JPH07299333A - Regeneration of organic acid - Google Patents

Regeneration of organic acid

Info

Publication number
JPH07299333A
JPH07299333A JP11976394A JP11976394A JPH07299333A JP H07299333 A JPH07299333 A JP H07299333A JP 11976394 A JP11976394 A JP 11976394A JP 11976394 A JP11976394 A JP 11976394A JP H07299333 A JPH07299333 A JP H07299333A
Authority
JP
Japan
Prior art keywords
exchange membrane
chamber
cation exchange
organic acid
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11976394A
Other languages
Japanese (ja)
Inventor
Hidenori Shibata
英則 柴田
Ryosuke Aoki
良輔 青木
Hirofumi Horie
浩文 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP11976394A priority Critical patent/JPH07299333A/en
Publication of JPH07299333A publication Critical patent/JPH07299333A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently separate and recover an org. acid from a mixed soln. of an org. acid and a metal salt thereof by electrodialysis. CONSTITUTION:An anion exchange membrane and a hydrogen ion permselective ion exchange membrane as diaphragms are arranged between the anode and cathode in an electrodialytic cell and a mixed soln. of an org. acid and a metal salt thereof is passed through the chamber between the anion exchange membrane and the hydrogen ion permselective ion exchange membrane arranged on the anode side thereof and a metal ion is removed from the chamber to recover the org. acid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有機酸の再生方法、更に
詳しくは電気透析法により有機酸とその金属塩の混合溶
液より有機酸を分離回収する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating an organic acid, and more particularly to a method for separating and recovering an organic acid from a mixed solution of an organic acid and its metal salt by an electrodialysis method.

【0002】[0002]

【従来の技術】有機酸とその金属塩の混合溶液から電気
透析法により有機酸を分離回収する場合、例えば図3の
ように電気透析槽内に隔膜として、陽イオン交換膜Cを
多数配列し、陽イオン交換膜Cと陽イオン交換膜Cで区
画形成された複数の室の一つ置きの室(脱塩室a)に有
機酸例えばギ酸と、その金属塩例えばNa塩の混合溶液
を流通させ、残る一つ置きの室(濃縮室b)に濃縮液と
して硫酸を流通させることにより行われていた。
2. Description of the Related Art When an organic acid is separated and recovered from a mixed solution of an organic acid and its metal salt by an electrodialysis method, for example, a large number of cation exchange membranes C are arranged as a diaphragm in an electrodialysis tank as shown in FIG. A mixed solution of an organic acid such as formic acid and its metal salt such as Na salt is circulated in the cation exchange membrane C and every other chamber (demineralization chamber a) defined by the cation exchange membrane C. Then, sulfuric acid was made to flow through as a concentrated liquid in the remaining chamber (concentration chamber b).

【0003】即ち通電すると、脱塩室aにおいてNa塩
が解離してできたNaイオンは陰極に向かって陽イオン
交換膜Cを透過して陽イオン交換膜の陰極側の硫酸が流
通している濃縮室bに移動し硫酸ナトリウムを形成し硫
酸と共に除去される。一方、ギ酸が解離してできたHC
OO- イオンは陽極に引っ張られるが陽イオン交換膜を
透過することができない。さらに濃縮室bよりH+ イオ
ンが陽イオン交換膜を通過し、脱塩室aに移動して、脱
塩室aにてHCOOHが形成される。従って脱塩室aか
ら金属イオンが除去され有機酸だけが回収される。
That is, when energized, Na ions formed by dissociation of Na salt in the desalination chamber a permeate the cation exchange membrane C toward the cathode and sulfuric acid on the cathode side of the cation exchange membrane flows. It moves to the concentration chamber b, forms sodium sulfate, and is removed together with sulfuric acid. On the other hand, HC formed by dissociation of formic acid
OO ions are pulled to the anode but cannot pass through the cation exchange membrane. Further, H + ions pass through the cation exchange membrane from the concentrating chamber b, move to the desalting chamber a, and HCOOH is formed in the desalting chamber a. Therefore, the metal ions are removed from the desalting chamber a and only the organic acid is recovered.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
ように陽イオン交換膜を使用した場合、硫酸が流通して
いる濃縮室bへ移動した金属イオンが、さらに陰極に向
かって次のイオン交換膜を透過して、陰極側の隣の脱塩
室aに移動し、脱塩室での有機酸の分離回収率が低下す
る即ち電流効率が悪くなるという欠点があった。
However, when the cation exchange membrane is used as described above, the metal ions transferred to the concentrating chamber b in which sulfuric acid is flowing further pass toward the cathode to the next ion exchange membrane. There is a drawback that the organic acid is transmitted to the desalting chamber a adjacent to the cathode side and the separation and recovery rate of the organic acid in the desalting chamber is lowered, that is, the current efficiency is deteriorated.

【0005】本発明は、有機酸とその金属塩の混合溶液
から有機酸を効率よく電気透析法により分離回収する有
機酸の再生方法を提供することを目的としている。
An object of the present invention is to provide a method for regenerating an organic acid, which efficiently separates and recovers the organic acid from a mixed solution of the organic acid and a metal salt thereof by electrodialysis.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
に請求項1に記載の有機酸の再生方法では、電気透析槽
内の陽極及び陰極間に隔膜として、陽イオン交換膜と水
素イオン選択透過性イオン交換膜とを配列し、陽イオン
交換膜とその陽極側に配置された水素イオン選択透過性
イオン交換膜との間の室に有機酸とその金属塩の混合溶
液を流通させ、また陽イオン交換膜とその陰極側に配置
された水素イオン選択透過性イオン交換膜又は陽イオン
交換膜との間の室に濃縮液を流通させ、通電し、陽イオ
ン交換膜の陽極側の有機酸とその金属塩の混合溶液を流
通している室から金属イオンを除去して有機酸を回収す
るように構成した。
In order to achieve this object, in the method for regenerating an organic acid according to claim 1, a cation exchange membrane and hydrogen ion selection are used as a diaphragm between an anode and a cathode in an electrodialysis cell. A permeable ion exchange membrane is arranged, and a mixed solution of an organic acid and its metal salt is circulated in a chamber between the cation exchange membrane and a hydrogen ion selective permeable ion exchange membrane arranged on the anode side thereof, and The concentrated liquid is passed through the chamber between the cation exchange membrane and the hydrogen ion selective permeable ion exchange membrane or the cation exchange membrane arranged on the cathode side of the cation exchange membrane to energize the organic acid on the anode side of the cation exchange membrane. The organic acid was recovered by removing the metal ions from the chamber in which the mixed solution of the metal salt and the metal salt flows.

【0007】請求項2に記載の発明では、請求項1に記
載の有機酸の再生方法において、水素イオン選択透過性
イオン交換膜として、イオン交換容量0.5〜4ミリ当
量/g乾燥樹脂、固定イオン濃度1〜10ミリ当量/g
2 O、膜厚0.1〜150μm、硫酸0.5モル/リ
ットル溶液中の抵抗5Ω・cm2 以下を有する陽極側の
陰イオン交換体層と、陰極側の陽イオン交換層との複層
イオン交換膜を使用するように構成した。
According to a second aspect of the present invention, in the method for regenerating an organic acid according to the first aspect, the ion exchange capacity is 0.5 to 4 meq / g dry resin as a hydrogen ion selective permeable ion exchange membrane. Fixed ion concentration 1-10 meq / g
H 2 O, a film thickness of 0.1 to 150 μm, a composite of an anion-exchange layer on the anode side and a cation-exchange layer on the cathode side having a resistance of 5 Ω · cm 2 or less in a solution of 0.5 mol / liter of sulfuric acid. It was configured to use a layer ion exchange membrane.

【0008】図1のように陽イオン交換膜Cと水素イオ
ン選択透過性イオン交換膜Hは交互に配列しても、ある
いは図2のように例えば陽イオン交換膜Cを2個配置し
た後水素イオン選択透過性イオン交換膜Hを1個配置す
るように配列するなど、配列の仕方は自由である。
As shown in FIG. 1, the cation exchange membranes C and the hydrogen ion-selective permeable ion exchange membranes H may be arranged alternately, or, for example, as shown in FIG. The ion-selective permeable ion-exchange membrane H may be arranged in any desired manner, such as one.

【0009】有機酸とその金属塩の混合溶液は、陽イオ
ン交換膜とその陽極側の水素イオン選択透過性イオン交
換膜との間の室(脱塩室1又は3)に流通せしめられ
る。一方、濃縮液は陽イオン交換膜とその陰極側の水素
イオン選択透過性イオン交換膜又は陽イオン交換膜との
間の室(濃縮室2又は4、5)に流通せしめられる。
A mixed solution of an organic acid and its metal salt is circulated in a chamber (desalting chamber 1 or 3) between the cation exchange membrane and the hydrogen ion selective permeable ion exchange membrane on the anode side. On the other hand, the concentrated liquid is allowed to flow into a chamber (concentration chamber 2 or 4, 5) between the cation exchange membrane and the hydrogen ion selective permeable ion exchange membrane or the cation exchange membrane on the cathode side thereof.

【0010】陽イオン交換膜としては、例えば強酸性ス
チレンージビニルベンゼン系均一膜を使用でき、このよ
うな陽イオン交換膜としては、例えば旭硝子株式会社製
のセレミオンCMVがある。
As the cation exchange membrane, for example, a strongly acidic styrene-divinylbenzene-based uniform membrane can be used, and as such a cation exchange membrane, there is, for example, Selemion CMV manufactured by Asahi Glass Co., Ltd.

【0011】一方、水素イオン選択透過性イオン交換膜
は、例えば陽極側の陰イオン交換体層と陰極側の陽イオ
ン交換体層との複層イオン交換膜を使用でき、このよう
な水素イオン選択透過性イオン交換膜としては例えば特
開平5ー228344号に開示されている複層イオン交
換膜を使用できる。
On the other hand, as the hydrogen ion selective permeable ion exchange membrane, for example, a multilayer ion exchange membrane having an anion exchange layer on the anode side and a cation exchange layer on the cathode side can be used. As the permeable ion exchange membrane, for example, the multilayer ion exchange membrane disclosed in JP-A-5-228344 can be used.

【0012】この複層イオン交換膜は陽極側の陰イオン
交換体層と陰極側の陽イオン交換体層との複層イオン交
換膜からなり、陽イオン交換体層はイオン交換容量が好
ましくは0.5〜4.5ミリ当量/g乾燥樹脂、特に
0.8〜3.0ミリ当量/g乾燥樹脂が適切であり、ま
た膜厚が10〜1000μm、特には10〜500μm
の厚い膜が使用される。このような陽イオン交換体層と
してはスチレンまたはその誘導体とジビニルベンゼンと
の共重合体を母体とし、スルホン酸基などの強酸性陽イ
オン交換基を有する陽イオン交換膜、または、スルホン
酸基を有するパーフルオロカーボン重合体からなる陽イ
オン交換膜が使用される。
The multi-layer ion exchange membrane comprises a multi-layer ion exchange membrane comprising an anion exchange layer on the anode side and a cation exchange layer on the cathode side, and the cation exchange layer preferably has an ion exchange capacity of 0. 0.5 to 4.5 meq / g dry resin, particularly 0.8 to 3.0 meq / g dry resin, and a film thickness of 10 to 1000 μm, especially 10 to 500 μm.
Thick film is used. As such a cation exchange layer, a copolymer of styrene or a derivative thereof and divinylbenzene is used as a matrix, and a cation exchange membrane having a strong acidic cation exchange group such as a sulfonic acid group or a sulfonic acid group is used. A cation exchange membrane consisting of a perfluorocarbon polymer is used.

【0013】一方、陰イオン交換体層としては、例えば
スチレンまたはクロロメチルスチレンとジビニルベンゼ
ンとの共重合体、ビニルピリジン系重合体、ビニルアニ
リン系重合体、ビニルイミダゾール系重合体、エポキシ
/アミン系重合体、および側鎖の末端に陰イオン交換基
を有しポリマー骨格がパーフルオロポリマーからなる含
フッ素系重合体があり、なかでも陰イオン交換体層とし
ては、繰り返し単位内に一般式ーXーArーYー(式中
X、Yは互いに同一または異なる電子供与性の連結基を
表し、好ましくはーOー、ーSー、炭素数1〜13のア
ルキレン基または単結合であり、Arは、
On the other hand, examples of the anion exchanger layer include a copolymer of styrene or chloromethylstyrene and divinylbenzene, a vinylpyridine polymer, a vinylaniline polymer, a vinylimidazole polymer, and an epoxy / amine system. There are polymers and fluorine-containing polymers having an anion exchange group at the end of the side chain and a polymer skeleton made of a perfluoropolymer. Among them, the anion exchange layer includes a compound represented by the general formula -X -Ar-Y- (wherein X and Y represent the same or different electron donating linking groups, preferably -O-, -S-, an alkylene group having 1 to 13 carbon atoms or a single bond, Ar Is

【0014】[0014]

【化1】 [Chemical 1]

【0015】を表す。R1 〜R5 は互いに同一または異
なる炭素数1〜8の炭化水素基であり、aは0〜4、b
+cは0〜6、d+eは0〜6から選ばれる。)を有す
る芳香族系重合体からなり、その芳香族環に陰イオン交
換基が導入された陰イオン交換体層の使用が好ましい。
Represents R 1 to R 5 are the same or different hydrocarbon groups having 1 to 8 carbon atoms, a is 0 to 4, b
+ C is selected from 0 to 6 and d + e is selected from 0 to 6. It is preferable to use an anion exchanger layer comprising an aromatic polymer having a) and having an anion exchange group introduced in its aromatic ring.

【0016】かかる陰イオン交換体層が、イオン交換基
が導入されたセグメントとイオン交換基が実質的に導入
されていないセグメントからなるブロック共重合体から
なる場合には、得られる複層イオン交換膜の水素イオン
選択透過性が高く、かつ機械的性質に優れているので好
ましい。
When such an anion exchanger layer is composed of a block copolymer consisting of a segment into which an ion exchange group is introduced and a segment into which an ion exchange group is not substantially introduced, the resulting multi-layer ion exchange layer is obtained. It is preferable because the membrane has high hydrogen ion selective permeability and excellent mechanical properties.

【0017】かかるブロック共重合体としては、ポリフ
ェニレンオキシド/ポリエーテルスルホンブロック共重
合体,ポリフェニレンスルフィド/ポリエーテルスルホ
ンブロック共重合体、ポリアリールエーテルスルホン/
ポリエーテルスルホンブロック共重合体、ポリアリール
エーテルアリレート/ポリアリレートブロック共重合
体、またはポリアリールエーテルスルホン/ポリチオエ
ーテルスルホンブロック共重合体が例示される。なかで
も好ましいブロック重合体として、
Examples of the block copolymer include polyphenylene oxide / polyether sulfone block copolymer, polyphenylene sulfide / polyether sulfone block copolymer, polyaryl ether sulfone /
Examples include polyether sulfone block copolymers, polyaryl ether arylate / polyarylate block copolymers, or polyaryl ether sulfone / polythioether sulfone block copolymers. Among them, as a preferable block polymer,

【0018】[0018]

【化2】 [Chemical 2]

【0019】等が挙げられる。化2においてm、nはそ
れぞれ2〜200、m/nは0.1〜100である。
And the like. In Chemical formula 2, m and n are 2 to 200, respectively, and m / n is 0.1 to 100.

【0020】複層イオン交換膜における陰イオン交換体
層はイオン交換容量が0.5〜4ミリ当量/g乾燥樹
脂、好ましくは0.8〜3.5ミリ当量/g乾燥樹脂、
特には1.0〜3.0ミリ当量/g乾燥樹脂の高いイオ
ン交換容量にもかかわらず固定イオン濃度が1〜10ミ
リ当量/gH2 O、好ましくは2〜6ミリ当量/gH2
Oを有し、膜厚は0.1〜150μm、好ましくは1〜
50μm、特には1〜25μmとすることができる。ま
た硫酸0.5モル/リットル溶液中の抵抗は5Ω・cm
2 以下である。得られた複層イオン交換膜の有する水素
イオン選択透過性は、水素イオン/金属陽イオンの透過
速度比が20以上、場合により30以上と極めて高い値
を有する。
The anion exchanger layer in the multilayer ion exchange membrane has an ion exchange capacity of 0.5 to 4 meq / g dry resin, preferably 0.8 to 3.5 meq / g dry resin,
Especially 1.0 to 3.0 meq / g high fixed ion concentration in spite ion exchange capacity of dry resin is 1 to 10 meq / gH 2 O, preferably 2 to 6 meq / gH 2
O and has a film thickness of 0.1 to 150 μm, preferably 1 to
It can be 50 μm, especially 1 to 25 μm. The resistance in a solution of sulfuric acid 0.5 mol / liter is 5 Ω · cm.
2 or less. The hydrogen ion / selective permeability of the obtained multilayer ion-exchange membrane has an extremely high value of a hydrogen ion / metal cation permeation rate ratio of 20 or more, and in some cases 30 or more.

【0021】本発明方法で再生される有機酸としては、
例えばギ酸、酢酸、クエン酸、シュウ酸、酒石酸、安息
香酸などのカルボン酸の他に、スルホン酸、スルフィン
酸などの官能基をもつ有機酸がある。また金属塩として
は例えばナトリウム塩、アルミニウム塩、銅塩、カリウ
ム塩、鉄塩、亜鉛塩、クロム塩などがある。有機酸は、
例えば、1〜100g/リットルで含有され、また金属
塩は、好ましくは1〜50g/リットルで含有される混
合液が良好に処理され、有機酸が効率よく再生される。
The organic acid regenerated by the method of the present invention includes:
For example, in addition to carboxylic acids such as formic acid, acetic acid, citric acid, oxalic acid, tartaric acid and benzoic acid, there are organic acids having a functional group such as sulfonic acid and sulfinic acid. Examples of the metal salt include sodium salt, aluminum salt, copper salt, potassium salt, iron salt, zinc salt and chromium salt. The organic acid is
For example, the mixed solution containing 1 to 100 g / liter and the metal salt preferably containing 1 to 50 g / liter is well treated, and the organic acid is efficiently regenerated.

【0022】図1のように電気透析槽内の陽極及び陰極
間に隔膜として、陽イオン交換膜Cと水素イオン選択透
過性イオン交換膜Hとを交互に配列する。水素イオン選
択透過性イオン交換膜Hは陰イオン交換体層が陽極に面
するように配置する。陽イオン交換膜Cと水素イオン選
択透過性イオン交換膜Hとの配列は、図2のように複数
個の陽イオン交換膜Cを配置した後水素イオン選択透過
性イオン交換膜Hを配置するように配列してもよい。
As shown in FIG. 1, a cation exchange membrane C and a hydrogen ion selective permeable ion exchange membrane H are alternately arranged as a diaphragm between the anode and the cathode in the electrodialysis tank. The hydrogen ion selective permeable ion exchange membrane H is arranged so that the anion exchanger layer faces the anode. The cation exchange membrane C and the hydrogen ion selective permeable ion exchange membrane H are arranged such that a plurality of cation exchange membranes C are arranged and then the hydrogen ion selective permeable ion exchange membrane H is arranged as shown in FIG. You may arrange in.

【0023】陽イオン交換膜の陽極側の水素イオン選択
透過性イオン交換膜との間の室(脱塩室1)に有機酸と
その金属塩の混合溶液を流通させ、また陽イオン交換膜
の陰極側の室(濃縮室2)に濃縮液として酸溶液を流通
させ、通電すると、金属塩が解離してできた金属イオン
は陰極に向かって陽イオン交換膜を透過して陽イオン交
換膜の陰極側の酸溶液が流通している室(濃縮室2)に
移動し塩を形成して酸溶液と共に除去される。水素イオ
ン選択透過性イオン交換膜Hは水素イオンだけを選択的
に透過し、金属イオンを透過しないので金属イオンが陰
極に引かれても水素イオン選択透過性イオン交換膜Hを
透過して陰極側の隣の脱塩室1に移動することはない。
一方、有機酸が解離してできた陰イオンは陽極に引っ張
られるが陽イオン交換膜を透過することができない。さ
らに濃縮室2よりH+ イオンが陽イオン交換膜を通過
し、脱塩室1に移動して脱塩室1にて有機酸が形成され
る。従って脱塩室1から金属イオンが除去され有機酸が
回収される。
A mixed solution of an organic acid and its metal salt is circulated in a chamber (desalting chamber 1) between the cation exchange membrane and the hydrogen ion selective permeable ion exchange membrane on the anode side. When an acid solution is circulated as a concentrate in the chamber on the cathode side (concentration chamber 2) and electricity is applied, metal ions produced by dissociation of the metal salt pass through the cation exchange membrane toward the cathode and pass through the cation exchange membrane. The acid solution on the cathode side moves to a chamber (concentration chamber 2) in which the acid solution flows, forms a salt, and is removed together with the acid solution. Since the hydrogen ion selectively permeable ion exchange membrane H selectively permeates only hydrogen ions and does not permeate metal ions, even if metal ions are attracted to the cathode, the hydrogen ion selectively permeable ion exchange membrane H permeates the cathode side. It does not move to the desalination room 1 next to the.
On the other hand, anions formed by dissociation of the organic acid are pulled by the anode but cannot pass through the cation exchange membrane. Further, H + ions pass through the cation exchange membrane from the concentrating chamber 2 and move to the desalting chamber 1 to form an organic acid in the desalting chamber 1. Therefore, the metal ions are removed from the desalting chamber 1 and the organic acid is recovered.

【0024】濃縮室に流通せしめられる濃縮液として
は、陽イオン交換膜を透過してきた金属イオンと塩を形
成するものであればよく、例えば硫酸、塩酸、硝酸など
が使用できる。
The concentrated liquid to be circulated in the concentrating chamber may be any liquid as long as it forms a salt with the metal ions that have permeated the cation exchange membrane, and for example, sulfuric acid, hydrochloric acid, nitric acid or the like can be used.

【0025】[0025]

【実施例】【Example】

【0026】<実施例1><Example 1>

【0027】図1のように陽極と陰極の間に、特開平5
ー228344号に開示されている水素イオン選択透過
性イオン交換膜Hと、陽イオン交換膜C(旭硝子株式会
社製のセレミオンCMV)の2枚からなるセルを1ユニ
ットとして配列し、有効面積が0.1m2 とした電気透
析槽で、陽イオン交換膜Cの陽極側の室(脱塩室)1に
ギ酸20g/リットルとナトリウム2g/リットルの混
合溶液を流通させ、陽イオン交換膜Cの陰極側の室(濃
縮室)2に硫酸5g/リットルの溶液を流通させ、ユニ
ットセル当たり0.5Vの定電圧で通電したところ、陽
イオン交換膜Cの陽極側の室1からギ酸が、陰極側の室
2から、硫酸ナトリウムと硫酸の混液が得られた。この
ときの、ナトリウムの電流効率は28%であり、陽イオ
ン交換膜Cの陽極側の室1の溶液に残ったナトリウム
は、0.1g/リットルであり、陽イオン交換膜Cの陰
極側の室2の溶液のナトリウム濃度は1.7g/リット
ルであった。
As shown in FIG. 1, there is a gap between the anode and the cathode.
No. 228344, a hydrogen ion selective permeable ion exchange membrane H and a cation exchange membrane C (Selemion CMV manufactured by Asahi Glass Co., Ltd.) are arranged as one unit cell, and the effective area is 0. in electrodialysis cell which was .1m 2, was passed through a mixed solution of formic acid 20 g / l of sodium 2 g / liter in the chamber (depletion chamber) 1 on the anode side of the cation exchange membrane C, the cathode of the cation exchange membrane C A solution of 5 g / liter of sulfuric acid was circulated through the side chamber (concentration chamber) 2 and energized at a constant voltage of 0.5 V per unit cell. As a result, formic acid was discharged from the chamber 1 on the anode side of the cation exchange membrane C to the cathode side. A mixed solution of sodium sulfate and sulfuric acid was obtained from the chamber 2. At this time, the current efficiency of sodium was 28%, the amount of sodium remaining in the solution in the chamber 1 on the anode side of the cation exchange membrane C was 0.1 g / liter, and the amount of sodium on the cathode side of the cation exchange membrane C was The sodium concentration of the solution in chamber 2 was 1.7 g / liter.

【0028】<実施例2><Example 2>

【0029】実施例1と同じ膜を使い、図2のように陽
極側から水素イオン選択透過性イオン交換膜Hと2枚の
陽イオン交換膜Cの計3枚からなるセルを1ユニットと
して配列した電気透析槽で、水素イオン選択透過性イオ
ン交換膜Hの陰極側の室(脱塩室)3にギ酸40g/リ
ットルとナトリウム4g/リットルの混合溶液を流通さ
せ、陽イオン交換膜Cと陽イオン交換膜Cの間の室(第
一濃縮室)4に硫酸10g/リットルの溶液を流通さ
せ、水素イオン選択透過性イオン交換膜Hの陽極側の室
(第二濃縮室)5に硫酸70g/リットルの溶液を流通
させ、ユニットセル当たり0.5Vの定電圧で通電し
た。
Using the same membrane as in Example 1, as shown in FIG. 2, a cell composed of a total of three hydrogen ion selective permeable ion exchange membranes H and two cation exchange membranes C from the anode side is arranged as one unit. In the prepared electrodialysis tank, a mixed solution of 40 g / liter of formic acid and 4 g / liter of sodium was passed through the cathode-side chamber (desalination chamber) 3 of the ion-selective permeable ion exchange membrane H, and the cation-exchange membrane C and cation were exchanged. A solution of sulfuric acid 10 g / liter was circulated in a chamber (first concentrating chamber) 4 between the ion exchange membranes C, and 70 g of sulfuric acid was placed in an anode side chamber (second concentrating chamber) 5 of the hydrogen ion selective permeable ion exchange membrane H. / Liter of the solution was circulated, and electricity was applied at a constant voltage of 0.5 V per unit cell.

【0030】その結果、水素イオン選択透過性イオン交
換膜Hの陽極側の室3からギ酸が、陽イオン交換膜Cと
陽イオン交換膜Cの間の室4、及び水素イオン選択透過
性イオン交換膜Hの陽極側の室5から、硫酸ナトリウム
と硫酸の混液が得られた。水素イオン選択透過性イオン
交換膜Hの陰極側の室3の溶液に残ったナトリウムは
0.1g/リットルであり、陽イオン交換膜Cと陽イオ
ン交換膜Cの間の室4の溶液のナトリウム濃度は3.8
g/リットル、水素イオン選択透過性イオン交換膜Hの
陽極側の室5の溶液のナトリウム濃度は15g/リット
ルであった。このときの、水素イオン選択透過性イオン
交換膜Hの陰極側の室3の溶液からのナトリウム脱塩電
流効率は27%であった。
As a result, formic acid from the anode-side chamber 3 of the hydrogen ion-selective permeable ion exchange membrane H, the chamber 4 between the cation exchange membrane C and the cation-exchange membrane C, and the hydrogen ion-selective permeable ion exchange. From the chamber 5 on the anode side of the membrane H, a mixed solution of sodium sulfate and sulfuric acid was obtained. The amount of sodium remaining in the solution in the chamber 3 on the cathode side of the hydrogen ion selective permeable ion exchange membrane H was 0.1 g / liter, and the sodium in the solution in the chamber 4 between the cation exchange membrane C and the cation exchange membrane C was sodium. Concentration is 3.8
The sodium concentration of the solution in the chamber 5 on the anode side of the hydrogen ion selective permeable ion exchange membrane H was 15 g / l. At this time, the sodium desalination current efficiency from the solution in the chamber 3 on the cathode side of the hydrogen ion selective permeable ion exchange membrane H was 27%.

【0031】<実施例3><Example 3>

【0032】実施例1と同じ電気透析槽(図1)を用い
て、陽イオン交換膜Cの陽極側の室1にクエン酸40g
/リットルとアルミニウム4g/リットルの混合溶液を
流通させ、陽イオン交換膜Cの陰極側の室2に硫酸7g
/リットルの溶液を流通させ、ユニットセル当たり0.
5Vの定電圧で通電したところ、陽イオン交換膜Cの陽
極側の室1の溶液からクエン酸が、陰極側の室2から硫
酸アルミニウムと硫酸の混液が得られた。陽イオン交換
膜Cの陽極側の室1の溶液に残ったアルミニウムは、
0.2g/リットルであり、陽イオン交換膜Cの陰極側
の室2の溶液のアルミニウム濃度は3.5g/リットル
であった。このときの水素イオン選択透過性イオン交換
膜Hの陰極側の室1の溶液からのアルミニウム脱塩電流
効率は37%であった。
Using the same electrodialysis cell as in Example 1 (FIG. 1), 40 g of citric acid was placed in the chamber 1 on the anode side of the cation exchange membrane C.
/ G and aluminum 4g / l mixed solution was circulated, and 7g of sulfuric acid was placed in the chamber 2 on the cathode side of the cation exchange membrane C.
Per liter of the solution is passed through, and a unit cell of 0.
When electricity was applied at a constant voltage of 5 V, citric acid was obtained from the solution in the chamber 1 on the anode side of the cation exchange membrane C, and a mixed solution of aluminum sulfate and sulfuric acid was obtained from the chamber 2 on the cathode side. The aluminum remaining in the solution in the chamber 1 on the anode side of the cation exchange membrane C is
It was 0.2 g / liter, and the aluminum concentration of the solution in the chamber 2 on the cathode side of the cation exchange membrane C was 3.5 g / liter. At this time, the aluminum desalination current efficiency from the solution in the chamber 1 on the cathode side of the hydrogen ion selective permeable ion exchange membrane H was 37%.

【0033】[0033]

【発明の効果】隔膜として陽イオン交換膜と水素イオン
選択透過性イオン交換膜とを用いることにより、有機酸
とその金属塩の混合溶液から有機酸を効率よく分離回収
することができる。
By using a cation exchange membrane and a hydrogen ion selective permeable ion exchange membrane as the diaphragm, the organic acid can be efficiently separated and recovered from the mixed solution of the organic acid and its metal salt.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する電気透析槽の一例を示す図。FIG. 1 is a diagram showing an example of an electrodialysis tank for carrying out the present invention.

【図2】本発明を実施する別の電気透析槽を示す図。FIG. 2 is a diagram showing another electrodialysis tank for carrying out the present invention.

【図3】従来の電気透析槽の一例を示す図。FIG. 3 is a diagram showing an example of a conventional electrodialysis tank.

【符号の説明】[Explanation of symbols]

1 室(脱塩室) 2 室(濃縮室) 3 室(脱塩室) 4 室(第一濃縮室) 5 室(第二濃縮室) 1 room (desalination room) 2 rooms (concentration room) 3 rooms (desalination room) 4 rooms (first concentration room) 5 rooms (second concentration room)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電気透析槽内の陽極及び陰極間に隔膜とし
て、陽イオン交換膜と水素イオン選択透過性イオン交換
膜とを配列し、陽イオン交換膜とその陽極側に配置され
た水素イオン選択透過性イオン交換膜との間の室に有機
酸とその金属塩の混合溶液を流通させ、また陽イオン交
換膜とその陰極側に配置された水素イオン選択透過性イ
オン交換膜又は陽イオン交換膜との間の室に濃縮液を流
通させて、通電し、陽イオン交換膜の陽極側の有機酸と
その金属塩の混合溶液を流通している室から金属イオン
を除去して有機酸を回収する有機酸の再生方法。
1. A cation exchange membrane and a hydrogen ion selective permeable ion exchange membrane are arranged as a diaphragm between an anode and a cathode in an electrodialysis tank, and a cation exchange membrane and hydrogen ions arranged on the anode side thereof are arranged. A mixed solution of an organic acid and its metal salt is circulated in a chamber between the permselective ion exchange membrane and a cation exchange membrane or a cation exchange membrane which is disposed on the cathode side of the cation exchange membrane. The concentrated liquid is circulated in the chamber between the membranes and energized to remove the metal ions from the chamber in which the mixed solution of the organic acid and its metal salt on the anode side of the cation exchange membrane is circulated to remove the organic acid. A method of regenerating an organic acid to be recovered.
【請求項2】水素イオン選択透過性イオン交換膜とし
て、イオン交換容量0.5〜4ミリ当量/g乾燥樹脂、
固定イオン濃度1〜10ミリ当量/gH2 O、膜厚0.
1〜150μm、硫酸0.5モル/リットル溶液中の抵
抗5Ω・cm2 以下を有する陽極側の陰イオン交換体層
と、陰極側の陽イオン交換層との複層イオン交換膜を使
用する請求項1に記載の有機酸の再生方法。
2. A hydrogen ion selective permeable ion exchange membrane, which has an ion exchange capacity of 0.5 to 4 meq / g dry resin,
Fixed ion concentration 1-10 meq / gH 2 O, film thickness 0.
A multi-layer ion exchange membrane comprising an anion exchange layer on the anode side and a cation exchange layer on the cathode side having a resistance of 5 Ω · cm 2 or less in a solution of 1 to 150 μm and 0.5 mol / liter of sulfuric acid. Item 2. A method for regenerating an organic acid according to Item 1.
JP11976394A 1994-05-10 1994-05-10 Regeneration of organic acid Pending JPH07299333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11976394A JPH07299333A (en) 1994-05-10 1994-05-10 Regeneration of organic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11976394A JPH07299333A (en) 1994-05-10 1994-05-10 Regeneration of organic acid

Publications (1)

Publication Number Publication Date
JPH07299333A true JPH07299333A (en) 1995-11-14

Family

ID=14769582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11976394A Pending JPH07299333A (en) 1994-05-10 1994-05-10 Regeneration of organic acid

Country Status (1)

Country Link
JP (1) JPH07299333A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09216848A (en) * 1996-01-10 1997-08-19 Hoechst Ag Production of pure glycolic acid
KR20020088230A (en) * 2001-05-18 2002-11-27 광주과학기술원 Production methods of organics from organic salts by ion substitution reaction using ion-exchange membranes
WO2009090105A1 (en) * 2008-01-18 2009-07-23 Eni S.P.A. Process for the treatment of the aqueous stream coming from the fischer-tropsch reaction
JP2012149001A (en) * 2011-01-18 2012-08-09 Kurita Water Ind Ltd Recovery device of oxalate ion from indium oxalate aqueous solution and recovery method of oxalate ion from indium oxalate aqueous solution
JP2016183088A (en) * 2015-03-27 2016-10-20 セントラルフィルター工業株式会社 Generator for chlorine dioxide-containing sterile water
CN112439321A (en) * 2019-08-29 2021-03-05 大禹环服(北京)科技有限公司 Electrodialysis method for removing heat-stable amine salt
WO2022211128A1 (en) * 2021-04-01 2022-10-06 出光興産株式会社 Method for producing lithium compound and apparatus for producing lithium compound

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09216848A (en) * 1996-01-10 1997-08-19 Hoechst Ag Production of pure glycolic acid
KR20020088230A (en) * 2001-05-18 2002-11-27 광주과학기술원 Production methods of organics from organic salts by ion substitution reaction using ion-exchange membranes
WO2009090105A1 (en) * 2008-01-18 2009-07-23 Eni S.P.A. Process for the treatment of the aqueous stream coming from the fischer-tropsch reaction
CN101952206A (en) * 2008-01-18 2011-01-19 艾尼股份公司 Process for the treatment of the aqueous stream coming from the fischer-tropsch reaction
JP2012149001A (en) * 2011-01-18 2012-08-09 Kurita Water Ind Ltd Recovery device of oxalate ion from indium oxalate aqueous solution and recovery method of oxalate ion from indium oxalate aqueous solution
JP2016183088A (en) * 2015-03-27 2016-10-20 セントラルフィルター工業株式会社 Generator for chlorine dioxide-containing sterile water
CN112439321A (en) * 2019-08-29 2021-03-05 大禹环服(北京)科技有限公司 Electrodialysis method for removing heat-stable amine salt
WO2022211128A1 (en) * 2021-04-01 2022-10-06 出光興産株式会社 Method for producing lithium compound and apparatus for producing lithium compound

Similar Documents

Publication Publication Date Title
Strathmann Electrodialysis and related processes
JP4805455B2 (en) Method and apparatus for preventing scale generation in an electrodeionization unit
US5126026A (en) Guard membranes for use in electrodialysis cells
EP0422453A2 (en) Process for purifying water
JPH10503415A (en) Improvement of electrodialysis including packed cell electrodialysis (electrodeionization)
Pourcelly et al. Applications of charged membranes in separation, fuel cells, and emerging processes
WO1999048820A1 (en) Electric desalting apparatus
Strathmann Electrodialysis and its application in the chemical process industry
Strathmann Ion-exchange membrane processes in water treatment
JP5295927B2 (en) Electric deionized water production equipment
US5288385A (en) Supported, mechanically stable bipolar membrane for electrodialysis
JPH07299333A (en) Regeneration of organic acid
JP5145305B2 (en) Electric deionized water production equipment
Strathmann Electrodialytic membrane processes and their practical application
US5282939A (en) Removal of salts by electrodialysis
US5089102A (en) Removal of salts by electrodialysis
JP3396104B2 (en) Modified bipolar membrane
JP3546498B2 (en) Method for separating, concentrating and recovering acid from aluminum etching wastewater
JPS5850153B2 (en) Method for efficiently separating and recovering acids and metals from solutions containing acids and metal salts
JPH07148420A (en) Method for recovering acid and alkali
EP0553136A1 (en) Guard membranes for use in electrodialysis cells
JPH07213869A (en) Production of water having small salt content
JP3311010B2 (en) Hydrogen ion selective electrodialysis method
CN220537620U (en) Water treatment device with reverse osmosis unit and electrochemical cell
CN220564436U (en) Electrochemical auxiliary ion exchange water treatment device with electrochemical cells arranged in series