JPH07300325A - Optical member for laser resistance and its production - Google Patents

Optical member for laser resistance and its production

Info

Publication number
JPH07300325A
JPH07300325A JP10379392A JP10379392A JPH07300325A JP H07300325 A JPH07300325 A JP H07300325A JP 10379392 A JP10379392 A JP 10379392A JP 10379392 A JP10379392 A JP 10379392A JP H07300325 A JPH07300325 A JP H07300325A
Authority
JP
Japan
Prior art keywords
irradiation
silica glass
molecules
optical member
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10379392A
Other languages
Japanese (ja)
Other versions
JP2821056B2 (en
Inventor
Shigeru Yamagata
茂 山形
Tsukasa Sakaguchi
司 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP10379392A priority Critical patent/JP2821056B2/en
Publication of JPH07300325A publication Critical patent/JPH07300325A/en
Application granted granted Critical
Publication of JP2821056B2 publication Critical patent/JP2821056B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0085Compositions for glass with special properties for UV-transmitting glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0035Other surface treatment of glass not in the form of fibres or filaments by irradiation by gamma-rays
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0071Compositions for glass with special properties for laserable glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/21Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/21Doped silica-based glasses containing non-metals other than boron or halide containing molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain an optical member capable of assuring light transmittance of >= a given level even by irradiation with laser for a long period of time, by irradiating silica glass containing hydrogen molecules with a specific dose of gamma rays and making a hydrogen molecule concentration after the irradiation >=a specific value. CONSTITUTION:In an optical member for laser resistance comprising silica glass, silica glass containing hydrogen molecules is irradiated with gamma rays by cobalt 60. The dose of the irradiation with gamma rays is set in a range to maintain >=85% of the value of light transmittance of the silica glass before the irradiation (apparent light transmittance at 1cm thickness of a sample and at 214nm wavelength). The concentration of hydrogen molecules after the irradiation is made >=5X10<16> molecules/cm<3>. An unstable structure formed by the synthesis of the silica glass can be reduced by irradiation with gamma rays in the presence of hydrogen molecules. Ultraviolet light transmittance is reduced by excessive dose of gamma rays. In order to improve laser needs to resistance, the concentration of hydrogen molecules be the above value even after the irradiation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザを利用した各種
装置に組込まれる耐レーザ用光学部材に係り、特にH2
ガス分子を含有させた合成シリカガラスからなる耐レー
ザ用光学部材とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser resistant optical member incorporated in various devices using a laser, and more particularly to H 2
The present invention relates to a laser resistant optical member made of synthetic silica glass containing gas molecules and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、高出力レーザ、特にKrFエキシ
マレーザその他の紫外線レーザはLSI製造のためのリ
ソグラフィー技術、光化学反応を利用する技術、切断研
削のための加工技術、レーザ核融合技術に利用されるも
のとして注目を集めている。
2. Description of the Related Art In recent years, high-power lasers, particularly KrF excimer lasers and other ultraviolet lasers, have been used in lithography technology for manufacturing LSI, technology utilizing photochemical reaction, processing technology for cutting and grinding, and laser fusion technology. It is attracting attention as something.

【0003】また紫外線レーザを透過、伝送、屈折、反
射、吸収、干渉させることにより制御するレンズ、プリ
ズム、フィルター、ウインドウ、ミラー、エタロン板、
ファイバーの材料としては、フッ化マグネシウム、フッ
化カルシウム、フッ化バリウム等のフッ化物もしくはシ
リカガラスが利用できるが、加工性、寸法、脈理や屈折
率の均質性からシリカガラスが最もふさわしいものであ
る。しかしながら、前記各種オプティクスを構成するシ
リカガラスは略360nmの紫外波長域の光が作用した
場合、他の電離放射線に比較して強い光学的ダメージを
受け易い。
Further, a lens, a prism, a filter, a window, a mirror, an etalon plate, which controls the ultraviolet laser by transmitting, transmitting, refracting, reflecting, absorbing, and interfering with it,
Fluoride such as magnesium fluoride, calcium fluoride, barium fluoride or silica glass can be used as the material of the fiber, but silica glass is the most suitable because of its workability, size, striae and homogeneity of refractive index. is there. However, the silica glass constituting the above-mentioned various optics is susceptible to strong optical damage as compared with other ionizing radiation when light in the ultraviolet wavelength range of about 360 nm acts.

