JPH07298699A - Variable speed driver - Google Patents

Variable speed driver

Info

Publication number
JPH07298699A
JPH07298699A JP6082920A JP8292094A JPH07298699A JP H07298699 A JPH07298699 A JP H07298699A JP 6082920 A JP6082920 A JP 6082920A JP 8292094 A JP8292094 A JP 8292094A JP H07298699 A JPH07298699 A JP H07298699A
Authority
JP
Japan
Prior art keywords
current command
time constant
unit
value
induction motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6082920A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yamamoto
康弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP6082920A priority Critical patent/JPH07298699A/en
Publication of JPH07298699A publication Critical patent/JPH07298699A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To obtain a secondary time constant accurately in an early stage by eliminat ing the influence of noise. CONSTITUTION:A current control system obtains voltage commands V1d, V1q for exciting current command I0* and torque current command IT* on a two-phase rotating orthogonal coordinate system and a vector control is effected by determining a slip frequency based on the exciting current command, the torque current command and a secondary time constant tau2 of an induction motor 5. In such variable speed driver, a sequence processing section 21 starts operation while providing a preliminary excitation interval for nullifying the torque current command and generating only the exciting current command. A differential approximation operating section 23 obtains the difference between current and previous values for (n) samples of the exciting voltage V1d of an induction motor during the preliminary excitation interval as a differential approximation sample data string. Each data strmng is fed to a logarithmic operating section thence fed through an accumulating section 28, a matrix operating section 29 and a divider 30 where a linear approximation formula connecting the logarithmic sample data strings is determined by the method of least squares and a secondary time constant tau2 is determined from the reciprocal of the coefficient of linear approximation formula.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、誘導電動機のベクトル
制御による可変速駆動装置に係り、特に誘導電動機の二
次時定数測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable speed drive device for vector control of an induction motor, and more particularly to a secondary time constant measuring device for an induction motor.

【0002】[0002]

【従来の技術】図4は、ベクトル制御による可変速駆動
装置を例示する。速度制御アンプ1は、速度指令N*と
電動機のロータの速度検出値ωrとを比較し、その偏差
の比例・積分演算を行い、トルク電流指令IT*として
出力する。
2. Description of the Related Art FIG. 4 exemplifies a variable speed drive device by vector control. The speed control amplifier 1 compares the speed command N * with the detected speed value ω r of the rotor of the electric motor, performs proportional / integral calculation of the deviation, and outputs the torque current command I T *.

【0003】電流制御アンプ21、22は、ベクトル制御
の励磁電流指令I0*及びトルク電流指令IT*をそれぞ
れ指令とし、電源周波数に同期して回転する直交2相回
転座標系上の励磁軸電流成分の検出値I1d及びトルク軸
電流成分の検出値I1qとを比較し、その偏差の比例・積
分演算を行い、該直交2相回転座標系上の電圧指令
1d、V1qとして出力する。
The current control amplifiers 2 1 and 2 2 use an exciting current command I 0 * and a torque current command I T * for vector control as commands, and rotate on the orthogonal two-phase rotating coordinate system in synchronization with the power supply frequency. The detected value I 1d of the excitation axis current component and the detected value I 1q of the torque axis current component are compared, the proportional / integral calculation of the deviation is performed, and the voltage commands V 1d and V 1q on the orthogonal two-phase rotation coordinate system are compared. Output as.

【0004】座標変換部3は、2相の電圧指令V1d、V
1qを3相固定座標系の電圧Vu、Vv、Vwに2相/3相座
標変換を行う。
The coordinate conversion unit 3 has two-phase voltage commands V 1d and V 1 .
Voltage V u of the three-phase fixed coordinate system 1q, V v, performs two-phase / 3-phase coordinate conversion V w.

【0005】PWMインバータ4は、電圧Vu、Vv、V
wを指令として、これに相当するPWM波形の電圧を誘
導電動機5に供給する。
The PWM inverter 4 has voltages V u , V v , and V
Using w as a command, a voltage having a PWM waveform corresponding to this is supplied to the induction motor 5.

【0006】座標変換部6は、電流検出器7で検出する
誘導電動機5の固定座標系の3相電流を2相回転座標系
の電流I1d,I1qに3相/2相座標変換を行う。
The coordinate transformation unit 6 transforms the three-phase current in the fixed coordinate system of the induction motor 5 detected by the current detector 7 into the three-phase / two-phase coordinate transformation into the currents I 1d and I 1q in the two-phase rotating coordinate system. .

【0007】基準位相演算部8は、座標変換部3、6で
の座標変換に必要な基準位相θ1を発生する。このと
き、遅れ位相調整部8Aにより演算周期を1周期だけ遅
らせて座標変換部6に与える。
The reference phase calculator 8 generates a reference phase θ 1 required for coordinate conversion in the coordinate converters 3 and 6. At this time, the delay phase adjustment unit 8A delays the calculation cycle by one cycle and gives it to the coordinate conversion unit 6.

【0008】すべり演算部9は、励磁電流指令I0*と
トルク電流指令IT*と誘導電動機5の二次抵抗r2及び
励磁インダクタンスMからすべり周波数成分ωslipを求
める。基準位相演算部8では、このすべり周波数成分ω
slipに速度検出値ωrを加算して電源角周波数ω1を求
め、これを積分して基準位相(励磁軸位相)θ1を求め
る。
The slip calculation unit 9 obtains a slip frequency component ω slip from the exciting current command I 0 *, the torque current command I T *, the secondary resistance r 2 of the induction motor 5 and the exciting inductance M. In the reference phase calculation unit 8, this slip frequency component ω
The speed detection value ω r is added to slip to obtain the power source angular frequency ω 1 , and this is integrated to obtain the reference phase (excitation axis phase) θ 1 .

【0009】誘導電動機5のロータ速度ωrの検出は、
誘導電動機5に軸結合されるロータリーエンコーダ10
に回転速度に比例した周波数のパルスを得、速度演算部
11によりパルスの周期演算又は一定の演算周期毎のパ
ルス数から求める。
To detect the rotor speed ω r of the induction motor 5,
Rotary encoder 10 axially coupled to the induction motor 5
Then, a pulse having a frequency proportional to the rotation speed is obtained, and the speed calculation unit 11 calculates the pulse cycle or obtains it from the number of pulses for each constant calculation cycle.

【0010】以上の構成において、各部の制御・演算に
は、アナログ的に制御・演算を行う場合もあるが、制御
・演算の精度を高めるために、マイクロコンピュータを
使ってディジタル的に行うものが多い。
In the above-mentioned configuration, control / calculation of each part may be controlled / calculated in an analog manner. However, in order to improve the precision of control / calculation, it is digitally controlled by a microcomputer. Many.

【0011】このような誘導電動機のベクトル制御にお
いて、すべり演算部9によるすべり演算には定数として
の二次時定数を得るために誘導電動機の二次抵抗r2
励磁インダクタンスMが必要であるが、二次抵抗は温度
によって変動するため、運転時に変動成分を補償する必
要がある。
In such vector control of the induction motor, the slip calculation by the slip calculator 9 requires the secondary resistance r 2 and the exciting inductance M of the induction motor to obtain the secondary time constant as a constant. Since the secondary resistance fluctuates with temperature, it is necessary to compensate the fluctuation component during operation.

【0012】この二次時定数測定を誘導電動機の予備励
磁期間中に行うことにより温度変動分も含めた測定値を
得る方式がある(例えば、特開平2−106190号公
報)。
There is a method of obtaining the measured value including the temperature fluctuation by performing the secondary time constant measurement during the pre-excitation period of the induction motor (for example, Japanese Patent Laid-Open No. 2-106190).

【0013】この測定方式は、誘導電動機に定電流又は
定電圧を印加したときの一次電圧又は一次電流を3点測
定し、この測定値から演算によって求める。図5は定電
流印加による一次電圧波形を示し、時間Δt間隔の測定
電圧v1,v2,v3から次式の演算により二次時定数τ2
を求める。
In this measuring method, the primary voltage or the primary current when a constant current or a constant voltage is applied to the induction motor is measured at three points, and the measured value is calculated. FIG. 5 shows a primary voltage waveform by applying a constant current. The secondary time constant τ 2 is calculated from the measured voltages v 1 , v 2 , v 3 at time intervals Δt by the following equation.
Ask for.

【0014】[0014]

【数2】 [Equation 2]

【0015】この二次時定数を使ったベクトル制御によ
り、誘導電動機に温度変化があるも常にベクトル制御条
件を成立させ、高いトルク精度を得ようとする。
By the vector control using the secondary time constant, the vector control condition is always satisfied even if the induction motor has a temperature change, and high torque accuracy is obtained.

【0016】[0016]

【発明が解決しようとする課題】従来の二次時定数測定
方式において、実際の装置に適用する場合には、磁束が
早く確立する電流一定方式の方が採用されることが多
い。また、計測電圧も可変速駆動装置の外部に電圧検出
器を設けるのでなく、電流制御系のアンプ21、22の出
力電圧V1d、V1qを計測値の代わりとすることで安価な
測定装置を実現できる。
In the conventional secondary time constant measuring method, when applied to an actual device, a constant current method that quickly establishes a magnetic flux is often adopted. Also, the measured voltage is inexpensive because a voltage detector is not provided outside the variable speed drive device, but the output voltages V 1d and V 1q of the amplifiers 2 1 and 2 2 of the current control system are used instead of the measured values. The device can be realized.

【0017】しかし、電流制御系の電流制御特性を高速
応答に設定するため、制御ゲインを高く設定した場合、
電流制御出力である電圧V1d、V1qは大きなリップルを
含んでしまう。
However, in order to set the current control characteristic of the current control system to a high-speed response, when the control gain is set high,
The voltages V 1d and V 1q , which are current control outputs, include large ripples.

【0018】このため、従来のように、3点の電圧計測
データのみから二次抵抗を測定すると、リップル成分が
ノイズとなり、正確な定数が測定できないことになる。
Therefore, if the secondary resistance is measured from only the voltage measurement data at three points as in the conventional case, the ripple component becomes noise, and the accurate constant cannot be measured.

【0019】本発明の目的は、ノイズの影響を無くして
正確な二次時定数を得て制御精度を高める可変速駆動装
置を提供することにある。
It is an object of the present invention to provide a variable speed drive device which eliminates the influence of noise and obtains an accurate secondary time constant to improve control accuracy.

【0020】本発明の他の目的は、予備励磁期間の早い
時期に二次時定数を求めることができる可変速駆動装置
を提供することにある。
Another object of the present invention is to provide a variable speed drive device capable of obtaining the secondary time constant at an early stage of the pre-excitation period.

【0021】[0021]

【課題を解決するための手段】本発明は、前記課題の解
決を図るため、直交2相回転座標系上の励磁電流指令及
びトルク電流指令とそれぞれの電流成分の検出値の偏差
から該直交2相回転座標系上の電圧指令V1d、V1qを得
る電流制御系と、前記励磁電流指令とトルク電流指令と
誘導電動機の二次時定数τ2からすべり周波数を求める
すべり演算部とを備えた誘導電動機の可変速駆動装置に
おいて、ベクトル制御の運転開始時に前記トルク電流指
令を零とし励磁電流指令のみを発生する予備励磁期間を
有するシーケンス処理部と、前記予備励磁期間に誘導電
動機の励磁電圧分(V1d)をnサンプルだけサンプリン
グし、各サンプル値の前回値と今回値の差分を微分近似
サンプルデータ列として得る微分近似演算部と、前記微
分近似サンプルデータ列の個々の対数を求める対数演算
部と、前記対数化したサンプルデータ列を結ぶ直線近似
式を最小二乗法により求め、該直線近似式の係数の逆数
を前記二次時定数τ2として得る最小二乗法演算部と、
を備えたことを特徴とする。
In order to solve the above-mentioned problems, the present invention uses the excitation current command and the torque current command on the orthogonal two-phase rotational coordinate system and the deviation of the detected values of the respective current components to determine the orthogonality 2. A current control system for obtaining voltage commands V 1d and V 1q on the phase rotation coordinate system, and a slip calculation unit for obtaining a slip frequency from the excitation current command, the torque current command, and the secondary time constant τ 2 of the induction motor are provided. In the variable speed drive device for an induction motor, a sequence processing unit having a pre-excitation period in which the torque current command is set to zero and only an excitation current command is generated at the start of operation of vector control, and an excitation voltage component of the induction motor during the pre-excitation period. the (V 1d) sampling by n samples, a differential approximation calculation unit for obtaining a difference between the previous value and the current value of each sample value as a derivative approximation sample data string, the derivative approximation sample de A logarithmic operation unit for obtaining the individual log of data columns, the calculated by the least square method linear approximation connecting the logarithmic sample data sequence to obtain the reciprocal of the coefficient of the straight line approximation formula as the time constant tau 2 the secondary A least squares arithmetic unit,
It is characterized by having.

【0022】また、本発明は、前記最小二乗法演算部
は、次式
According to the present invention, the least squares arithmetic unit is

【0023】[0023]

【数3】 [Equation 3]

【0024】にしたがって二次時定数τ2を得ることを
特徴とする。
According to the above, the second-order time constant τ 2 is obtained.

【0025】また、本発明は、前記最小二乗法演算部
は、前記各サンプリング時刻までの各サンプル時刻の中
間時刻ti’を補助行列要素として記憶する第1のメモ
リ部と、前記補助行列要素より正規方程式の逆行列の各
要素mとΣti’とΣ(ti’)2及びΔiを記憶する第
2のメモリ部と、サンプル時刻i毎に前記対数演算部の
対数値Fi’を累積加算した値ΣFi’、及び該対数値と
前記補助行列要素ti’を乗算して累積加算したΣti
・Fi’を得る累積加算演算部と、前記累積加算演算部
の両出力と前記第2のメモリ部からの逆行列の値を乗算
し、この値に符号を付けて加算する行列演算部と、前記
第2のメモリ部の逆行列要素Δiを前記行列演算部の出
力で割り算してサンプル時刻毎に前記二次時定数
(τ2iを得る割算器と、を備えたことを特徴とする。
Further, according to the present invention, the least-squares arithmetic operation section stores a first memory section for storing an intermediate time t i 'of each sample time up to each sampling time as an auxiliary matrix element, and the auxiliary matrix element. The second memory unit for storing each element m of the inverse matrix of the normal equation, Σt i ′, Σ (ti ′) 2 and Δi, and the logarithmic value F i ′ of the logarithmic calculation unit are accumulated at each sample time i. added value .SIGMA.F i ', and the pair numerical and the auxiliary matrix elements t i' Σt i 'obtained by cumulative addition is multiplied by
A cumulative addition computing unit that obtains Fi ′, a matrix computing unit that multiplies both outputs of the cumulative addition computing unit and the value of the inverse matrix from the second memory unit, and adds this value with a sign A divider that divides the inverse matrix element Δi of the second memory unit by the output of the matrix calculation unit to obtain the secondary time constant (τ 2 ) i at each sample time. To do.

【0026】[0026]

【作用】 (第1の発明)図2は、誘導電動機をその停止状態から
運転開始する場合のシーケンス処理部の運転パターンを
示す。同図の時刻t1の時点で与えられる運転指令と同
時に一定値の励磁電流指令I0*を発生し、トルク電流
指令IT*は零のままとし、時刻t2から発生する。
(First Invention) FIG. 2 shows an operation pattern of the sequence processing unit when the induction motor is started from the stopped state. A constant value of the exciting current command I 0 * is generated at the same time as the operation command given at the time t 1 in the figure, and the torque current command I T * remains zero, and is generated from the time t 2 .

【0027】この予備励磁期間(t1〜t2)には、誘導
電動機の二次磁束λ2dが指数関数的に増加する。このと
き出力電圧のトルク軸成分(q軸電圧成分)V1qは零の
ままであるが、磁束軸成分(d軸電圧成分)V1dは二次
磁束の増加に伴い、指数関数的に減少する。この電圧方
程式は、次の式で表せる。
During this pre-excitation period (t 1 to t 2 ), the secondary magnetic flux λ 2d of the induction motor exponentially increases. At this time, the torque axis component (q-axis voltage component) V 1q of the output voltage remains zero, but the magnetic flux axis component (d-axis voltage component) V 1d exponentially decreases as the secondary magnetic flux increases. . This voltage equation can be expressed by the following equation.

【0028】[0028]

【数4】 [Equation 4]

【0029】r1:誘導電動機の一次抵抗 r2:誘導電動機の二次抵抗 τ2:誘導電動機の二次時定数(M/r2) M:誘導電動機の励磁インダクタンス t:時間 上記の特性式より、予備励磁期間では励磁電流I0*、
抵抗r1,r2、励磁インダクタンスMが一定と仮定し、
また電圧V1dがノイズを含むが基本成分が特性式通りに
発生すると仮定すると、該特性式を解く演算によって二
次時定数τ2を求めることができる。
R 1 : primary resistance of induction motor r 2 : secondary resistance of induction motor τ 2 : secondary time constant of induction motor (M / r 2 ) M: exciting inductance of induction motor t: time Therefore, in the pre-excitation period, the excitation current I 0 *,
Assuming that the resistances r 1 and r 2 and the exciting inductance M are constant,
Further, assuming that the voltage V 1d contains noise but the basic component is generated according to the characteristic formula, the secondary time constant τ 2 can be obtained by the calculation for solving the characteristic formula.

【0030】この演算は、まず不要な項を消去するた
め、(1)式を微分すると次の(2)式となる。
In this calculation, since unnecessary terms are first deleted, the following formula (2) is obtained by differentiating the formula (1).

【0031】[0031]

【数5】 [Equation 5]

【0032】さらに、指数関数成分を線形に変換するた
め、eを底とする対数をとると次の(3)式となる。
Further, since the exponential function component is linearly converted, the following equation (3) is obtained by taking the logarithm with e being the base.

【0033】[0033]

【数6】 [Equation 6]

【0034】これら(1)〜(3)式の関係は図3に示
すようになり、(a)には磁束軸電圧V1dの波形を、
(b)には微分波形を、(c)には対数波形を示す。こ
の結果、二次時定数τ2は、(c)の波形の傾きの逆数
から求められることになる。
The relationship of these equations (1) to (3) is as shown in FIG. 3, and the waveform of the magnetic flux axis voltage V 1d is shown in (a).
A differential waveform is shown in (b), and a logarithmic waveform is shown in (c). As a result, the secondary time constant τ 2 is obtained from the reciprocal of the slope of the waveform in (c).

【0035】ここで、電圧V1dの微分演算には、微分近
似演算部による近似演算を行う。すなわち、サンプル時
刻tiでの励磁軸電圧V1d(ti)をn点取り出し、次式
のように差分近似して微分値を求める。ただし、近似し
た微分成分の時刻t'iは差分近似期間の中間時刻とす
る。
Here, in the differential operation of the voltage V 1d, an approximate operation by the differential approximate operation unit is performed. That is, n points of the excitation axis voltage V 1d (t i ) at the sample time t i are taken out, and the differential value is obtained by the difference approximation as in the following equation. However, the time t ′ i of the approximated differential component is an intermediate time of the difference approximation period.

【0036】[0036]

【数7】 [Equation 7]

【0037】このサンプルデータ列から指数関数成分を
線形に変換するために、対数演算部は個々のサンプルデ
ータの対数を求める。この対数は次式のようになる。
In order to linearly convert the exponential function component from this sample data string, the logarithmic calculation unit obtains the logarithm of each sample data. This logarithm is as follows.

【0038】[0038]

【数8】 [Equation 8]

【0039】次に、最小二乗法演算部は、対数化したサ
ンプルデータ列を結ぶ直線の傾きの逆数を最小二乗法に
より演算することで二次時定数τ2を得る。
Next, the least-squares method computing section obtains a quadratic time constant τ 2 by computing the reciprocal of the slope of the straight line connecting the logarithmized sample data strings by the least-squares method.

【0040】(第2の発明)最小二乗法演算部による二
次時定数τ2の演算は、サンプルデータ列を値として取
る直線の傾きのみを求めればよく、一次方程式の係数と
して求められる。この係数演算を最小二乗法で求める演
算手順を以下に詳細に説明する。
(Second Invention) The calculation of the quadratic time constant τ 2 by the least-squares calculation unit is only required to find the slope of a straight line taking the sample data string as a value, and it is found as a coefficient of a linear equation. The calculation procedure for obtaining this coefficient calculation by the least square method will be described in detail below.

【0041】サンプルデータ列として、n個のデータ
(x1,f1)、(x2,f2)、…(xn,fn)が与えら
れ、この各点の近くを通る近似直線の方程式を最小二乗
法で求めるには、まず正規方程式を作るための補助行列
Cは、一次方程式であるため、次のようになる。
As the sample data string, n pieces of data (x 1 , f 1 ), (x 2 , f 2 ), ... (X n , f n ) are given, and an approximate straight line passing near each point is given. In order to obtain the equation by the method of least squares, first, the auxiliary matrix C for making the normal equation is a linear equation, and therefore, it is as follows.

【0042】[0042]

【数9】 [Equation 9]

【0043】また、正規方程式の係数行列Aは、次のよ
うになる。
The coefficient matrix A of the normal equation is as follows.

【0044】[0044]

【数10】 [Equation 10]

【0045】また、定数行列bは、次のようになる。The constant matrix b is as follows.

【0046】[0046]

【数11】 [Equation 11]

【0047】そして、Aa=bの方程式を解くため、係
数行列Aの逆行列を求めると、次のようになる。
Then, in order to solve the equation of Aa = b, the inverse matrix of the coefficient matrix A is obtained as follows.

【0048】[0048]

【数12】 [Equation 12]

【0049】したがって、定数行列bを測定結果から求
められたとすると、係数行列aは、次のようになる。
Therefore, assuming that the constant matrix b is obtained from the measurement result, the coefficient matrix a is as follows.

【0050】[0050]

【数13】 [Equation 13]

【0051】以上のことから、一次関数近似の場合の最
小二乗法により係数行列aが求められる。本発明では、
近似直線の傾きのみを得るため、(11)式のうち第2
行のみを求めれば良い。
From the above, the coefficient matrix a can be obtained by the least squares method in the case of linear function approximation. In the present invention,
In order to obtain only the slope of the approximate straight line,
You only have to ask for the line.

【0052】該第2行において、図3の微分近似したサ
ンプルデータとの対応関係は、xiがti’、fi
i’と置き換えられ、求める近似一次関数y(x)=
0+a1xがV1d(t)=a0+a1F'(t)と置き換
えられる。
In the second line, the correspondence with the differentially approximated sample data of FIG. 3 is such that xi is replaced by t i 'and f i is replaced by F i ' and the approximate linear function y (x) =
a 0 + a 1 x is replaced with V 1d (t) = a 0 + a 1 F ′ (t).

【0053】したがって、二次時定数τ2は、次式の演
算で求められる。
Therefore, the secondary time constant τ 2 can be calculated by the following equation.

【0054】[0054]

【数14】 [Equation 14]

【0055】(第3の発明)第2の発明では、n点のデ
ータを計測後、二次時定数τ2を求める。しかし、二次
磁束の確立には二次時定数程度の時間が必要であり、そ
のとき二次磁束自体の確立を予測するためには予備励磁
開始直後から実機の二次時定数を用いて二次磁束の推定
演算を行う必要がある。
(Third Invention) In the second invention, after measuring the data at n points, the secondary time constant τ 2 is obtained. However, the time required to establish the secondary magnetic flux is about the time of the secondary time constant, and in order to predict the establishment of the secondary magnetic flux itself, the secondary time constant of the actual machine is used immediately after the start of pre-excitation. It is necessary to perform an estimation calculation of the secondary magnetic flux.

【0056】そこで、本発明ではi=3,4,5,…n
の各測定点において、その測定点以前までの計測できて
いるデータを用いて二次時定数(τ2iを求める。
Therefore, in the present invention, i = 3, 4, 5, ... N
At each measurement point, the secondary time constant (τ 2 ) i is calculated using the data measured up to that point.

【0057】この演算には、次式に示すように、補助行
列Cをn=2,3,4,…iの各場合についてそれぞれ
計算して第1のメモリ部に記憶しておく。
In this calculation, as shown in the following equation, the auxiliary matrix C is calculated for each of the cases of n = 2, 3, 4, ... I and stored in the first memory section.

【0058】[0058]

【数15】 [Equation 15]

【0059】同様に、正規方程式の係数行列の逆行列A
-1の各要素も各データ点数までの係数を計算して第2の
メモリ部に記憶しておく。
Similarly, the inverse matrix A of the coefficient matrix of the normal equation
For each element of -1 , the coefficient up to each data point is calculated and stored in the second memory unit.

【0060】定数行列bは、以下のように前回のデータ
を利用して計算することもできる。
The constant matrix b can also be calculated using the previous data as follows.

【0061】[0061]

【数16】 [Equation 16]

【0062】これら各サンプリング時刻i=2,3,
4,…nまでの各データを使い、対数演算部からの各サ
ンプルデータについて累積加算演算部と行列演算部及び
割算器による演算により、各時刻での二次時定数τ2
求める。この演算式は次のようになる。
These sampling times i = 2, 3,
Using each data up to 4, ... n, the secondary time constant τ 2 at each time is obtained by the calculation by the cumulative addition calculation unit, the matrix calculation unit, and the divider for each sample data from the logarithmic calculation unit. This arithmetic expression is as follows.

【0063】[0063]

【数17】 [Equation 17]

【0064】bi1:定数行列biの第1行の要素 bi2:定数行列biの第2行の要素 本発明では、計測開始から各時刻iまでのデータより、
最小二乗法による傾きが求められるため、二次時定数が
逐次計算可能となる。
[0064] b i1: constant matrix b first row of elements b of i i2: In the second row elements present invention of constant matrix b i, from the data to each time i from the start of measurement,
Since the slope is obtained by the method of least squares, the quadratic time constant can be calculated sequentially.

【0065】[0065]

【実施例】図1は、本発明の一実施例を示す二次時定数
演算ブロック図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram of a secondary time constant calculation showing an embodiment of the present invention.

【0066】シーケンス処理部21は、ベクトル制御の
運転開始時に図3のような予備励磁期間を設けた励磁電
流指令I0*とトルク電流指令IT*を発生する。
The sequence processing unit 21 generates an exciting current command I 0 * and a torque current command I T * having a pre-excitation period as shown in FIG. 3 at the start of vector control operation.

【0067】サンプル時刻発生部22は、予備励磁開始
時刻から設定されるn点のサンプリング時刻データを発
生する。
The sample time generator 22 generates n points of sampling time data set from the pre-excitation start time.

【0068】微分近似演算部23は、電流制御アンプ2
1の出力になる励磁電圧指令V1dをサンプル時刻発生部
22の発生タイミングでサンプリングし、各サンプル値
の前回値と今回値の差分を微分近似データとして得る。
The differential approximating operation unit 23 includes the current control amplifier 2
The excitation voltage command V 1d that outputs 1 is sampled at the generation timing of the sample time generation unit 22, and the difference between the previous value and the current value of each sample value is obtained as differential approximation data.

【0069】対数演算部24は、微分近似演算部23か
らの各サンプルデータ列に対して個々にeを底とする対
数を求める。
The logarithmic calculation unit 24 individually obtains the logarithm having e as a base for each sample data string from the differential approximation calculation unit 23.

【0070】メモリ部25、26、27は、各サンプル
時刻iまでの行列要素をそれぞれテーブルデータとして
記憶する。メモリ部25には微分近似の中間時刻ti
を補助行列要素として記憶し、メモリ部26には正規方
程式の逆行列の各要素mとΣti’を記憶し、メモリ部
27にはΣ(ti’)2と(Σ(ti))2及びmから求め
たΔiを記憶する。
The memory units 25, 26 and 27 store the matrix elements up to each sample time i as table data. Intermediate time t i 'of the differential approximation is stored in the memory unit 25.
Is stored as an auxiliary matrix element, each element m and Σt i ′ of the inverse matrix of the normal equation is stored in the memory unit 26, and Σ (t i ′) 2 and (Σ (t i )) are stored in the memory unit 27. The Δi obtained from 2 and m is stored.

【0071】累積加算演算部28は、対数演算部24か
らのサンプルデータFi’について、定数行列bの成分
を計算する。281では(14)式の第1行要素に相当
する値を、282と283では第2行要素に相当する値を
得る。
The cumulative addition computing unit 28 computes the components of the constant matrix b for the sample data Fi 'from the logarithmic computing unit 24. In 28 1 , the value corresponding to the first row element of the equation (14) is obtained, and in 28 2 and 28 3 , the value corresponding to the second row element is obtained.

【0072】行列演算部29は、累積加算演算部28か
らの各値についてメモリ部26からの定数mとΣti
をそれぞれ乗算し、その差を求めることで(15)式の
分母の項を得る。
The matrix calculation unit 29 calculates the constant m and Σt i 'from the memory unit 26 for each value from the cumulative addition calculation unit 28.
And the difference is obtained to obtain the denominator term of Expression (15).

【0073】割算器30は、メモリ部27からのΔiを
分子とし、行列演算部29からの値を分母とする割り算
により二次時定数(τ2iを得る。
The divider 30 obtains a quadratic time constant (τ 2 ) i by division with Δi from the memory unit 27 as the numerator and the value from the matrix operation unit 29 as the denominator.

【0074】本実施例によれば、予備励磁開始直後から
二次時定数を得ることができる。すなわち、データ点数
が少ないときはノイズの影響を受けるため、制度は悪く
なるが、早い時期に二次時定数を得ることができる。そ
して、データ点数が多くなるに従い精度が良くなり、予
備励磁期間を終えてトルク電流が出力され、すべり演算
に用いられるときには、高い精度の二次時定数を使った
ベクトル制御ができる。
According to this embodiment, the secondary time constant can be obtained immediately after the start of pre-excitation. That is, when the number of data points is small, it is affected by noise, so the accuracy is poor, but the secondary time constant can be obtained early. Then, as the number of data points increases, the accuracy improves, and when the pre-excitation period ends and the torque current is output and used for slip calculation, vector control using a highly accurate secondary time constant can be performed.

【0075】なお、実施例において、最終データのサン
プリングによる各演算部の演算結果により、n点のデー
タを計測後の二次時定数τ2が得られる。
In the embodiment, the secondary time constant τ 2 after measuring the data at n points can be obtained from the calculation result of each calculation unit by sampling the final data.

【0076】なお、実施例において、励磁電圧の検出を
誘導電動機5の一次電圧から直接に検出する構成とする
ことができる。また、二次時定数演算のための各部22
〜30はマイクロコンピュータ構成の制御装置に設ける
ソフトウエア処理として置換できる。
In the embodiment, the exciting voltage may be detected directly from the primary voltage of the induction motor 5. In addition, each unit 22 for calculating the secondary time constant
˜30 can be replaced as software processing provided in the control device having a microcomputer configuration.

【0077】[0077]

【発明の効果】以上のとおり、本発明によれば、予備励
磁期間の励磁電圧成分をnサンプルだけサンプリング
し、このサンプルデータ列に対して微分近似演算し、さ
らに対数を求め、このデータ列を結ぶ直線近似式を最小
二乗法により求め、その係数の逆数を二次時定数として
求めるようにしたため、以下の効果がある。
As described above, according to the present invention, the excitation voltage component of the pre-excitation period is sampled by n samples, the differential approximation operation is performed on this sample data string, and the logarithm is calculated. Since the linear approximation formula to be connected is obtained by the method of least squares and the reciprocal of the coefficient is obtained as the quadratic time constant, the following effects are obtained.

【0078】(1)予備励磁期間の励磁電圧波形から多
点のサンプリングデータから最小二乗法を用いて統計的
な手法でノイズ成分を抑制するため計測精度を向上でき
る。
(1) Since the noise component is suppressed by a statistical method using the least squares method from the sampling data of multiple points from the excitation voltage waveform in the preliminary excitation period, the measurement accuracy can be improved.

【0079】(2)計測電圧を高いゲインにした電流制
御系の出力指令から得るもノイズの影響をなくして計測
精度を向上できる。
(2) Even if it is obtained from the output command of the current control system in which the measured voltage has a high gain, the influence of noise can be eliminated and the measurement accuracy can be improved.

【0080】(3)最小二乗法による二次時定数の演算
に用いる係数はサンプリング時刻が予め決定されていれ
ばテーブルデータ化することができ、また計測データの
演算も前回値を利用することができ、サンプリング毎の
演算量はデータ点数に関係なく一定となり、データ点数
の増加にも演算処理時間が増えることはない。
(3) The coefficients used for calculating the secondary time constant by the least square method can be made into table data if the sampling time is predetermined, and the previous value can be used for the calculation of the measurement data. Therefore, the amount of calculation for each sampling is constant regardless of the number of data points, and an increase in the number of data points does not increase the calculation processing time.

【0081】(4)予備励磁開始直後から二次時定数を
得ることができる。
(4) The secondary time constant can be obtained immediately after the start of pre-excitation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】予備励磁期間の波形図。FIG. 2 is a waveform diagram of a pre-excitation period.

【図3】本発明を原理的に説明するための二次時定数測
定波形図。
FIG. 3 is a second-order time constant measurement waveform diagram for explaining the present invention in principle.

【図4】ベクトル制御のブロック図。FIG. 4 is a block diagram of vector control.

【図5】従来例の電圧測定態様図。FIG. 5 is a voltage measurement mode diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1…速度制御アンプ 21、22…電流制御アンプ 5…誘導電動機 8…基準位相演算部 9…すべり演算部 21…シーケンス処理部 22…サンプル時刻発生部 23…微分近似演算部 24…対数演算部 25、26、27…メモリ部 28…累積加算演算部 29…行列演算部 30…割算器1 ... Speed control amplifier 2 1 , 2 2 ... Current control amplifier 5 ... Induction motor 8 ... Reference phase calculation unit 9 ... Slip calculation unit 21 ... Sequence processing unit 22 ... Sample time generation unit 23 ... Differential approximation calculation unit 24 ... Logarithmic calculation Units 25, 26, 27 ... Memory unit 28 ... Cumulative addition computing unit 29 ... Matrix computing unit 30 ... Divider

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 直交2相回転座標系上の励磁電流指令及
びトルク電流指令とそれぞれの電流成分の検出値の偏差
から該直交2相回転座標系上の電圧指令V1d、V1qを得
る電流制御系と、前記励磁電流指令とトルク電流指令と
誘導電動機の二次時定数τ2からすべり周波数を求める
すべり演算部とを備えた誘導電動機の可変速駆動装置に
おいて、 ベクトル制御の運転開始時に前記トルク電流指令を零と
し励磁電流指令のみを発生する予備励磁期間を有するシ
ーケンス処理部と、 前記予備励磁期間に誘導電動機の励磁電圧分(V1d)を
nサンプルだけサンプリングし、各サンプル値の前回値
と今回値の差分を微分近似サンプルデータ列として得る
微分近似演算部と、 前記微分近似サンプルデータ列の個々の対数を求める対
数演算部と、 前記対数化したサンプルデータ列を結ぶ直線近似式を最
小二乗法により求め、該直線近似式の係数の逆数を前記
二次時定数τ2として得る最小二乗法演算部とを備えた
ことを特徴とする可変速駆動装置。
1. A current for obtaining a voltage command V 1d , V 1q on the orthogonal two-phase rotating coordinate system from a deviation between an excitation current command and a torque current command on the orthogonal two-phase rotating coordinate system and detected values of respective current components. In the variable speed drive device of the induction motor, which includes a control system, the excitation current command, the torque current command, and the slip calculation unit that determines the slip frequency from the secondary time constant τ 2 of the induction motor, the vector control is started at the start of operation. A sequence processing unit having a pre-excitation period in which the torque current command is zero and only the excitation current command is generated, and the excitation voltage component (V 1d ) of the induction motor is sampled by n samples during the pre-excitation period, and each sample value A differential approximation calculator that obtains the difference between the current value and the current value as a differential approximation sample data string, a logarithm calculator that obtains each logarithm of the differential approximation sample data string, and the logarithm Was determined by the method of least squares linear approximation equation connecting the sample data string, variable speed, characterized in that a least-squares method calculation unit which the inverse of the coefficient of the straight line approximation formula obtained as the secondary time constant tau 2 Drive.
【請求項2】 前記最小二乗法演算部は、次式 【数1】 にしたがって二次時定数τ2を得ることを特徴とする請
求項1記載の可変速駆動装置。
2. The least-squares method computing unit is defined by the following equation: 2. The variable speed drive device according to claim 1, wherein the secondary time constant τ 2 is obtained in accordance with the above.
【請求項3】 前記最小二乗法演算部は、 前記各サンプリング時刻までの各サンプル時刻の中間時
刻ti’を補助行列要素として記憶する第1のメモリ部
と、 前記補助行列要素より正規方程式の逆行列の各要素mと
Σti’とΣ(ti’)2及びΔiを記憶する第2のメモ
リ部と、 サンプル時刻i毎に前記対数演算部の対数値Fi’を累
積加算した値ΣFi’、及び該対数値と前記補助行列要
素ti’を乗算して累積加算したΣti’・Fi’を得る
累積加算演算部と、 前記累積加算演算部の両出力と前記第2のメモリ部から
の逆行列の値を乗算し、この値に符号を付けて加算する
行列演算部と、 前記第2のメモリ部の逆行列要素Δiを前記行列演算部
の出力で割り算してサンプル時刻毎に前記二次時定数
(τ2iを得る割算器とを備えたことを特徴とする請求
項1記載の可変速駆動装置。
3. The least-squares method computing unit stores, as an auxiliary matrix element, an intermediate time t i 'of each sample time up to each sampling time, and a normal equation from the auxiliary matrix element. A second memory unit for storing each element m of the inverse matrix, Σt i ′, Σ (ti ′) 2 and Δi, and a value ΣF obtained by cumulatively adding the logarithmic value F i ′ of the logarithmic operation unit for each sample time i. i ′, and a cumulative addition computing unit for multiplying the logarithmic value by the auxiliary matrix element t i ′ and cumulatively adding Σt i ′ · Fi ′, both outputs of the cumulative addition computing unit, and the second memory A matrix operation unit that multiplies the value of the inverse matrix from the unit, adds the value with a sign, and divides the inverse matrix element Δi of the second memory unit by the output of the matrix operation unit, and every sample time. to wherein said secondary time constant (tau 2) further comprising a divider to obtain a i in Variable speed drive according to claim 1, wherein.
JP6082920A 1994-04-21 1994-04-21 Variable speed driver Pending JPH07298699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6082920A JPH07298699A (en) 1994-04-21 1994-04-21 Variable speed driver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6082920A JPH07298699A (en) 1994-04-21 1994-04-21 Variable speed driver

Publications (1)

Publication Number Publication Date
JPH07298699A true JPH07298699A (en) 1995-11-10

Family

ID=13787688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6082920A Pending JPH07298699A (en) 1994-04-21 1994-04-21 Variable speed driver

Country Status (1)

Country Link
JP (1) JPH07298699A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107615641A (en) * 2015-06-12 2018-01-19 株式会社日立产机系统 The power conversion device of induction machine, secondary time constant measuring method and method for control speed

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107615641A (en) * 2015-06-12 2018-01-19 株式会社日立产机系统 The power conversion device of induction machine, secondary time constant measuring method and method for control speed
EP3309953A4 (en) * 2015-06-12 2019-04-24 Hitachi Industrial Equipment Systems Co., Ltd. Power conversion device for induction machine, secondary time constant measurement method and speed control method

Similar Documents

Publication Publication Date Title
JPH09304489A (en) Method for measuring motor constant of induction motor
JP2001025280A (en) Active reduction of torque mismatching for rotary machine
JP2000270600A (en) Drive of induction motor, and estimating method of its parameters
JP2923359B2 (en) Determination method of short-circuit inductance of asynchronous machine
KR20200105622A (en) Device and method for determination of winding temperature
JP3111898B2 (en) Variable speed control device for AC motor
JP2943377B2 (en) Vector controller for induction motor
JP3099159B2 (en) Method and apparatus for measuring motor constants
JPH07298699A (en) Variable speed driver
US4322672A (en) Electric motor control apparatus
US20040135539A1 (en) Controller for induction motor
JP3092839B2 (en) Inverter device with constant measurement setting function
JP3528108B2 (en) Adaptive slip frequency type vector control method and apparatus for induction motor
JPH0627789B2 (en) Induction motor constant measurement method
JP2850096B2 (en) Inverter control method with constant measurement setting function
JP3111798B2 (en) Variable speed drive
JP2629309B2 (en) Vector controller for induction motor
EP1641114A1 (en) Method for determining the function of magnetic flux upon variation of the supply current of a synchronous reluctance motor
JP3677144B2 (en) Induction motor controller
JP3123235B2 (en) Induction motor vector control device
JP3687331B2 (en) Induction machine variable speed drive
JPH07244099A (en) Inductance measuring circuit for motor
JP2953044B2 (en) Vector controller for induction motor
JP3329672B2 (en) Induction motor constant measuring device
JP2940167B2 (en) Controlling device for vector of induction motor