高耐圧材料の使用や表
面処理などによるコスト増を伴うことなく、低コスト化
を図ることができる。Moreover, the valve opening pressure of the pilot operated relief valve 13P changes from the first rotational speed N R1 to the rear wheel axle rotational speed N R.
By decreasing in inverse proportion to the increase of the maximum pressure, the maximum pressure use range of the high-pressure pipe 8H that connects the discharge side of the piston pump 6 and the suction side of the variable displacement pump motor 10 via the electromagnetic directional control valve 9 for switching the front-rear direction is reduced. Up to the first rotational speed N R1, the valve opening pressure of the relief valve 13 is constant as in the first embodiment described above, and the maximum pressure use range is the second rotational speed N R2.
It is possible to reduce the frequency of action of maximum pressure and the high-pressure operating area compared to the case of up to, and the cost due to the use of high-pressure resistant materials and surface treatment required to secure the durability of the high-pressure pipe 8H. The cost can be reduced without increasing the cost.
【0054】また、可変容量ポンプ10の斜板可変機構
12用の差圧検出オリフィス11の上流側圧力を利用し
てパイロット作動形リリーフ弁13Pの開弁圧を制御す
るようにしているので、別途圧力センサ等を設ける必要
がなく、この分構成を簡略化することができる。さら
に、パイロット作動形リリーフ弁13Pの開弁圧を第2
の回転数NR2に達したときに零即ちゲージ圧となるよう
に設定することにより、第2の回転数NR2以上となった
ときに、伝達トルクTに段差を全く生じることがなく、
四輪駆動状態から二輪駆動状態への移行をより円滑に行
うことができる。Further, since the pressure on the upstream side of the differential pressure detecting orifice 11 for the swash plate variable mechanism 12 of the variable displacement pump 10 is utilized to control the valve opening pressure of the pilot operated relief valve 13P, it is separately provided. Since it is not necessary to provide a pressure sensor or the like, the structure can be simplified by this amount. Further, the valve opening pressure of the pilot operated relief valve 13P is set to the second
When the rotational speed N R2 is reached to zero, that is, the gauge pressure is set, the transmission torque T does not have a step when the second rotational speed N R2 is exceeded.
The transition from the four-wheel drive state to the two-wheel drive state can be performed more smoothly.
【0055】次に、本発明の第3実施例を図11につい
て説明する。この第3実施例は、前述した第2実施例に
おいて、リリーフ弁13Pが開弁状態となったときに、
リリーフ弁13Pを通じて高圧側から低圧側に放出され
る作動油の温度上昇を防止するようにしたものである。
すなわち、第3実施例では、図11に示すように、ピス
トンポンプ6の吐出圧を容量制御圧として入力し、これ
に応じてピストンポンプ6の吸入口6b側の吸入通路の
開度を、吐出圧が前述した第2実施例におけるパイロッ
ト作動形リリーフ弁13Pの最大開弁圧より低い予め設
定された設定圧を越えたときに小さく制御する吸入量制
限手段としての吸入絞り弁40を、ピストンポンプ6の
吸入口6b側に介挿することを除いては前述した第2実
施例を示す図9と同様の構成を有し、図9との対応部分
には同一符号を付しその詳細説明はこれを省略する。Next, a third embodiment of the present invention will be described with reference to FIG. The third embodiment is different from the second embodiment described above when the relief valve 13P is opened.
The temperature rise of the working oil discharged from the high pressure side to the low pressure side through the relief valve 13P is prevented.
That is, in the third embodiment, as shown in FIG. 11, the discharge pressure of the piston pump 6 is input as the displacement control pressure, and the opening degree of the suction passage on the suction port 6b side of the piston pump 6 is discharged accordingly. A piston pump is provided with a suction throttle valve 40 as suction amount limiting means for controlling the pressure to be small when the pressure exceeds a preset set pressure lower than the maximum opening pressure of the pilot operated relief valve 13P in the second embodiment. 6 has the same configuration as that of the second embodiment described above except that it is inserted on the suction port 6b side of FIG. 6, and the parts corresponding to those of FIG. This is omitted.
【0056】この第3実施例によると、車両が前進走行
又は後進走行を開始したときに、後輪車軸回転数NR が
第1の回転数NR1に達するまでの間において、低摩擦係
数路を走行する場合のように、前後輪間に回転数差を生
じて後輪側への伝達トルクTを増加させる際には、ピス
トンポンプ6の吐出流量の増加によって、高圧配管8H
の圧力が上昇し、この圧力がパイロット作動形リリーフ
弁13Pの最大開弁圧PRMAXに達する直前の圧力に達し
たときに、吸入絞り弁40の弁開度が減少されてピスト
ンポンプ6の吐出流量が減少することにより、高圧配管
8Hの内圧の上昇が抑制されることになり、パイロット
作動形リリーフ弁13Pを通じて低圧配管8L側に放出
される流量を抑制することができるので、リリーフ弁1
3Pを通過することによる作動油の温度上昇を確実に防
止することができる。According to the third embodiment, when the vehicle starts to travel forward or backward, the low friction coefficient road is set until the rear wheel axle speed N R reaches the first speed N R1. When a rotational speed difference is generated between the front and rear wheels to increase the transmission torque T to the rear wheels, as in the case of traveling in the vehicle
When the pressure rises and reaches the pressure just before reaching the maximum opening pressure P RMAX of the pilot operated relief valve 13P, the valve opening degree of the suction throttle valve 40 is decreased and the discharge of the piston pump 6 is reduced. Since the increase in the internal pressure of the high pressure pipe 8H is suppressed by the decrease in the flow rate, and the flow rate discharged to the low pressure pipe 8L side through the pilot operated relief valve 13P can be suppressed, the relief valve 1
It is possible to reliably prevent the temperature rise of the hydraulic oil due to passing through 3P.
【0057】なお、上記第2及び第3実施例において
は、差圧検出用オリフィス11の上流側圧力に基づいて
パイロット作動形リリーフ弁13Pの開弁圧を制御する
場合について説明したが、これに限定されるものではな
く、車軸回転数と車速とが比例関係にあることから、自
動変速機のガバナ圧をパイロット作動形リリーフ弁13
のベントポートに供給して開弁圧を制御しても、上記と
同様の作用を得ることができる。また、リリーフ弁とし
て比例電磁式リリーフ弁を適用すると共に、例えば変速
機2の出力軸の回転数に基づいて車速を検出し、この車
速検出値をもとに比例電磁式リリーフ弁の開弁圧を制御
する励磁電流を形成することにより、リリーフ弁の開弁
圧を電気的に制御するようにしてもよく、また車速検出
値に代えて、後輪の車輪速度を車輪速センサで検出し、
この車輪速検出値をもとに比例電磁式リリーフ弁の開弁
圧を制御する励磁電流を形成するようにしてもよい。In the second and third embodiments, the case where the valve opening pressure of the pilot operated relief valve 13P is controlled on the basis of the pressure on the upstream side of the differential pressure detecting orifice 11 has been described. It is not limited, but since the axle speed and the vehicle speed are in a proportional relationship, the governor pressure of the automatic transmission is controlled by the pilot operated relief valve 13
Even if the valve opening pressure is controlled by supplying it to the vent port of the above, the same operation as above can be obtained. Further, a proportional electromagnetic relief valve is applied as the relief valve, and the vehicle speed is detected based on the rotational speed of the output shaft of the transmission 2, for example, and the valve opening pressure of the proportional electromagnetic relief valve is detected based on the detected vehicle speed. By forming an exciting current for controlling, the valve opening pressure of the relief valve may be electrically controlled, and instead of the vehicle speed detection value, the wheel speed of the rear wheel is detected by a wheel speed sensor,
An exciting current for controlling the valve opening pressure of the proportional electromagnetic relief valve may be formed based on the detected wheel speed value.
【0058】さらに、上記第2及び第3実施例において
も、前述した第1実施例と同様に、後輪側作動装置17
を省略して、左右後輪19L,19Rの左右車軸18
L,18Rに個別に斜板型可変容量ポンプモータ10L
及び10Rを設けるように構成することができると共
に、前輪側ポンプ側に前後進切換用電磁方向切換弁を設
けて前後進で吐出方向が切換わるギヤポンプやベーンポ
ンプ等の他の油圧ポンプを適用することもでる。Further, also in the second and third embodiments, the rear wheel side actuating device 17 is used as in the first embodiment described above.
Omitted, the left and right axles 18 of the left and right rear wheels 19L and 19R
Swash plate type variable displacement pump motor 10L separately for L and 18R
And 10R may be provided, and another hydraulic pump such as a gear pump or a vane pump, in which a forward / reverse switching electromagnetic directional control valve is provided on the front wheel side pump side and the discharge direction is switched in forward / backward, is applied. Get out.
【0059】さらにまた、上記第1〜第3実施例におい
ては、前後進切換用電磁方向切換弁9をポンプモータ1
0に内蔵させた場合について説明したが、これに限定さ
れるものではなく、ポンプモータ10の外側に別設する
ようにしてもよい。さらにまた、上記第1〜第3実施例
においては、前輪駆動車をベースとした実施例について
説明したが、これに限らず後輪駆動車をベースとした場
合にも、ポンプ6を後輪側に、ポンプモータ10を前輪
側に配置することで、上記実施例と同様の作用効果を得
ることができる。Furthermore, in the above-described first to third embodiments, the electromagnetic motor directional control valve 9 for switching between forward and reverse is used as the pump motor 1.
Although the case where the pump motor 10 is built in is described above, the present invention is not limited to this, and may be separately provided outside the pump motor 10. Furthermore, in the above-mentioned first to third embodiments, the embodiments based on the front-wheel drive vehicle have been described, but the present invention is not limited to this, and when the rear-wheel drive vehicle is also the base, the pump 6 is mounted on the rear wheel side. In addition, by arranging the pump motor 10 on the front wheel side, it is possible to obtain the same operational effect as that of the above embodiment.
【0060】[0060]
【発明の効果】以上説明したように、請求項1に係る四
輪駆動車によれば、主原動機により駆動される駆動車軸
と、該駆動車軸に連動して駆動される駆動側流体圧駆動
手段と、従動車軸に連動して駆動される従動側流体圧駆
動手段とを有し、前記駆動側流体圧駆動手段及び従動側
流体圧駆動手段を互いの吐出口と吸込口とを連通する流
路を設けて流体圧伝動機構を構成し、前記駆動側流体圧
駆動手段の流量を前記従動側流体圧駆動手段の流量以下
に設定した四輪駆動車において、前記従動側流体圧駆動
手段の容量が最大伝達トルクを低下させ始める第1の回
転数より容量を減少させ、且つ前記駆動側流体圧駆動手
段の流量を伝達トルクの必要のなくなる第2の回転数で
最大値となるように設定する構成としたので、駆動側流
体圧駆動手段の最大流量と従動側流体圧駆動手段の流量
との差が徐々に小さくなるようにすることができ、これ
によって、第1の回転数より回転数が増加したときに、
最大伝達トルクを徐々に低下させて、最大伝達トルクが
急激に低下することを確実に防止することができ、四輪
駆動状態から二輪駆動状態に緩やかに変化させることに
より、運転者に違和感を与えることを確実に防止するこ
とができるという効果が得られる。As described above, according to the four-wheel drive vehicle of the first aspect, the drive axle driven by the main motor and the drive side fluid pressure drive means driven in conjunction with the drive axle. And a driven-side fluid pressure driving means that is driven in conjunction with the driven axle, and a flow path that connects the driving-side fluid pressure driving means and the driven-side fluid pressure driving means to each other's discharge port and suction port. In a four-wheel drive vehicle in which a fluid pressure transmission mechanism is provided and the flow rate of the drive side fluid pressure drive means is set to be equal to or less than the flow rate of the driven side fluid pressure drive means, the capacity of the driven side fluid pressure drive means is A configuration in which the capacity is reduced from the first rotational speed at which the maximum transmission torque starts to be reduced, and the flow rate of the drive-side fluid pressure drive means is set to a maximum value at a second rotational speed at which transmission torque is no longer required. Therefore, the maximum of the drive side fluid pressure drive means Can be the difference between the flow rates and the driven-side fluid pressure driving means to be gradually reduced, thereby, when the rotation speed than the first rotational speed is increased,
The maximum transmission torque can be gradually reduced to prevent the maximum transmission torque from abruptly decreasing, and the driver feels uncomfortable by gently changing from the four-wheel drive state to the two-wheel drive state. This has the effect of reliably preventing this.
【0061】また、請求項2に係る四輪駆動車によれ
ば、主原動機により駆動される駆動車軸と、該駆動車軸
に連動して駆動される駆動側流体圧駆動手段と、従動車
軸に連動して駆動される従動側流体圧駆動手段とを有
し、前記駆動側流体圧駆動手段及び従動側流体圧駆動手
段を互いの吐出口と吸込口とを連通する流路を設けて流
体圧伝動機構を構成し、前記駆動側流体圧駆動手段の流
量を前記従動側流体圧駆動手段の流量以下に設定した四
輪駆動車において、前記従動側流体圧駆動手段の容量
を、最大伝達トルクを低下させ始める第1の回転数より
容量を減少させ、且つ前記駆動側流体圧駆動手段の流量
を前記従動側流体圧駆動手段の容量特性に合わせて第1
の回転数より高い回転数より容量を減少させ、さらに伝
達トルクの必要のなくなる第2の回転数で最大値となる
ように設定する構成としたので、駆動側流体圧駆動手段
と従動側流体圧駆動手段の流量差大きくなることを抑制
して最大伝達トルクの減少変化を緩やかに行うことがで
きるという効果が得られる。According to the four-wheel drive vehicle of the second aspect, the drive axle driven by the main prime mover, the drive side fluid pressure drive means driven in conjunction with the drive axle, and the driven axle are interlocked. And a driven-side fluid pressure driving means that is driven by the above-mentioned method, wherein the driving-side fluid pressure driving means and the driven-side fluid pressure driving means are provided with a flow path that connects the discharge port and the suction port to each other. In a four-wheel drive vehicle that configures a mechanism and sets the flow rate of the drive side fluid pressure drive means to be equal to or less than the flow rate of the driven side fluid pressure drive means, reduces the capacity of the driven side fluid pressure drive means and reduces the maximum transmission torque. The capacity is reduced from the first rotational speed at which the first side is started, and the flow rate of the drive side fluid pressure drive means is adjusted to the first flow rate according to the capacity characteristic of the driven side fluid pressure drive means.
Since the capacity is reduced from the number of revolutions higher than the number of revolutions and the maximum value is set at the second number of revolutions when the transmission torque is not required, the drive side fluid pressure drive means and the driven side fluid pressure are set. The effect that the increase in the flow rate difference of the drive means can be suppressed and the maximum transmission torque can be gradually decreased is obtained.