【0004】かかる欠点を解消する為に、本出願人は全
方向脈理フリーで複屈折率も認められず、泡及び蛍光の
発生もない高純度高均質性のSUPRASIL−P10
(商品名:信越石英株式会社製)等の合成シリカガラス
体を開発し、該ガラス体を用いた光学部材を提供してき
たが、かかるガラス体は放射線や波長360nm前後の
近紫外域に有効であるが、略250nm以下の遠紫外〜
真空紫外域における高出力レーザ例えばKrFエキシマ
レーザの照射においてはダメージが大きく、前記欠点を
解決し得なかった。
In order to solve the above drawbacks, the applicant of the present invention has a high purity and high homogeneity SUPRASIL-P10 which is free of striae in all directions, has no birefringence and does not generate bubbles or fluorescence.
We have developed synthetic silica glass bodies such as (trade name: Shin-Etsu Quartz Co., Ltd.) and provided optical members using the glass bodies. Such glass bodies are effective for radiation and near-ultraviolet region around wavelength 360 nm. However, far-ultraviolet rays of about 250 nm or less
Irradiation with a high-power laser such as a KrF excimer laser in the vacuum ultraviolet region caused large damage, and the above-mentioned drawback could not be solved.

【0005】この為本発明者は、高純度合成シリカガラ
スにOH基とともにH2分子を5×1016molecules/cm3
以上含有した光学体を提案し、前記欠点の解決を図って
いる。(特開平3ー88742号) シリカガラス中の溶存水素分子の存在は、前記レーザ照
射により珪素と酸素との間の結合の切断/再結合により
ラジエーションコンパクションが始り、屈折率の局部上
昇が起こったとしても、同時に前記結合切断箇所とシリ
カガラス中に存在する水素分子の反応によりOH基等が
生成され、その大部分が修復され屈折率の上昇を打消す
方向に働く。また、E’センター(イープライムセンタ
ー)やNBOH(ノンブリッジング,オキシジェン,ホ
ールセンター)と呼ばれる吸収バンドの生成を抑制し、
透過率低下を防止する。
For this reason, the present inventor has found that H 2 molecules together with OH groups in high-purity synthetic silica glass are 5 × 10 16 molecules / cm 3.
An optical body containing the above is proposed to solve the above-mentioned drawbacks. (JP-A-3-88742) The presence of dissolved hydrogen molecules in silica glass causes the radial compaction to start due to the breaking / recombination of the bond between silicon and oxygen due to the laser irradiation, causing a local increase in the refractive index. Even if it does, at the same time, an OH group or the like is generated by the reaction between the bond breaking point and the hydrogen molecule existing in the silica glass, and most of the OH group is repaired to work to cancel the increase in the refractive index. In addition, it suppresses the generation of absorption bands called E'center (eprime center) and NBOH (non-bridging, oxygen, hole center),
Prevents a decrease in transmittance.

【0006】[0006]

【発明が解決しようとする課題】しかしながら前記発明
はレーザ照射により切断されたガラス構造箇所を水素分
子と反応させてOH基を生成するメカニズムであるため
にレーザ照射により水素分子が消費されていくのを避け
られず、結果として、前記ガラス体に高出力のレーザを
長時間照射した場合、H2ガス分子を5×1016molecul
es/cm3以上含有していても、徐々に水素分子濃度が低下
し、吸収バンドが生成し、透過率が低下するため、長期
に亙って耐レーザ性を得る事が出来ない。
However, since the above-mentioned invention has a mechanism of reacting a glass structure portion cut by laser irradiation with hydrogen molecules to generate OH groups, hydrogen molecules are consumed by laser irradiation. Inevitably, as a result, when the glass body is irradiated with a high-power laser for a long time, 5 × 10 16 molecules of H 2 gas molecules are emitted.
Even if it contains es / cm 3 or more, the hydrogen molecule concentration gradually decreases, an absorption band is generated, and the transmittance decreases, so that laser resistance cannot be obtained for a long period of time.

【0007】一方前記したように好ましい耐レーザ性を
得るには高純度高均質且つ高光透過率である事が必要で
ありこの様な条件は合成シリカガラス以外では得る事が
出来ないが、合成シリカガラスは短時間で高温合成を行
なうために、平衡化反応が十分行なわれず構造的には充
分安定とは言えない。そこで本発明者はこの構造の不安
定性が耐レーザ性を低下させる原因であると着目し、前
記水素含有ガラス体にHIP(等方性加圧熱処理)処理
を施す事により、前記欠点の解消を図っている(特願平
2ー292483号)。しかしかかる構成を取っても不
安定構造を完全に消滅させる事は不可能であり、レーザ
照射による珪素と酸素との結合の切断を完全に防止する
ことも不可能である。而も前記技術は2000kgf/
cm2以上の高圧で加熱処理を行なうために、装置自体
が大型化し、而も現状の装置の制約から処理可能なガラ
ス体の大きさに制限を受ける。
On the other hand, as described above, in order to obtain preferable laser resistance, it is necessary to have high purity, high homogeneity and high light transmittance, and such conditions cannot be obtained except for synthetic silica glass. Since glass is subjected to high temperature synthesis in a short time, the equilibration reaction is not sufficiently carried out and thus it cannot be said that it is structurally sufficiently stable. Therefore, the present inventor has noticed that the instability of this structure is a cause of lowering the laser resistance, and the hydrogen-containing glass body is subjected to HIP (isotropic pressure heat treatment) treatment to solve the above-mentioned drawbacks. (Japanese Patent Application No. 2-229483). However, even if such a configuration is adopted, it is impossible to completely eliminate the unstable structure, and it is also impossible to completely prevent the breaking of the bond between silicon and oxygen due to laser irradiation. Moreover, the above technology is 2000 kgf /
Since the heat treatment is performed at a high pressure of cm 2 or more, the size of the apparatus itself becomes large, and the size of the glass body that can be processed is limited by the restrictions of the current apparatus.

【0008】本発明はかかる従来技術の欠点に鑑み前記
した各種制約を解消しつつ長期に亙ってレーザを照射し
た場合においても、所定レベル以上の光透過率を保証し
得る光学部材を提供することを目的とする。
In view of the above-mentioned drawbacks of the prior art, the present invention provides an optical member capable of assuring a light transmittance of a predetermined level or more even when a laser is irradiated for a long period of time while solving the above-mentioned various restrictions. The purpose is to

【0009】[0009]

【課題を解決する為の手段】本発明は、H2分子含有合
成シリカガラスにγ線を照射するとともに、該γ線の照
射線量を、γ線照射後におけるシリカガラスの光透過率
が85%以上(サンプル厚さ1cm、波長214nm)
になるように設定した事を特徴とするものである。けだ
し、水素分子の存在下でγ線を照射するとシリカガラス
の合成により生成した不安定構造を低減させる事が出来
る。より具体的に説明すると、図1に示すように、酸素
欠損型欠陥と酸素過多欠陥及び遊離酸素等の存在する不
安定構造の合成シリカガラスにγ線を照射すると、H2
分子が含有している場合に前記酸素欠陥が該H2分子と
反応してOH基が生成され、前記不安定構造が、安定な
ガラス網目構造に変換できる。
According to the present invention, a synthetic silica glass containing H 2 molecules is irradiated with γ-rays, and the irradiation dose of the γ-rays is 85% when the light transmittance of the silica glass is 85%. Above (sample thickness 1 cm, wavelength 214 nm)
It is characterized by setting so that However, irradiation with γ-rays in the presence of hydrogen molecules can reduce the unstable structure generated by the synthesis of silica glass. More specifically, as shown in FIG. 1, when γ-rays are irradiated to a synthetic silica glass having an unstable structure in which oxygen deficient defects, oxygen excess defects and free oxygen exist, H 2
When the molecule contains, the oxygen defect reacts with the H 2 molecule to generate an OH group, and the unstable structure can be converted into a stable glass network structure.

【0010】尚、γ線照射線量値を大きくし過ぎると、
紫外線透過率が低下してしまうために、その照射線量値
はγ線照射後厚さ1cmの合成シリカガラスの波長21
4nmの光透過率が85%以上に設定する必要がある。
又、前記γ線の最適照射量は、例えばコバルト60によ
る場合は、該γ線の総照射線量を、1×105〜1×1
8レントゲンの範囲に設定するのがよい。かかる線量
範囲は出発母材たるシリカガラスの製造法の違い(ダイ
レクト法、スート法)及び出発母材の水素溶存濃度によ
って若干変動する。
If the γ-ray irradiation dose value is too large,
Since the ultraviolet ray transmittance is lowered, the irradiation dose value is 21 cm after the γ-ray irradiation at a wavelength of 21 cm of synthetic silica glass.
It is necessary to set the light transmittance of 4 nm to 85% or more.
The optimum irradiation amount of the γ-ray is, for example, when cobalt 60 is used, the total irradiation dose of the γ-ray is 1 × 10 5 to 1 × 1.
0 8 may be set in the range of X-ray. The dose range slightly varies depending on the difference in the manufacturing method of silica glass as the starting base material (direct method, soot method) and the dissolved hydrogen concentration of the starting base material.

【0011】尚、耐レーザ性を向上させるために、前記
2分子はγ線照射後においても5×1016molecules/c
m3以上存在する事が必要である。すなわち前記シリカガ
ラス中のH2分子は、γ線照射前においては1×1017m
olecules/cm3以上含有させ、γ線照射後においても5×
1016molecules/cm3以上に維持している事が必要とさ
れる。又、本発明において出発母材となるべき合成シリ
カガラスは、酸水素炎加水分解法により合成されたシリ
カガラスを用いるのが好ましい。その理由は、合成方法
上、水素分子が溶存され、かつ酸素欠陥の非常に少ない
ことによる。
In order to improve the laser resistance, the H 2 molecule is 5 × 10 16 molecules / c even after γ-ray irradiation.
It is necessary that m 3 or more exists. That is, the H 2 molecule in the silica glass is 1 × 10 17 m before irradiation with γ-rays.
olecules / cm 3 or more, 5 × even after γ-ray irradiation
It is necessary to maintain at least 10 16 molecules / cm 3 . Further, in the present invention, the synthetic silica glass to be the starting base material is preferably silica glass synthesized by the oxyhydrogen flame hydrolysis method. The reason is that, due to the synthetic method, hydrogen molecules are dissolved and oxygen defects are extremely small.

【0012】[0012]

【効果】かかる技術手段によれば、γ線照射により合成
シリカガラスの不安定構造が安定化するために、言い換
えればSi−O−Siの結合角度が安定角度に近づく為
にレーザ照射によっても欠陥は生成しにくくなりH2
子も消費されにくくなるものである。そしてH2分子の
含有量はγ線照射後においても5×1016molecules/cm
3以上維持されているために、下記式に示すようにレー
ザ照射により網目構造が切断された場合にも該切断箇所
と前記H2分子が反応してOH基等を生成し、その修復
を図るために、前記ダメージが容易に修復され耐レーザ
性を維持できる。 ≡Si−O−Si≡+H2+hv → ≡Si・+・O−Si≡+2H → ≡Si−H + H−O−Si≡
[Effect] According to such technical means, the unstable structure of the synthetic silica glass is stabilized by γ-ray irradiation, in other words, the bond angle of Si—O—Si approaches the stable angle. Is less likely to be generated and the H 2 molecule is less consumed. The content of H 2 molecules is 5 × 10 16 molecules / cm even after γ-ray irradiation.
Since 3 or more is maintained, even when the network structure is cut by laser irradiation as shown in the following formula, the cut portion and the H 2 molecule react with each other to generate an OH group or the like, and repair the same. Therefore, the damage can be easily repaired and the laser resistance can be maintained. ≡Si-O-Si≡ + H 2 + hv → ≡Si ・ + ・ O-Si≡ + 2H → ≡Si-H + H-O-Si≡

【0013】[0013]

【実施例】本発明の実施例を製造方法に従って、順を追
って説明する。原料四塩化ケイ素を蒸留処理して不純物
を除去させた高純度の四塩化ケイ素原料を用いて酸水素
炎加水分解法の直接火炎法(以下ダイレクト法という)
にて、O2、H2、SiCl4の流量をコントロールして
2分子濃度が3×1018molecules/cm3と1×1017mo
lecules/cm3、及び5×1016molecules/cm3以下の3種類
の出発母材A、B、Cを得る。
EXAMPLES Examples of the present invention will be described step by step according to a manufacturing method. Direct flame method of oxyhydrogen flame hydrolysis method using high-purity silicon tetrachloride raw material obtained by distilling raw material silicon tetrachloride to remove impurities
The flow rates of O 2 , H 2 and SiCl 4 are controlled so that the H 2 molecule concentration is 3 × 10 18 molecules / cm 3 and 1 × 10 17 mo.
Three types of starting base materials A, B and C having lecules / cm 3 and 5 × 10 16 molecules / cm 3 or less are obtained.

【0014】尚、H2濃度測定ははレーザラマン散乱法
により行った。(S.YAMAGATA,Mineralogical Journal,V
ol.15,No.8,1991,pp333〜342による)
The H 2 concentration was measured by the laser Raman scattering method. (S.YAMAGATA, Mineralogical Journal, V
ol.15, No.8, 1991, pp333 to 342)

【0015】次に前記出発母材Aを切断、研削加工して
直径130φ×t50mmのガラス体を4個作成する。
該試験品をコバルト60によるγ線照射装置内に設置し
た後、照射線量率1×106R/hrにて10時間処理
し、総照射量を107Rとする。以下総照射線量を104
R、106R及び109Rに設定し、各ガラス体のγ線照
射処理を行う。出発母材B及びCについても前記手順で
γ線照射処理を行なう。出発母材Bについては総照射量
が105R、出発母材Cについては106Rとする。
Next, the starting base material A is cut and ground to prepare four glass bodies having a diameter of 130φ × t50 mm.
The test product is placed in a γ-ray irradiation device using cobalt 60, and then treated at an irradiation dose rate of 1 × 10 6 R / hr for 10 hours, so that the total irradiation amount is 10 7 R. Below, the total irradiation dose is 10 4
R, 10 6 R and 10 9 R are set and each glass body is subjected to γ-ray irradiation treatment. The γ-ray irradiation process is also performed on the starting base materials B and C in the above procedure. The total irradiation amount of the starting base material B is 10 5 R and that of the starting base material C is 10 6 R.

【0016】次に前記各γ線照射ガラス体について耐エ
キシマレーザ性評価用に40×30×t10mm、3面
鏡面仕上げサンプルを作成した後耐エキシマレーザ性の
評価を行った。耐KrFエキシマレーザ性の評価では、
パルスエネルギー密度を約400(mj/cm2.pulse)、周波
数100(Hz)、パルス寿命17nsecに設定し、
又、耐ArFエキシマレーザ性の評価では、照射条件が
パルスエネルギー密度を約200(mj/cm2.pulse)、周波数
100(Hz)、パルス寿命13nsecに設定し、夫
々について1×105、2×105、4×105、8×1
5、16×105、32×105pulsesの6種類の積算
パルス数で照射した後、214nmでの光透過率を測定
してみると、図2に示す通りであった。
Next, for each of the γ-ray-irradiated glass bodies, a 40 × 30 × t 10 mm, three-sided mirror finished sample was prepared for evaluation of excimer laser resistance, and then excimer laser resistance was evaluated. In the evaluation of KrF excimer laser resistance,
Set the pulse energy density to about 400 (mj / cm 2 .pulse), frequency 100 (Hz), pulse life 17 nsec,
In the evaluation of the ArF excimer laser resistance, the irradiation conditions were set to a pulse energy density of about 200 (mj / cm 2 .pulse), a frequency of 100 (Hz), and a pulse life of 13 nsec, and 1 × 10 5 , 2 for each. X10 5 , 4x10 5 , 8x1
After irradiation with 6 kinds of integrated pulse numbers of 0 5 , 16 × 10 5 , and 32 × 10 5 pulses, the light transmittance at 214 nm was measured, and it was as shown in FIG. 2.

【0017】本図より理解されるごとく総照射量が10
5R〜108Rの範囲において、γ線照射後のH2分子濃
度が5×1016molecules/cm3以上のものについては、
いずれも飽和透過率が85%以上で、かつ飽和した値を
示し好ましい結果が得られた(実験番号2、3、6)。
しかしながらγ線照射を行っていないもの及び総照射線
量が104Rのものについては透過率が80%以下に低
下し、かつ透過率低下が飽和せず経時的な耐レーザ性が
悪かった(実験番号1、5)。又総照射線量が109
のものについては初期透過率が大幅に低下している事が
確認された。(実験番号4)
As can be understood from this figure, the total dose is 10
In the range of 5 R to 10 8 R, the H 2 molecule concentration after γ-ray irradiation is 5 × 10 16 molecules / cm 3 or more,
In all cases, the saturated transmittance was 85% or more, and saturated values were obtained, and favorable results were obtained (Experiment Nos. 2, 3, 6).
However, the transmittance was reduced to 80% or less in the case where the γ-ray irradiation was not performed and the total irradiation dose was 10 4 R, and the decrease in the transmittance was not saturated and the laser resistance with time was poor (experimental). Numbers 1, 5). The total irradiation dose is 10 9 R
It was confirmed that the initial transmittance of the sample No. 1 was significantly reduced. (Experiment number 4)

【0018】更に総照射線量が105R〜108Rの範囲
であってもγ線照射前のH2分子濃度が5×1016molec
ules/cm3以下のものについても初期透過率が大幅に低減
している事が確認された。(実験番号7)尚、γ線照射
後のH2分子濃度を5×1016molecules/cm3以上維持す
るためには、出発体のH2分子濃度を少なくとも1×1
17molecules/cm3以上にする必要がある。次に本発明
の効果を確認するために酸水素炎加水分解法のスート法
により4.5×1017molecules/cm3及び5×1016molec
ules/cm3以下の2つの出発体D、Eを作成し、前記と同
様に総照射線量106Rにてγ線照射した試験品を作成
して耐レーザ試験を行なったところ、前者については良
好な結果が得られ(実験番号8)、後者については初期
透過率が大幅に低減している事が確認された。(実験番
号9)
Further, even if the total irradiation dose is in the range of 10 5 R to 10 8 R, the H 2 molecule concentration before γ-ray irradiation is 5 × 10 16 molec.
It was also confirmed that the initial transmittance was significantly reduced even for ules / cm 3 or less. (Experiment No. 7) In order to maintain the H 2 molecule concentration after γ-ray irradiation at 5 × 10 16 molecules / cm 3 or more, the H 2 molecule concentration of the starting material should be at least 1 × 1.
It is necessary to set it to 0 17 molecules / cm 3 or more. Next, in order to confirm the effect of the present invention, 4.5 × 10 17 molecules / cm 3 and 5 × 10 16 molec were measured by a soot method of oxyhydrogen flame hydrolysis.
When two starting bodies D and E of ules / cm 3 or less were prepared, and a test product irradiated with γ rays at a total irradiation dose of 10 6 R was prepared in the same manner as described above and a laser resistance test was conducted, Good results were obtained (Experiment No. 8), and it was confirmed that the latter had a significantly reduced initial transmittance. (Experiment number 9)

【図面の簡単な説明】[Brief description of drawings]

【図1】γ線照射前後におけるシリカガラス網目構造FIG. 1 Silica glass network structure before and after γ-ray irradiation

【図2】実験結果を示す表図FIG. 2 is a table showing experimental results.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シリカガラスから成る耐レーザ用光学部
材において、 水素分子を含有させたシリカガラスにコバルト60によ
りγ線を照射し、該γ線の照射線量を、γ線照射前のシ
リカガラスの光透過率の値85%以上(サンプル厚さ1
cm、波長214nmの見かけの透過率)を照射後も維
持する範囲で設定すると共に、該γ線照射後の水素分子
濃度が5×1016molecules/cm3以上である事を特徴と
する耐レーザ用光学部材
1. A laser resistant optical member made of silica glass, wherein silica glass containing hydrogen molecules is irradiated with γ-rays by cobalt 60, and the irradiation dose of the γ-rays is the same as that of silica glass before γ-ray irradiation. Light transmittance value of 85% or more (Sample thickness 1
cm, apparent transmittance of wavelength 214 nm) is set within a range that can be maintained even after irradiation, and the concentration of hydrogen molecules after γ-ray irradiation is 5 × 10 16 molecules / cm 3 or more. Optical components
【請求項2】 該γ線照射線量が、1×105〜1×1
8R(レントゲン)の範囲に設定した事を特徴とする
請求項1記載の耐レーザ用光学部材
2. The γ-ray irradiation dose is 1 × 10 5 to 1 × 1.
The laser resistant optical member according to claim 1, wherein the range is set to 0 8 R (roentgen).
【請求項3】 シリカガラスを出発母材として耐レーザ
用光学部材を製造する方法において、 水素分子濃度が1×1017molecules/cm3以上のシリカ
ガラスにコバルト60によりγ線を照射し、該γ線の照
射線量を、γ線照射前のシリカガラスの光透過率の値8
5%以上(サンプル厚さ1cm、波長214nmの見か
けの透過率)を照射後も維持するように設定すると共
に、該γ線照射後の水素分子濃度を5×1016molecule
s/cm3以上に維持したした事を特徴とする耐レーザ用光
学部材の製造方法
3. A method for producing a laser resistant optical member using silica glass as a starting material, wherein a silica glass having a hydrogen molecule concentration of 1 × 10 17 molecules / cm 3 or more is irradiated with γ rays by cobalt 60, The irradiation dose of γ-ray is the value of the light transmittance of silica glass before γ-ray irradiation 8
5% or more (sample thickness 1 cm, apparent transmittance at a wavelength of 214 nm) is set so as to be maintained even after irradiation, and the hydrogen molecule concentration after the γ-ray irradiation is 5 × 10 16 molecule.
Manufacturing method of laser resistant optical member characterized by being maintained at s / cm 3 or more
【請求項4】 前記出発母材が酸水素炎加水分解法によ
り合成されたシリカガラスである請求項3記載の耐レー
ザ用光学部材の製造方法
4. The method for producing a laser resistant optical member according to claim 3, wherein the starting base material is silica glass synthesized by an oxyhydrogen flame hydrolysis method.
JP10379392A 1992-03-31 1992-03-31 Laser resistant optical member and method of manufacturing the same Expired - Fee Related JP2821056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10379392A JP2821056B2 (en) 1992-03-31 1992-03-31 Laser resistant optical member and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10379392A JP2821056B2 (en) 1992-03-31 1992-03-31 Laser resistant optical member and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07300325A true JPH07300325A (en) 1995-11-14
JP2821056B2 JP2821056B2 (en) 1998-11-05

Family

ID=14363283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10379392A Expired - Fee Related JP2821056B2 (en) 1992-03-31 1992-03-31 Laser resistant optical member and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2821056B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0879799A3 (en) * 1997-05-16 1999-07-21 Sumitomo Electric Industries, Ltd. Silica glass article and manufacturing process therefor
EP0943936A2 (en) * 1998-03-20 1999-09-22 Polymicro Technologies, Inc. Gamma radiation sterilized fiber optic UV delivery systems
US6333283B1 (en) 1997-05-16 2001-12-25 Sumitomo Electric Industries, Ltd. Silica glass article and manufacturing process therefor
US6499315B1 (en) 1997-04-08 2002-12-31 Shin-Etsu Quartz Products Co., Ltd Production method for making an optical member for excimer laser using synthetic quartz glass
EP2412686A3 (en) * 2010-07-29 2013-01-23 Corning Inc. Highly reflective, hardened silica-titania article and method of making
JP2014189451A (en) * 2013-03-27 2014-10-06 Nbc Meshtec Inc Method of producing oxygen-deficient inorganic oxide

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6499315B1 (en) 1997-04-08 2002-12-31 Shin-Etsu Quartz Products Co., Ltd Production method for making an optical member for excimer laser using synthetic quartz glass
EP0879799A3 (en) * 1997-05-16 1999-07-21 Sumitomo Electric Industries, Ltd. Silica glass article and manufacturing process therefor
US5983673A (en) * 1997-05-16 1999-11-16 Sumitomo Electric Industries, Ltd. Silica glass article and manufacturing process therefor
US6333283B1 (en) 1997-05-16 2001-12-25 Sumitomo Electric Industries, Ltd. Silica glass article and manufacturing process therefor
US6709997B2 (en) 1997-05-16 2004-03-23 Sumitomo Electric Industries, Ltd. Silica glass article and manufacturing process therefor
EP0943936A2 (en) * 1998-03-20 1999-09-22 Polymicro Technologies, Inc. Gamma radiation sterilized fiber optic UV delivery systems
EP0943936A3 (en) * 1998-03-20 2004-09-29 Polymicro Technologies, Inc. Gamma radiation sterilized fiber optic UV delivery systems
EP2412686A3 (en) * 2010-07-29 2013-01-23 Corning Inc. Highly reflective, hardened silica-titania article and method of making
JP2014189451A (en) * 2013-03-27 2014-10-06 Nbc Meshtec Inc Method of producing oxygen-deficient inorganic oxide

Also Published As

Publication number Publication date
JP2821056B2 (en) 1998-11-05

Similar Documents

Publication Publication Date Title
JP3206916B2 (en) Method for reducing defect concentration, method for producing optical glass for transmitting ultraviolet light, and optical glass for transmitting ultraviolet light
EP1094040B1 (en) Silica glass optical material for excimer laser and excimer lamp, and method for producing the same
EP0546196A1 (en) Synthetic quartz glass optical member for excimer laser and production thereof
JP4529340B2 (en) Synthetic quartz glass and manufacturing method thereof
JP3674793B2 (en) Method for producing quartz glass optical member for ultraviolet laser
US5896222A (en) Fused silica lens, microlithography system including a fused silica lens and method of making a fused silica lens
JP4531904B2 (en) Optical material for ultraviolet ray and method for producing the same
US20030039865A1 (en) Isotopically engineered optical materials
EP1067096B1 (en) Quartz glass members for excimer laser, and their method of manufacture
JPH0532432A (en) Optical member for high-power laser
JPH0791084B2 (en) Ultraviolet-resistant synthetic quartz glass and method for producing the same
JP2821056B2 (en) Laser resistant optical member and method of manufacturing the same
JP3470983B2 (en) Manufacturing method of synthetic quartz glass member
JP2005298330A (en) Synthetic quartz glass and its manufacturing method
JP2971686B2 (en) Manufacturing method of optical member for UV resistant laser
JP2821074B2 (en) Manufacturing method of optical member for UV resistant laser
WO2000039038A1 (en) Method for producing optical quartz glass for excimer lasers
JP3336761B2 (en) Method for producing synthetic quartz glass for light transmission
JP4323319B2 (en) Fused silica containing aluminum
JP2000239040A (en) Quartz glass material for optical member for f2 excimer laser, and optical member
JPH11302025A (en) Synthetic quartz glass optical member and its production
JP3368932B2 (en) Transparent quartz glass and its manufacturing method
US20030119651A1 (en) Fused silica containing aluminum
JP2003238195A (en) Synthetic quartz glass member
JPH0840736A (en) Synthetic quartz glass member for excimer laser optical material and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees