JPH07296844A - Lead-acid battery - Google Patents

Lead-acid battery

Info

Publication number
JPH07296844A
JPH07296844A JP6088227A JP8822794A JPH07296844A JP H07296844 A JPH07296844 A JP H07296844A JP 6088227 A JP6088227 A JP 6088227A JP 8822794 A JP8822794 A JP 8822794A JP H07296844 A JPH07296844 A JP H07296844A
Authority
JP
Japan
Prior art keywords
battery
proofing agent
shrink
lead
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6088227A
Other languages
Japanese (ja)
Inventor
Masaaki Sasaki
正明 佐々木
Masahiro Arakawa
正博 荒川
Toru Horii
徹 堀井
Kazuo Murata
和雄 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP6088227A priority Critical patent/JPH07296844A/en
Publication of JPH07296844A publication Critical patent/JPH07296844A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To reduce the amount by which the capacity of a negative plate decreases as a lead-acid battery is used in cycles by installing a slowly releasing body containing a shrink-proofing agent inside a battery jar. CONSTITUTION:A shrink proofing agent composed of a lignin compound which is 0.2 parts by mass in 100 parts by mass of lead powder is added to the active material of the negative plate 3 of a lead-acid battery. A microporous film composed mainly of polyvinyl chloride with an average micropore diameter of 0.1mum and a thickness of 0.2mm is used as a slowly releasing body 5, and the shrink proofing agent composed of the lignin compound is wrapped in the microporous film as if in a bag by 0.05 mass % of the electrolyte. When the battery is in use the shrink proofing agent is gradually eluted from the surface of the slowly releasing body 5 and dissolves into the electrolyte 9. The shrink proofing agent compensates for the functional degradation of the shrink proofing agent in the anode active material, thus enhancing the life of the negative plate 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉛蓄電池に関し、特に
鉛蓄電池用負極板の寿命を向上したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead storage battery, and more particularly to a lead storage battery negative electrode plate having an improved life.

【0002】[0002]

【従来の技術とその問題点】従来の鉛蓄電池は、サイク
ル使用に伴う負極活物質の劣化を抑制するため、負極活
物質中にリグニン化合物などの防縮剤が添加されてい
た。しかし、この防縮剤はサイクル使用に伴い機能が低
下し負極板の容量を低下させるという問題点があった。
2. Description of the Related Art In conventional lead-acid batteries, a shrink-proofing agent such as a lignin compound has been added to the negative electrode active material in order to suppress deterioration of the negative electrode active material due to cycle use. However, there is a problem in that the function of this shrink-proofing agent deteriorates as the cycle is used and the capacity of the negative electrode plate decreases.

【0003】本発明は、上記問題点に鑑みてなされたも
のであって、その目的とするところは、サイクル使用に
伴う負極板の容量低下が少ない鉛蓄電池を提供すること
にある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a lead storage battery in which the capacity of the negative electrode plate is less likely to decrease due to cycle use.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明は防縮剤を内部に含む徐放性体5を電槽1内
へ設置したことを特徴とするものである。徐放性体5と
しては、微孔膜や多孔質のカプセルのように細孔を有す
る物質、あるいは膨潤性の合成樹脂ペレットのように時
間の経過に従い、内部の物質を外部へ溶出させる物質な
ど実施例に示したものがある。
In order to achieve the above object, the present invention is characterized in that a sustained release body 5 containing a shrink-proofing agent therein is installed in a battery case 1. The sustained-release body 5 may be a substance having pores such as a microporous membrane or a porous capsule, or a substance such as a swellable synthetic resin pellet that causes an internal substance to be eluted to the outside over time. Some are shown in the examples.

【0005】[0005]

【作用】電池の使用中に徐放性体5の表面から防縮剤が
徐々に溶出し電解液9中に溶解する。この防縮剤が負極
活物質中の防縮剤の機能低下を補い、負極板3の寿命を
向上させる。なお、防縮剤は、電池内で発生する水素ガ
スおよび酸素ガスと反応し、機能低下が促進される場合
があることが報告されているが、本発明の防縮剤は徐放
性体5の内部に存在するため、水素ガスや酸素ガスと反
応しにくく、溶出が長時間をかけてゆっくりと起こり、
負極活物質と反応し負極板3の機能低下を抑制すると考
えられる。
[Function] During use of the battery, the shrinkproofing agent gradually elutes from the surface of the sustained-release body 5 and dissolves in the electrolytic solution 9. This shrinkproofing agent compensates for the deterioration of the function of the shrinkproofing agent in the negative electrode active material and improves the life of the negative electrode plate 3. It is reported that the shrink-proofing agent may react with hydrogen gas and oxygen gas generated in the battery to accelerate the deterioration of the function. However, the shrink-proofing agent of the present invention contains the inside of the sustained-release body 5. It is difficult to react with hydrogen gas and oxygen gas because it is present in, and elution occurs slowly over a long period of time.
It is considered to react with the negative electrode active material and suppress the functional deterioration of the negative electrode plate 3.

【0006】[0006]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。 (実施例1)図1は本発明の一実施例を示す断面図であ
り、1は電槽、2は正極板、3は負極板、4はセパレー
タ、5は防縮剤を包み込んだ徐放性体、6はストラッ
プ、7は正極柱、8は負極柱、9は電解液である。負極
板3の活物質には、質量にして鉛粉100に対し0.2
のリグニン化合物からなる防縮剤が添加されており、徐
放性体5として、平均微孔径0.1μm、厚さ0.2m
mのポリ塩化ビニールを主体とした微孔膜を用い、この
微孔膜の内部にリグニン化合物からなる防縮剤を電解液
に対し0.05質量%の量を袋状に包み込んでいる。こ
のような構成からなる容量35Ah,電圧12Vの本発
明の液式鉛蓄電池Aを作製した。また、比較のため防縮
剤を包み込んだ徐放性体5を備えていない、上記電池A
と同一容量、同一電圧である従来の液式鉛蓄電池Xを作
製した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 is a sectional view showing an embodiment of the present invention, in which 1 is a battery case, 2 is a positive electrode plate, 3 is a negative electrode plate, 4 is a separator, and 5 is a sustained release agent containing a shrinkproof agent. A body, 6 is a strap, 7 is a positive pole, 8 is a negative pole, and 9 is an electrolytic solution. The active material of the negative electrode plate 3 has a mass of 0.2 with respect to 100 of lead powder.
Of the lignin compound is added, and the sustained-release body 5 has an average micropore diameter of 0.1 μm and a thickness of 0.2 m.
A microporous membrane mainly composed of polyvinyl chloride of m is used, and a shrinkproof agent composed of a lignin compound is wrapped in a bag shape in an amount of 0.05 mass% with respect to the electrolytic solution. A liquid lead-acid battery A of the present invention having a capacity of 35 Ah and a voltage of 12 V having such a structure was produced. Further, for comparison, the above battery A which does not include the sustained-release body 5 encapsulating the shrink-proofing agent
A conventional liquid lead-acid battery X having the same capacity and the same voltage as was produced.

【0007】(試 験)次に、上記本発明電池Aと従来
電池Xとを周囲温度40℃において放電電池14Aで1
時間放電、充電電流3.5Aで5時間充電を繰り返し
て、25サイクル毎に−15℃において放電電流70A
で放電した時の容量(低率高率放電容量)を調べるサイ
クル寿命試験を行った。その結果を図2に示す。図2に
示すように、従来電池Xは約140サイクルで寿命にな
ったのに対し、本発明電池Aは約200サイクルで寿命
になり、従来電池Xの約1.5倍の寿命が得られた。ま
た、両電池A,Xとも単極電位の測定から負極板3の容
量低下が電池容量の低下の原因になっていることが分っ
た。なお、電池A,Xの寿命は、初期容量の80%に低
下した時点とした。
(Test) Next, the battery A of the present invention and the conventional battery X were used as a discharge battery 14A at an ambient temperature of 40.degree.
Time discharge, charge current is 3.5A, charge is repeated for 5 hours, discharge current 70A at -15 ° C every 25 cycles.
A cycle life test was conducted to examine the capacity (low rate high rate discharge capacity) when discharged at. The result is shown in FIG. As shown in FIG. 2, the conventional battery X has a life of about 140 cycles, while the battery A of the present invention has a life of about 200 cycles, which is about 1.5 times longer than that of the conventional battery X. It was Further, it was found from the measurement of the unipolar potential of both batteries A and X that the decrease in the capacity of the negative electrode plate 3 causes the decrease in the battery capacity. The lifespans of the batteries A and X were set at the time when the battery capacity dropped to 80% of the initial capacity.

【0008】(実施例2)次に実施例1と同様な正極板
2と負極板3とを用い、通常の微細ガラスマットからな
るセパレータの代わりに中空多孔質のカプセル(徐放性
体)に包まれた防縮剤を間に挟んだセパレータを用いて
極群を構成して容量38Ah,電圧12Vの本発明の密
閉形鉛蓄電池Bを作製した。なお、中空多孔質のカプセ
ルとしては、シリカで構成された平均カプセル径20μ
m、表面細孔径0.01〜0.1μmのものを用い、電
解液に対し0.2質量%のリグニン化合物からなる防縮
剤を該カプセル中に包み込んだ。また、比較のため前記
カプセルに包まれた防縮剤を備えていない、本発明電池
Bと同一容量、同一電圧の従来の密閉形鉛蓄電池Yを作
製した。
(Example 2) Next, the same positive electrode plate 2 and negative electrode plate 3 as in Example 1 were used, and hollow porous capsules (sustained release bodies) were used instead of the usual separator made of fine glass mat. A sealed lead storage battery B of the present invention having a capacity of 38 Ah and a voltage of 12 V was prepared by forming a group of electrodes by using a separator sandwiched with a wrapped shrinkproof agent. In addition, as the hollow porous capsule, an average capsule diameter of 20 μm made of silica is used.
m, the surface pore diameter was 0.01 to 0.1 μm, and a shrinkproof agent consisting of 0.2% by mass of the lignin compound in the electrolytic solution was wrapped in the capsule. For comparison, a conventional sealed lead-acid battery Y having the same capacity and voltage as the battery B of the present invention, which does not include the shrink-proofing agent encapsulated in the capsule, was prepared.

【0009】(試 験)上記本発明電池Bと従来電池Y
に対して、実施例1と同様のサイクル寿命試験を実施し
た。その結果を図2に示す。図2により、従来電池Yが
約100サイクルで寿命になったのに対し、本発明電池
Bは約150サイクルの寿命であり、従来電池Yより優
れることが分った。また、本発明電池Bのように流動性
の電解液が存在しない密閉形鉛蓄電池にも徐放性体で包
んだ防縮剤を適用できることが分った。
(Test) Battery B of the present invention and conventional battery Y
On the other hand, the same cycle life test as in Example 1 was performed. The result is shown in FIG. From FIG. 2, it was found that the conventional battery Y had a life of about 100 cycles, whereas the battery B of the present invention had a life of about 150 cycles, which was superior to the conventional battery Y. Further, it has been found that the shrink-proofing agent wrapped with the sustained-release material can be applied to a sealed lead-acid battery in which a fluid electrolyte does not exist like the battery B of the present invention.

【0010】(実施例3)負極活物質に実施例1と同様
な防縮剤を加え、更に多孔質のカプセル(徐放性体)に
包まれた防縮剤を加えて、負極板3を作製し、実施例1
と同様な正極板1と通常の微細ガラスマットからなるセ
パレータ4を用いて極群を組み立て、容量38Ah,電
圧12Vの本発明の密閉形鉛蓄電池Cを作製した。尚、
上記多孔質のカプセルは、シリカで構成された平均カプ
セル径3μm表面細孔径0.01〜0.1μmのものを
用い、負極活物質に対して0.2質量%のリグニン化合
物からなる防縮剤を包み込んだ。
Example 3 A negative electrode plate 3 was prepared by adding the same shrinkage preventive agent as in Example 1 to the negative electrode active material, and further adding a shrink preventive agent enclosed in a porous capsule (sustained release body). Example 1
A pole group was assembled using the same positive electrode plate 1 and a separator 4 made of a normal fine glass mat to prepare a sealed lead acid battery C of the present invention having a capacity of 38 Ah and a voltage of 12V. still,
The above-mentioned porous capsule is made of silica and has an average capsule diameter of 3 μm and a surface pore diameter of 0.01 to 0.1 μm, and a shrink-proofing agent composed of 0.2% by mass of a lignin compound with respect to the negative electrode active material is used. I wrapped it up.

【0011】(試 験)次に、本発明電池Cを用いて実
施例1と同様なサイクル寿命試験を実施した。その結果
を図2に示す。図2より、本発明電池Cは本発明電池B
と略同等な寿命特性が得られた。
(Test) Next, the same cycle life test as in Example 1 was carried out using the battery C of the present invention. The result is shown in FIG. From FIG. 2, the battery C of the present invention is the battery B of the present invention.
The life characteristics almost equal to were obtained.

【0012】(実施例4)実施例1と同様な極群を構成
し、該極群の防沫板上に、膨潤性の合成樹脂ペレット
(徐放性体)中に分散混合された防縮剤を配置して容量
35Ah,電圧12Vの本発明の液式鉛蓄電池Dを作製
した。ここで、膨潤性の合成樹脂は、一般に吸水性樹脂
として使用されているポリアクリル酸ソーダとポリオレ
フィン樹脂を複合化した樹脂を用い、樹脂に対して40
質量%のリグニン化合物からなる防縮剤を充填した。な
お、リグニン化合物の量は、電解液に対して0.05質
量%になるように調整した。
(Example 4) A shrink preventive agent which constitutes the same pole group as in Example 1 and is dispersed and mixed in a swelling synthetic resin pellet (sustained release body) on a splash-proof plate of the pole group. Was placed to prepare a liquid lead acid battery D of the present invention having a capacity of 35 Ah and a voltage of 12V. Here, as the swelling synthetic resin, a resin obtained by compounding sodium polyacrylate and a polyolefin resin, which are generally used as a water-absorbing resin, is used.
A shrinkproof agent consisting of a mass% of lignin compound was filled. The amount of lignin compound was adjusted to be 0.05% by mass with respect to the electrolytic solution.

【0013】(試 験)次に本発明電池Dに対して実施
例1と同様なサイクル寿命試験を実施した。その結果を
図2に示す。図2により本発明電池Dは、従来電池Xに
比べて約1.7倍の約240サイクルの寿命が得られ
た。これは、樹脂の膨潤に伴い、中に包含されていた防
縮剤が徐々に溶出して負極板の機能低下を抑制するため
と考えられる。
(Test) Next, the battery D of the present invention was subjected to the same cycle life test as in Example 1. The result is shown in FIG. As shown in FIG. 2, the battery D of the present invention has a life of about 240 cycles, which is about 1.7 times that of the conventional battery X. It is considered that this is because the shrinkproof agent contained in the resin gradually elutes as the resin swells and suppresses the functional deterioration of the negative electrode plate.

【0014】(実施例5)実施例1と同様な極群を構成
し、この極群の防沫板上にゴムおよび液体可塑剤をブレ
ンドしたポリ塩ビニル樹脂ペレット(徐放性体)中に分
散混合された防縮剤を配置した容量35Ah,電圧15
Vの本発明の液式鉛蓄電池Eを作製した。尚、ペレット
中の防縮剤は、リグニン化合物からなり、その量は樹脂
に対して40質量%とし、電解液に対して0.05質量
%になるように調整した。
(Example 5) A pole group similar to that of Example 1 was constructed, and a polyvinyl chloride resin pellet (sustained release body) was prepared by blending rubber and a liquid plasticizer on the splash-proof plate of this pole group. Dispersion-mixed shrinkproof agent is placed in a capacity of 35 Ah, voltage of 15
A V type liquid lead acid battery E of the present invention was produced. The shrinkproof agent in the pellets was composed of a lignin compound, and the amount was adjusted to 40% by mass with respect to the resin and 0.05% by mass with respect to the electrolytic solution.

【0015】(試 験)次に、本発明電池Eに対して、
実施例1と同様なサイクル寿命試験を行った。その結果
を図2に示す。図2より本発明電池Eは、本発明電池D
と略同等のサイクル寿命が得られた。この実施例で用い
られたゴム及び液体可塑性をブレンドしたポリ塩化ビニ
ル樹脂は、マイグレーション(中に包含した分子の移動
現象)を起こしやすい樹脂として知られており、この現
象により防縮剤が徐々に溶出して、負極板の機能を発揮
させるためと考えられる。
(Test) Next, for the battery E of the present invention,
The same cycle life test as in Example 1 was performed. The result is shown in FIG. From FIG. 2, the battery E of the present invention is the battery D of the present invention.
The cycle life almost equal to was obtained. The polyvinyl chloride resin blended with rubber and liquid plasticity used in this example is known as a resin that easily causes migration (a phenomenon of migration of molecules included therein), and the shrinkage agent is gradually eluted by this phenomenon. Then, it is considered that the function of the negative electrode plate is exerted.

【0016】なお、微孔膜および多孔質カプセルの材質
・微孔径・形状、膨潤およびマイグレーションを起こす
合成樹脂の材質・形状・電池への設置法、および防縮剤
の種類・量などは、電池の種類・構造などにより、種々
の方法が適用することができ、実施例に限定されるもの
でないことは言うまでもない。
The material and the micropore diameter and shape of the microporous membrane and the porous capsule, the material and shape of the synthetic resin that causes swelling and migration, the method of installation in the battery, and the kind and amount of the shrink-proofing agent, etc. It goes without saying that various methods can be applied depending on the type and structure, and the method is not limited to the embodiment.

【0017】[0017]

【発明の効果】本発明は、上述の通り構成されているの
で、サイクル使用に伴なう負極板の容量低下が少ない長
寿命の鉛蓄電池を提供することができる。
Since the present invention is constructed as described above, it is possible to provide a long-life lead-acid battery in which the capacity of the negative electrode plate is less likely to decrease due to cycle use.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】本発明の実施例と従来品とのサイクル寿命特性
を示すグラフである。
FIG. 2 is a graph showing cycle life characteristics of an example of the present invention and a conventional product.

【符号の説明】[Explanation of symbols]

1 電槽 5 徐放性体 1 Battery case 5 Sustained release body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村田 和雄 大阪府高槻市城西町6番6号 株式会社ユ アサコーポレーション内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuo Murata 6-6 Josaimachi, Takatsuki City, Osaka Prefecture Yuasa Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 防縮剤を内部に含む徐放性体(5)を電
槽(1)内に設置したことを特徴とする鉛蓄電池。
1. A lead storage battery, characterized in that a sustained-release material (5) containing a shrink-proofing agent inside is installed in a battery case (1).
JP6088227A 1994-04-26 1994-04-26 Lead-acid battery Pending JPH07296844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6088227A JPH07296844A (en) 1994-04-26 1994-04-26 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6088227A JPH07296844A (en) 1994-04-26 1994-04-26 Lead-acid battery

Publications (1)

Publication Number Publication Date
JPH07296844A true JPH07296844A (en) 1995-11-10

Family

ID=13936991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6088227A Pending JPH07296844A (en) 1994-04-26 1994-04-26 Lead-acid battery

Country Status (1)

Country Link
JP (1) JPH07296844A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018508944A (en) * 2015-01-27 2018-03-29 フルイディック, インク.Fluidic, Inc. System and method for managing additives in an electrochemical cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018508944A (en) * 2015-01-27 2018-03-29 フルイディック, インク.Fluidic, Inc. System and method for managing additives in an electrochemical cell

Similar Documents

Publication Publication Date Title
US4091178A (en) Rechargeable alkaline MnO2 -zinc cell
KR940004941B1 (en) Double layer capacitor
US5281497A (en) Low mercury or mercury free alkaline manganese dioxide-zinc cell
US3592693A (en) Consumable metal anode with dry electrolytic enclosed in envelope
US3427203A (en) Large surface area electrodes and a method for preparing them
JPH07296844A (en) Lead-acid battery
US3639176A (en) Zinc electrode containing an additive to reduce gassing at the zinc electrode in a heat sterilized silver-zinc alkaline battery
JPH042060A (en) Sealed type lead acid battery
JP3555177B2 (en) Sealed lead-acid battery
JPS60202666A (en) Paste type cadmium anode plate for alkaline storage battery
KR100307935B1 (en) Alkali accumulators in the form of button-cells
JP3030032B2 (en) Sintered cadmium negative electrode for alkaline storage battery and method for producing the same
JP2855677B2 (en) Sealed lead-acid battery
JP3315530B2 (en) Alkaline battery
JPH04149968A (en) Sealed-type lead secondary battery
JP2867458B2 (en) Alkaline battery
JPH11162474A (en) Alkaline battery
JPH07296843A (en) Lead-acid battery
JPS5927462A (en) Flat type alkaline battery
JPH028419B2 (en)
JPH10275619A (en) Paste type cadmium electrode
JPH0410708B2 (en)
JPH06111807A (en) Lead-acid battery
JPS62291860A (en) Cylindrical alkaline battery
JPH08293306A (en) Lead-acid battery