【0062】さらに、請求項3に係る四輪駆動車によれ
ば、主原動機により駆動される駆動車軸と、該駆動車軸
に連動して駆動される駆動側流体圧駆動手段と、従動車
軸に連動して駆動される従動側流体圧駆動手段とを有
し、前記駆動側流体圧駆動手段及び従動側流体圧駆動手
段を互いの吐出口と吸込口とを高圧側流路及び低圧側流
路で連通して流体圧伝動機構を構成し、前記駆動側流体
圧駆動手段の流量を前記従動側流体圧駆動手段の流量以
下に設定した四輪駆動車において、前記従動側流体圧駆
動手段の容量が最大伝達トルクを低下させ始める第1の
回転数より容量を減少させ、且つ前記駆動側流体圧駆動
手段の流量を伝達トルクの必要のなくなる第2の回転数
で最大値となるように設定すると共に、前記高圧流路及
び低圧流路間に開弁圧を前記第1の回転数及び第2の回
転数間で回転数の増加に対して減少させるリリーフ弁を
介挿した構成としたので、第1の回転数から第2の回転
数までの間における伝達トルクの減少率を大きくして、
第2の回転数における伝達トルクの急激な減少を抑制し
て伝達トルクの減少変化をより滑らかに行うことがで
き、しかも、高圧流路の最大圧の作用頻度を減少させる
と共に、高圧運転領域を狭めることができ、耐久性を確
保するために必要とする高耐圧材料の使用や表面処理な
どによるコスト増を抑制して低コスト化を図ることがで
きるという効果が得られる。Further, according to the four-wheel drive vehicle of the third aspect, the drive axle driven by the main prime mover, the drive side fluid pressure drive means driven in conjunction with the drive axle, and the driven axle are interlocked. Driven side fluid pressure driving means, and the driving side fluid pressure driving means and the driven side fluid pressure driving means are provided with a high pressure side flow path and a low pressure side flow path with respect to each other's discharge port and suction port. In a four-wheel drive vehicle in which a fluid pressure transmission mechanism is configured to communicate with each other and the flow rate of the drive side fluid pressure drive means is set to be equal to or less than the flow rate of the driven side fluid pressure drive means, the capacity of the driven side fluid pressure drive means is The capacity is reduced from the first rotational speed at which the maximum transmission torque starts to be reduced, and the flow rate of the drive-side fluid pressure drive means is set to the maximum value at the second rotational speed at which transmission torque is no longer required. , Open the valve between the high pressure passage and the low pressure passage Since a relief valve that reduces the increase in the rotation speed between the first rotation speed and the second rotation speed is interposed, the first rotation speed and the second rotation speed are reduced. Increase the reduction rate of the transmission torque,
It is possible to suppress a sharp decrease in the transmission torque at the second rotation speed and to more smoothly perform a decrease change in the transmission torque, and further, to reduce the frequency of operation of the maximum pressure in the high-pressure passage and to increase the high-pressure operation region. It is possible to reduce the cost, and it is possible to reduce the cost by suppressing an increase in cost due to the use of a high breakdown voltage material required for ensuring durability and surface treatment.
【0063】さらにまた、請求項4に係る四輪駆動車に
よれば、主原動機により駆動される駆動車軸と、該駆動
車軸に連動して駆動される駆動側流体圧駆動手段と、従
動車軸に連動して駆動される従動側流体圧駆動手段とを
有し、前記駆動側流体圧駆動手段及び従動側流体圧駆動
手段を互いの吐出口と吸込口とを高圧側流路及び低圧側
流路で連通して流体圧伝動機構を構成し、前記駆動側流
体圧駆動手段の流量を前記従動側流体圧駆動手段の流量
以下に設定した四輪駆動車において、前記従動側流体圧
駆動手段の容量が最大伝達トルクを低下させ始める第1
の回転数より容量を減少させ、且つ前記駆動側流体圧駆
動手段の流量を伝達トルクの必要のなくなる第2の回転
数で最大値となるように設定し、且つ前記高圧流路及び
低圧流路間に開弁圧を前記第1の回転数及び第2の回転
数間で回転数の増加に対して減少させるリリーフ弁を介
挿すると共に、前記駆動側流体圧駆動手段の吐出圧が前
記リリーフ弁の最大開弁圧より低い設定圧を越えたとき
に当該駆動側流体圧駆動手段の吸入量を減少させる吸入
量制限手段を設けた構成としたので、請求項3による効
果に加えて、高圧側流路から低圧側流路にリリーフ弁を
通じて放出される作動流体量を抑制して作動流体の温度
上昇を抑制することができるという効果が得られる。Further, according to the four-wheel drive vehicle of the fourth aspect, the drive axle driven by the main prime mover, the drive side fluid pressure drive means driven in conjunction with the drive axle, and the driven axle are provided. Driven-side fluid pressure driving means that are driven in conjunction with each other, and the driving-side fluid pressure driving means and the driven-side fluid pressure driving means have a high-pressure side flow path and a low-pressure side flow path with their mutual discharge ports and suction ports. In a four-wheel drive vehicle in which the flow rate of the drive side fluid pressure drive means is set to be equal to or less than the flow rate of the driven side fluid pressure drive means, the capacity of the driven side fluid pressure drive means First starts to reduce the maximum transmission torque
The capacity is reduced from the number of rotations, and the flow rate of the drive side fluid pressure drive means is set to a maximum value at the second number of rotations at which transmission torque is no longer required, and the high pressure passage and the low pressure passage are provided. A relief valve that reduces the valve opening pressure between the first rotation speed and the second rotation speed with respect to an increase in the rotation speed is interposed, and the discharge pressure of the drive-side fluid pressure drive means is the relief pressure. Since the suction amount limiting means for reducing the suction amount of the drive side fluid pressure driving means is provided when the set pressure lower than the maximum valve opening pressure of the valve is exceeded, in addition to the effect according to claim 3, The effect that the amount of working fluid discharged from the side flow passage to the low pressure side passage through the relief valve can be suppressed and the temperature rise of the working fluid can be suppressed can be obtained.
【0064】また、請求項5に係る四輪駆動車によれ
ば、請求項3及び4の発明において、前記リリーフ弁の
開弁圧を第2の回転数において略零となるように設定し
たので、第2の回転数において駆動側流体圧駆動手段及
び従動側流体圧駆動手段間を連通する高圧側流路の圧力
がゲージ圧となり、伝達トルクを段差を生じることなく
滑らかに零とすることができ、運転者に違和感を全く与
えることなく、四輪駆動状態から二輪駆動状態に移行さ
せることができるという効果が得られる。According to the four-wheel drive vehicle of the fifth aspect, in the inventions of the third and fourth aspects, the valve opening pressure of the relief valve is set to be substantially zero at the second rotational speed. At the second rotation speed, the pressure in the high-pressure side flow path that communicates between the driving-side fluid pressure driving means and the driven-side fluid pressure driving means becomes a gauge pressure, and the transmission torque can be smoothly zeroed without causing a step. Therefore, it is possible to obtain the effect that the four-wheel drive state can be shifted to the two-wheel drive state without giving the driver any discomfort.
【0065】さらに、請求項6に係る四輪駆動車によれ
ば、請求項3〜5の発明において、前記リリーフ弁は、
その開弁圧が従動側流体圧駆動手段と低圧側流路との間
に介挿した差圧検出用オリフィスの従動側流体圧駆動手
段側圧力により開弁圧を制御するように構成したので、
別途車速センサ等の他のセンサを設けることなく、流体
圧回路内にパイロット流路を形成するだけで、容易にリ
リーフ弁の開弁圧を制御することができるという効果が
得られる。Further, according to the four-wheel drive vehicle of the sixth aspect, in the inventions of the third to fifth aspects, the relief valve is
Since the valve opening pressure is configured to control the valve opening pressure by the driven side fluid pressure driving means side pressure of the differential pressure detection orifice inserted between the driven side fluid pressure driving means and the low pressure side passage,
The effect that the valve opening pressure of the relief valve can be easily controlled by forming the pilot flow passage in the fluid pressure circuit without separately providing another sensor such as a vehicle speed sensor.
【0066】またさらに、請求項7に係る四輪駆動車に
よれば、請求項1〜6の発明において、前記駆動側流体
圧駆動手段が、回転数に対する流量特性の異なる複数の
ポンプを組み合わせて構成するようにしているので、流
量特性を単独で多段回に変化させることができないポン
プを使用した場合でも、所望の流量特性を確実に得るこ
とができるという効果が得られる。Further, according to the four-wheel drive vehicle of the seventh aspect, in the invention of the first to sixth aspects, the drive side fluid pressure drive means is a combination of a plurality of pumps having different flow rate characteristics with respect to the rotation speed. Since it is configured, the desired flow rate characteristic can be reliably obtained even when using a pump that cannot change the flow rate characteristic independently in multiple stages.
【図1】本発明の第1実施例を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention.
【図2】第1実施例に適用した吸入絞り型ピストンポン
プ及び斜板型可変容量ポンプモータの吐出流量特性及び
最大伝達トルク特性を示す特性線図である。FIG. 2 is a characteristic diagram showing a discharge flow rate characteristic and a maximum transmission torque characteristic of a suction throttle type piston pump and a swash plate type variable displacement pump motor applied to the first embodiment.
【図3】第1実施例の前後車軸回転数差と伝達トルクと
の関係を示す特性線図である。FIG. 3 is a characteristic diagram showing a relationship between a front-rear axle rotation speed difference and a transmission torque in the first embodiment.
【図4】駆動側流体圧駆動手段として流量特性を多段回
に変化できないポンプを複数使用する場合の流量特性を
示す特性線図である。FIG. 4 is a characteristic diagram showing flow rate characteristics when a plurality of pumps whose flow rate characteristics cannot be changed in multiple stages are used as drive-side fluid pressure driving means.
【図5】可変容量ポンプモータの他の実施例を示す概略
構成図である。FIG. 5 is a schematic configuration diagram showing another embodiment of the variable displacement pump motor.
【図6】トルク制限手段の他の実施例を示す概略構成図
である。FIG. 6 is a schematic configuration diagram showing another embodiment of the torque limiting means.
【図7】差動装置を省略した場合の実施例を示す概略構
成図である。FIG. 7 is a schematic configuration diagram showing an embodiment in which a differential device is omitted.
【図8】流体圧ポンプとして回転方向によって吐出口が
変更される流体圧ポンプを適用した場合の実施例を示す
概略構成図である。FIG. 8 is a schematic configuration diagram showing an embodiment in which a fluid pressure pump whose discharge port is changed depending on a rotation direction is applied as the fluid pressure pump.
【図9】本発明の第2実施例を示す概略構成図である。FIG. 9 is a schematic configuration diagram showing a second embodiment of the present invention.
【図10】第2実施例に適用した吸入絞り型ピストンポ
ンプ及び斜板型可変容量ポンプモータの吐出流量特性、
最大伝達トルク特性、リリーフ圧特性を示す特性線図で
ある。FIG. 10 is a discharge flow rate characteristic of a suction throttle type piston pump and a swash plate type variable displacement pump motor applied to the second embodiment,
It is a characteristic diagram which shows the maximum transmission torque characteristic and relief pressure characteristic.
【図11】本発明の第3実施例を示す概略構成図であ
る。FIG. 11 is a schematic configuration diagram showing a third embodiment of the present invention.
【図12】従来の駆動側油圧ポンプと従動側油圧ポンプ
との流量特性を示す特性線図である。FIG. 12 is a characteristic diagram showing flow rate characteristics of a conventional drive-side hydraulic pump and a driven-side hydraulic pump.
1 エンジン 2 変速機 3 前輪側差動装置 4 前車軸 5 前輪 6 吸込絞り型ピストンポンプ 7 リザーバタンク 8H 高圧配管 8L 低圧配管 9 前後進切換用電磁方向切換弁 10 斜板型可変容量ポンプモータ 11 差圧発生用オリフィス 12 斜板可変機構 13 リリーフ弁 15 逆止弁 16 オリフィス 17 後輪側差動装置 18 後輪車軸 19 後輪 21 吸入絞り弁 10L,10R 斜板型可変容量ポンプモータ 31 前後進切換用電磁方向切換弁 13P パイロット作動形リリーフ弁 40 吸入絞り弁 1 Engine 2 Transmission 3 Front Wheel Differential 4 Front Wheel 5 Front Wheel 6 Suction Throttling Piston Pump 7 Reservoir Tank 8H High Pressure Piping 8L Low Pressure Piping 9 Electromagnetic Directional Change Valve 10 Swash Plate Type Variable Capacity Pump Motor 11 Difference Pressure generating orifice 12 Swash plate variable mechanism 13 Relief valve 15 Check valve 16 Orifice 17 Rear wheel side differential device 18 Rear wheel axle 19 Rear wheel 21 Intake throttle valve 10L, 10R Swash plate type variable displacement pump motor 31 Forward / reverse switching Solenoid directional control valve 13P Pilot operated relief valve 40 Suction throttle valve
───────────────────────────────────────────────────── フロントページの続き (72)発明者 亀ヶ谷 茂 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeru Kamegaya 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd.
Claims (7)
該駆動車軸に連動して駆動される駆動側流体圧駆動手段
と、従動車軸に連動して駆動される従動側流体圧駆動手
段とを有し、前記駆動側流体圧駆動手段及び従動側流体
圧駆動手段を互いの吐出口と吸込口とを連通する流路を
設けて流体圧伝動機構を構成し、前記駆動側流体圧駆動
手段の流量を前記従動側流体圧駆動手段の流量以下に設
定した四輪駆動車において、前記従動側流体圧駆動手段
の容量が最大伝達トルクを低下させ始める第1の回転数
より容量を減少させ、且つ前記駆動側流体圧駆動手段の
流量を伝達トルクの必要のなくなる第2の回転数で最大
値となるように設定されていることを特徴とする四輪駆
動車。1. A drive axle driven by a prime mover,
A drive-side fluid pressure drive means that is driven in conjunction with the drive axle, and a driven-side fluid pressure drive means that is driven in conjunction with the driven axle; and the drive-side fluid pressure drive means and the driven-side fluid pressure. A fluid pressure transmission mechanism is configured by providing the drive means with a flow path that connects the discharge port and the suction port to each other, and the flow rate of the drive side fluid pressure drive means is set to be equal to or less than the flow rate of the driven side fluid pressure drive means. In a four-wheel drive vehicle, the capacity of the driven-side fluid pressure drive means reduces the capacity from the first rotational speed at which the maximum transmission torque starts to decrease, and the flow rate of the drive-side fluid pressure drive means requires the transfer torque. A four-wheel drive vehicle, wherein the four-wheel drive vehicle is set to have a maximum value at a second rotation speed that disappears.
該駆動車軸に連動して駆動される駆動側流体圧駆動手段
と、従動車軸に連動して駆動される従動側流体圧駆動手
段とを有し、前記駆動側流体圧駆動手段及び従動側流体
圧駆動手段を互いの吐出口と吸込口とを連通する流路を
設けて流体圧伝動機構を構成し、前記駆動側流体圧駆動
手段の流量を前記従動側流体圧駆動手段の流量以下に設
定した四輪駆動車において、前記従動側流体圧駆動手段
の容量が最大伝達トルクを低下させ始める第1の回転数
より容量を減少させ、且つ前記駆動側流体圧駆動手段の
流量を前記従動側流体圧駆動手段の容量特性に合わせて
第1の回転数より高い回転数より容量を減少させ、さら
に伝達トルクの必要のなくなる第2の回転数で最大値と
なるように設定されていることを特徴とする四輪駆動
車。2. A drive axle driven by a prime mover,
A drive-side fluid pressure drive means that is driven in conjunction with the drive axle, and a driven-side fluid pressure drive means that is driven in conjunction with the driven axle; and the drive-side fluid pressure drive means and the driven-side fluid pressure. A fluid pressure transmission mechanism is configured by providing the drive means with a flow path that connects the discharge port and the suction port to each other, and the flow rate of the drive side fluid pressure drive means is set to be equal to or less than the flow rate of the driven side fluid pressure drive means. In a four-wheel drive vehicle, the capacity of the driven-side fluid pressure driving means is smaller than the first rotational speed at which the maximum transmission torque starts to decrease, and the flow rate of the driving-side fluid pressure driving means is set to the driven-side fluid pressure driving means. According to the capacity characteristic of the driving means, the capacity is reduced from a rotational speed higher than the first rotational speed, and further, it is set so as to reach the maximum value at the second rotational speed at which transmission torque is not required. A four-wheel drive vehicle.
該駆動車軸に連動して駆動される駆動側流体圧駆動手段
と、従動車軸に連動して駆動される従動側流体圧駆動手
段とを有し、前記駆動側流体圧駆動手段及び従動側流体
圧駆動手段を互いの吐出口と吸込口とを高圧側流路及び
低圧側流路で連通して流体圧伝動機構を構成し、前記駆
動側流体圧駆動手段の流量を前記従動側流体圧駆動手段
の流量以下に設定した四輪駆動車において、前記従動側
流体圧駆動手段の容量が最大伝達トルクを低下させ始め
る第1の回転数より容量を減少させ、且つ前記駆動側流
体圧駆動手段の流量を伝達トルクの必要のなくなる第2
の回転数で最大値となるように設定すると共に、前記高
圧流路及び低圧流路間に開弁圧を前記第1の回転数及び
第2の回転数間で回転数の増加に対して減少させるリリ
ーフ弁を介挿したことを特徴とする四輪駆動車。3. A drive axle driven by a prime mover,
A drive-side fluid pressure drive means that is driven in conjunction with the drive axle, and a driven-side fluid pressure drive means that is driven in conjunction with the driven axle; and the drive-side fluid pressure drive means and the driven-side fluid pressure. A fluid pressure transmission mechanism is configured by connecting the driving means to the discharge port and the suction port of each other through the high pressure side flow passage and the low pressure side flow passage, and the flow rate of the drive side fluid pressure drive means is set to the driven side fluid pressure drive means. In the four-wheel drive vehicle set to be equal to or less than the flow rate of the driven-side fluid pressure driving means, the capacity of the driven-side fluid pressure driving means reduces the capacity from the first rotational speed at which the maximum transmission torque starts to decrease, and the flow rate of the driving-side fluid pressure driving means. The need for transmission torque is eliminated second
Is set to a maximum value at the number of rotations of the valve, and the valve opening pressure between the high-pressure passage and the low-pressure passage is reduced between the first rotation speed and the second rotation speed with respect to the increase of the rotation speed. A four-wheel drive vehicle having a relief valve inserted therein.
該駆動車軸に連動して駆動される駆動側流体圧駆動手段
と、従動車軸に連動して駆動される従動側流体圧駆動手
段とを有し、前記駆動側流体圧駆動手段及び従動側流体
圧駆動手段を互いの吐出口と吸込口とを高圧側流路及び
低圧側流路で連通して流体圧伝動機構を構成し、前記駆
動側流体圧駆動手段の流量を前記従動側流体圧駆動手段
の流量以下に設定した四輪駆動車において、前記従動側
流体圧駆動手段の容量が最大伝達トルクを低下させ始め
る第1の回転数より容量を減少させ、且つ前記駆動側流
体圧駆動手段の流量を伝達トルクの必要のなくなる第2
の回転数で最大値となるように設定し、且つ前記高圧流
路及び低圧流路間に開弁圧を前記第1の回転数及び第2
の回転数間で回転数の増加に対して減少させるリリーフ
弁を介挿すると共に、前記駆動側流体圧駆動手段の吐出
圧が前記リリーフ弁の最大開弁圧より低い設定圧を越え
たときに当該駆動側流体圧駆動手段の吸入量を減少させ
る吸入量制限手段を設けたことを特徴とする四輪駆動
車。4. A drive axle driven by a prime mover,
A drive side fluid pressure drive means driven in conjunction with the drive axle and a driven side fluid pressure drive means driven in conjunction with the driven axle, wherein the drive side fluid pressure drive means and the driven side fluid pressure are provided. A fluid pressure transmission mechanism is configured by connecting the discharge means and the suction opening of the drive means to each other through the high pressure side flow path and the low pressure side flow path, and the flow rate of the drive side fluid pressure drive means is set to the driven side fluid pressure drive means. In the four-wheel drive vehicle set to be equal to or less than the flow rate of the driven-side fluid pressure drive means, the driven-side fluid pressure drive means has a capacity reduced from the first rotation speed at which the maximum transmission torque starts to decrease, and the flow rate of the drive-side fluid pressure drive means. The need for transmission torque is eliminated second
Is set to the maximum value at the number of revolutions of the valve, and the valve opening pressure is set between the high pressure passage and the low pressure passage at the first revolution speed and the second revolution speed.
When the discharge pressure of the drive-side fluid pressure drive means exceeds a set pressure lower than the maximum valve opening pressure of the relief valve, a relief valve that reduces the increase in the rotation speed between the A four-wheel drive vehicle comprising suction amount limiting means for reducing the suction amount of the drive side fluid pressure driving means.
において略零となるように設定したことを特徴とする請
求項3又は4に記載の四輪駆動車。5. The four-wheel drive vehicle according to claim 3, wherein the opening pressure of the relief valve is set to be substantially zero at the second rotation speed.
流体圧駆動手段と低圧側流路との間に介挿した差圧検出
用オリフィスの従動側流体圧駆動手段側圧力により開弁
圧を制御するように構成されていることを特徴とする請
求項3乃至5の何れかに記載の四輪駆動車。6. The relief valve is opened by the pressure on the driven fluid pressure drive means side of the differential pressure detection orifice, the valve opening pressure of which is interposed between the driven fluid pressure drive means and the low pressure side flow passage. The four-wheel drive vehicle according to claim 3, wherein the four-wheel drive vehicle is configured to control pressure.
対する流量特性の異なる複数のポンプを組み合わせて構
成されていることを特徴とする請求項1乃至6の何れか
に記載の四輪駆動車。7. The four-wheel drive according to claim 1, wherein the drive side fluid pressure drive means is configured by combining a plurality of pumps having different flow rate characteristics with respect to rotation speed. car.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09254594A JP3198794B2 (en) | 1994-03-18 | 1994-04-28 | Four-wheel drive vehicles |
US08/405,673 US5687808A (en) | 1994-03-18 | 1995-03-17 | Four wheel drive mechanism |
DE19510046A DE19510046C2 (en) | 1994-03-18 | 1995-03-20 | Four wheel drive mechanism |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4915494 | 1994-03-18 | ||
JP6-49154 | 1994-03-18 | ||
JP09254594A JP3198794B2 (en) | 1994-03-18 | 1994-04-28 | Four-wheel drive vehicles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07304345A true JPH07304345A (en) | 1995-11-21 |
JP3198794B2 JP3198794B2 (en) | 2001-08-13 |
Family
ID=26389515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09254594A Expired - Fee Related JP3198794B2 (en) | 1994-03-18 | 1994-04-28 | Four-wheel drive vehicles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3198794B2 (en) |
-
1994
- 1994-04-28 JP JP09254594A patent/JP3198794B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3198794B2 (en) | 2001-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4327284B2 (en) | Four-wheel drive vehicle | |
JP2005155686A (en) | Axle driving device and four-wheel drive vehicle equipped with it | |
US5687808A (en) | Four wheel drive mechanism | |
JP3817769B2 (en) | Vehicle wheel driving force distribution control device | |
JP3198794B2 (en) | Four-wheel drive vehicles | |
JP3196484B2 (en) | Four-wheel drive vehicles | |
JPH0820253A (en) | Four-wheel drive vehicle | |
JP3196485B2 (en) | Four-wheel drive vehicles | |
JP3237379B2 (en) | Four-wheel drive vehicles | |
JPH0899552A (en) | Four wheel drive | |
JPH03224830A (en) | Power transmission device for four-wheel drive vehicle | |
JPH08118977A (en) | Four-wheel drive car | |
JPH0899551A (en) | Four wheel drive | |
JPH0820252A (en) | Four-wheel drive vehicle | |
JP3904630B2 (en) | Four-wheel drive vehicle | |
JPH0976781A (en) | Four-wheel drive vehicle | |
JP3593785B2 (en) | Four-wheel drive vehicles | |
JP3942658B2 (en) | Hydraulic drive | |
JPH07257213A (en) | Four-wheel drive vehicle | |
JPH0147644B2 (en) | ||
JPH08258582A (en) | Four-wheel drive vehicle | |
JPH09175204A (en) | Hydraulic transmission for vehicle | |
JPH03224831A (en) | Power transmission device for four-wheel drive vehicle | |
JPH0971142A (en) | Power transmission device for four-wheel drive vehicle | |
JPH09272364A (en) | Four wheel drive car |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |