JPH07294568A - Evaluation method of positive-temperature-coefficient thermistor - Google Patents

Evaluation method of positive-temperature-coefficient thermistor

Info

Publication number
JPH07294568A
JPH07294568A JP6086751A JP8675194A JPH07294568A JP H07294568 A JPH07294568 A JP H07294568A JP 6086751 A JP6086751 A JP 6086751A JP 8675194 A JP8675194 A JP 8675194A JP H07294568 A JPH07294568 A JP H07294568A
Authority
JP
Japan
Prior art keywords
positive
coefficient thermistor
thermistor
temperature coefficient
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6086751A
Other languages
Japanese (ja)
Other versions
JP3259512B2 (en
Inventor
Hidekazu Koga
英一 古賀
Taiji Goto
泰司 後藤
Fusako Hatano
惣子 幡野
Takuoki Hata
拓興 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP08675194A priority Critical patent/JP3259512B2/en
Publication of JPH07294568A publication Critical patent/JPH07294568A/en
Application granted granted Critical
Publication of JP3259512B2 publication Critical patent/JP3259512B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain an evaluation method in which a positive-temperature-coefficient thermistor whose reliability is defective can be sorted by measuring the impedance of the positivetemperature-coefficient thermistor is and a using resistance component value. CONSTITUTION:The positive-temperature-coefficient thermistor is a semiconductor ceramic which is composed mainly of barium titanate and whose resistance value has a positive temperature coefficient. Then, a displacement current by an applied electric field flows inside of a positive-temperature-coefficient-thermistor element across electrodes when an alternating electric field is applied. However, since the displacement current is the change amount in terms of time of an electric flux whose amount is equal to that of an electric charge (g) across the electrodes, it does not flow when a direct current is applied. Consequently, a minute ceramic defect, in the positive-temperature-coefficient-thermistor element, which does not offset a resistance value when the direct current is applied can be known by the resistance component (Re) of an impedance on the basis of a frequency characteristic in an abnormal part. By utilizing this, the defect can be estimated and evaluated by the value of the Re when the alternating electric field is applied, and the positive-temperature-coefficient thermistor whose reliability is defective can be sorted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、初期的特性では、評価
不可能であった正特性サーミスタの評価方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating a positive temperature coefficient thermistor which cannot be evaluated by its initial characteristics.

【0002】[0002]

【従来の技術】チタン酸バリウムを主成分とした正特性
サーミスタは、温風ヒータ、消磁素子などの広範囲な用
途に用いられている。正特性サーミスタは非常に製造条
件依存性が大きいことが特徴であり、量産製造過程にお
いて、不純物の混入により特性が劣化したり、また特性
に大きなバラツキが生じると製品の信頼性の低下を招
く。これを防止するために抵抗値等の初期的特性や外観
検査等により正特性サーミスタを評価していた。
2. Description of the Related Art Positive temperature coefficient thermistors containing barium titanate as a main component are used in a wide range of applications such as warm air heaters and degaussing elements. A characteristic of the positive temperature coefficient thermistor is that it greatly depends on the manufacturing conditions. In the mass production process, the characteristics are deteriorated due to the mixing of impurities, and if the characteristics are greatly varied, the reliability of the product is deteriorated. In order to prevent this, the PTC thermistor was evaluated by initial characteristics such as resistance value and visual inspection.

【0003】近年では、特に還元雰囲気下や還元物質付
着の場合における特性劣化が大きな問題になってきてお
り、この様な状況下で使用した際、正特性サーミスタが
焼損してしまうことがあり危険であった。従って還元雰
囲気下で使用された場合でも特性劣化が少ない高信頼性
の正特性サーミスタを製造するために材料組成や製造方
法によって信頼性の向上が図られ続けてきている。しか
しながら製造された正特性サーミスタにおいて還元雰囲
気下等の使用で生じる大きな特性劣化は、抵抗値等の初
期特性では、評価することができなかった。そこで製造
された正特性サーミスタの中から抜き取り試験を行い、
信頼性を評価し、製品生産管理を行っていた。
In recent years, characteristic deterioration has become a serious problem particularly in a reducing atmosphere or when a reducing substance is attached, and when used in such a situation, the PTC thermistor may be burned out, which is dangerous. Met. Therefore, in order to manufacture a highly reliable positive temperature coefficient thermistor with less characteristic deterioration even when used in a reducing atmosphere, the reliability has been continuously improved by the material composition and manufacturing method. However, in the manufactured positive temperature coefficient thermistor, the large characteristic deterioration caused by use in a reducing atmosphere or the like could not be evaluated by the initial characteristics such as the resistance value. We conducted a sampling test from the manufactured PTC thermistor,
The reliability was evaluated and product production was controlled.

【0004】[0004]

【発明が解決しようとする課題】上記、従来の方法で
は、生産された全正特性サーミスタについて非破壊で特
性値に影響を与えることなく信頼性を評価することがで
きないため、生産された正特性サーミスタの中に信頼性
不良の正特性サーミスタが存在していた場合、その不良
品を取り除くことが不可能であり抵抗値等の初期的特性
や外観には現れない信頼性不良品を出荷する可能性があ
る問題点を有していた。
In the above-mentioned conventional method, since the reliability of all the produced positive temperature coefficient thermistors cannot be evaluated without affecting the characteristic values, the positive temperature characteristics of the produced positive temperature coefficient thermistor cannot be evaluated. If there is a positive temperature coefficient thermistor with poor reliability in the thermistor, it is impossible to remove the defective product and it is possible to ship a defective reliability product that does not appear in initial characteristics such as resistance value or appearance. It had a certain problem.

【0005】本発明は、上記従来の問題点を解決するも
のであり正特性サーミスタの信頼性を非破壊で、特性に
影響を与えることなく予測評価し、信頼性不良の正特性
サーミスタを選別することのできる、正特性サーミスタ
の評価方法を提供することを目的とするものである。
The present invention solves the above-mentioned problems of the prior art, and non-destructively predicts and evaluates the reliability of the positive temperature coefficient thermistor without affecting the characteristics, and selects the positive temperature coefficient thermistor having poor reliability. It is an object of the present invention to provide a method for evaluating a positive temperature coefficient thermistor that can be used.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は正特性サーミスタのインピーダンス(Z)を
測定し抵抗成分(Re)の値(複素インピーダンスの実
数部)を用いて正特性サーミスタの評価を行うものであ
る。
To achieve the above object, the present invention measures the impedance (Z) of a positive temperature coefficient thermistor and uses the value of the resistance component (R e ) (the real part of the complex impedance) to obtain the positive voltage characteristic. The thermistor is evaluated.

【0007】[0007]

【作用】正特性サーミスタはチタン酸バリウムを主成分
とした抵抗値が正の温度係数を有する半導体磁器であ
り、その微細構造は原子価制御により半導体化された結
晶粒子と絶縁体である粒界によって構成されており、P
TC特性は粒界部によって発生されていると考えられて
いるのが一般的である。その微細構造を基に考えると、
正特性サーミスタのインピーダンスの抵抗成分(Re
は結晶粒子と粒界によるものであることがわかる。従っ
て結晶粒子径が小さければ、正特性サーミスタ素子厚み
(電極間)中の高抵抗を有する粒界数が多くなるため抵
抗成分(Re)の値は大きくなり、結晶粒子径が大きく
なれば、逆に減少する。そして高抵抗の粒界部は主に低
周波域、低抵抗の結晶粒子は主に高周波域における交番
電界中での電子の移動度の逆数の値が、インピーダンス
の抵抗成分(Re)の意味することであり、通常の正特
性サーミスタにおいて数kHzから十数MHzの周波数範
囲では結晶粒子と粒界の状態による双方の影響が現れる
こととなる。
[Function] The positive temperature coefficient thermistor is a semiconductor porcelain mainly composed of barium titanate and having a positive temperature coefficient of resistance, and its fine structure has crystal grains semiconductorized by valence control and grain boundaries which are insulators. And P
It is generally considered that the TC characteristic is generated by the grain boundary portion. Based on that fine structure,
Resistance component of impedance of positive temperature coefficient thermistor ( Re )
It can be seen that is due to crystal grains and grain boundaries. Therefore, if the crystal grain size is small, the number of grain boundaries having high resistance in the thickness of the positive temperature coefficient thermistor element (between the electrodes) is large, so that the value of the resistance component (R e ) is large, and if the crystal grain size is large, On the contrary, it decreases. The high resistance grain boundary portion is mainly in the low frequency region, and the low resistance crystal grain is mainly the reciprocal value of the electron mobility in an alternating electric field in the high frequency region, which means the impedance resistance component (R e ). Therefore, in a normal PTC thermistor, both effects due to the state of the crystal grain and the grain boundary appear in the frequency range of several kHz to several tens of MHz.

【0008】このように交番電界を印加したときの電極
間の正特性サーミスタ素子内部には印加電界による変位
電流すなわち、電子の移動によって生じる導電電流が流
れるが、変位電流は電極間の電荷qと同量の電束の時間
的変化量であるから当然、直流を印加したときには流れ
ないものである。従って直流印加による抵抗値には影響
を及ぼさなかったような正特性サーミスタ素子中の微細
な磁器的な欠陥を、その異常部分の周波数特性の違いに
よりインピーダンスの抵抗成分(Re)の値で知ること
ができる。
In this way, a displacement current due to the applied electric field, that is, a conduction current generated by the movement of electrons flows inside the positive temperature coefficient thermistor element when an alternating electric field is applied in this way. Since the same amount of electric flux changes with time, it naturally does not flow when a direct current is applied. Therefore, a fine porcelain-like defect in the positive temperature coefficient thermistor element that does not affect the resistance value due to the direct current application is known from the value of the resistance component (R e ) of the impedance due to the difference in the frequency characteristic of the abnormal portion. be able to.

【0009】よって正特性サーミスタに製造過程中、不
純物の混入があった場合、或いは異常粒子や微細な亀裂
が存在した場合には、直流印加時の抵抗値ではこれらを
識別できなかったが、周波数を印加したとき、微細な磁
器的欠陥のある正特性サーミスタは、周波数特性が正常
なものとは大きく異なるために、抵抗成分(Re)の値
が正常なものとは異なり異常値を示すこととなる。これ
を利用することで、従来のDC印加による抵抗値等の初
期的特性では除去できなかった信頼性について交番電界
印加時のRe値により予測評価可能となり信頼性不良の
正特性サーミスタを選別することができる。
Therefore, if impurities were mixed in the PTC thermistor during the manufacturing process, or if abnormal particles or fine cracks were present, these could not be identified by the resistance value when a DC voltage was applied. When a voltage is applied, the positive temperature coefficient thermistor with fine magnetic defects is significantly different from the normal frequency characteristic, and therefore the resistance component (R e ) shows an abnormal value unlike the normal value. Becomes By using this, the initial characteristics of the resistance value or the like by the conventional DC applied to screen positive characteristic thermistor reliability failures becomes predictable evaluated by R e values when an alternating electric field is applied for a reliability that could not be removed be able to.

【0010】[0010]

【実施例】以下、本発明の一実施例について説明する。EXAMPLES An example of the present invention will be described below.

【0011】出発原料としてBaCO3,PbO,Ca
CO3,TiO2,Y23,SiO2,Al23,MnO2
を使用して(Ba0.702Pb0.198Ca0.100)TiO3
0.0022Y23+0.027SiO2+0.000
3Al23+0.0004MnOの組成になるよう配合
した。
BaCO 3 , PbO, Ca as starting materials
CO 3 , TiO 2 , Y 2 O 3 , SiO 2 , Al 2 O 3 , MnO 2
(Ba 0.702 Pb 0.198 Ca 0.100 ) TiO 3 +
0.0022Y 2 O 3 + 0.027SiO 2 +0.000
The composition was 3Al 2 O 3 + 0.0004MnO.

【0012】焼結体を得、この焼結体の上下両面にNi
メッキをし、その上から銀電極を塗布、焼付けて直径1
3mm、厚み2.5mmの正特性サーミスタを得た。
A sintered body was obtained, and Ni was formed on both upper and lower surfaces of this sintered body.
Plating, apply silver electrode on it, and bake it to a diameter of 1
A positive temperature coefficient thermistor having a thickness of 3 mm and a thickness of 2.5 mm was obtained.

【0013】このようにして得た正特性サーミスタ約1
00万個について、室温(25℃)での抵抗値と抵抗温
度特性(PTC特性)をDC4端子法によって測定を
し、更にインピーダンスの抵抗成分(Re)、容量性リ
アクタンス(Xc)、Qc値を1kHzから20MHzの周
波数範囲においてインピーダンス・アナライザーで測定
を行った。その後これらの正特性サーミスタに還元雰囲
気下(窒素ガス中)で200V(AC50Hz)の電圧
を100時間通電させる還元負荷試験を行った。そして
再び抵抗温度特性の測定を行い、正特性サーミスタの初
期と試験後のPTC特性における抵抗値変化幅の差(Δ
Ψ=初期Ψ−試験後Ψ)により正特性サーミスタの劣化
を判断した。尚ここでの抵抗値変化幅とはPTC特性に
おける最大抵抗値を最小抵抗値で割った値の常用対数値
のことを意味する。
Approximately 1 positive temperature coefficient thermistor thus obtained
The resistance value and resistance temperature characteristic (PTC characteristic) at room temperature (25 ° C.) of, 000,000 pieces were measured by the DC four-terminal method, and the resistance component of impedance (R e ), capacitive reactance (X c ), Q The c value was measured with an impedance analyzer in the frequency range of 1 kHz to 20 MHz. After that, a reducing load test was conducted in which these positive temperature coefficient thermistors were energized with a voltage of 200 V (AC50 Hz) for 100 hours in a reducing atmosphere (in nitrogen gas). Then, the resistance temperature characteristic is measured again, and the difference (Δ) in the resistance value change width between the PTC characteristic of the positive temperature coefficient thermistor and that after the test is measured.
The deterioration of the positive temperature coefficient thermistor was judged by Ψ = initial Ψ−post test Ψ). Here, the resistance value variation width means a common logarithmic value of a value obtained by dividing the maximum resistance value in the PTC characteristic by the minimum resistance value.

【0014】抵抗値変化幅Ψ=log10(最大抵抗値R
max/最小抵抗値Rmin)還元負荷試験前後の劣化程度と
試験前の正特性サーミスタのインピーダンスの抵抗成分
(R e)、容量性リアクタンス(Xc)、Qc値との関係
について調べ得た結果を図1,図2,図3に示す。(こ
れらの図のRe、Xc、Qc値は、周波数10MHzにおけ
る測定値である。)その結果、各図より抵抗成分
(Re)の値がここで正特性サーミスタの静電容量Cは
結晶粒子表面を電極とし、粒界厚みを電極間距離とした
粒界部の静電容量として定義可能なことから正特性サー
ミスタ中の結晶粒子の大きさが小さければ、結晶粒子の
表面積つまり電極面積の増加を意味し静電容量は増加を
するし、粒界厚みが大きくなれば逆に減少を示す。この
ためインピーダンスの容量性リアクタンス(Xc)を調
べることで結晶粒子径、粒界厚みとそれらの状態につい
ての情報を得ることができる。また、抵抗成分(Re
と同様に、直流印加による抵抗値には影響を及ぼさなか
ったようなサーミスタ中の微細な磁器的欠陥を、周波数
特性の違いを利用し、容量性リアクタンス(Xc)の値
によって知ることができる。また抵抗成分(Re)と容
量性リアクタンス(Xc)が直列接続と考えることがで
きる正特性サーミスタの等価回路系において周波数ω
(=2πf)と抵抗成分Reと容量性リアクタンスXc
積(ωXce)が1よりも比較的に大きければこの積を
この回路系のQc(Quality factor)と
して近似できることで結晶粒子、粒界について総合的な
情報を得ることができる。このQc値法による場合、測
定対象である正特性サーミスタの個々の初期抵抗値や静
電容量に極端に大きな差異を有していても精度良く信頼
性を評価できる。異常に大きい場合、また容量性リアク
タンス(Xc)の値が異常に小さい場合、更にQcの値が
異常に小さい場合に還元負荷試験後の劣化傾向が大きい
ことが認められる。従って、初期状態の正特性サーミス
タのRe、Xc、Qcの値によって、還元負荷試験後に異
常な劣化を示すものの予測が可能であることがわかる。
特に、異常な劣化を生じる不良な正特性サーミスタと正
常なものとの境界は明瞭である。これら信頼性不良の正
特性サーミスタについて分析してみると、図1のRe
が異常を示す正特性サーミスタは、異常成長粒子の存在
や不純物が混入しており、図2のXcの値が異常を示す
正特性サーミスタは、粒子形状不均一や粒界厚みが不均
一なものであり、図3のQc値の場合は図1,図2に示
した要因それぞれのためであったり或いは共存していた
りといった磁器的欠陥を有していたのがわかった。これ
ら微細な磁器的欠陥は、抵抗値等の初期的特性や素子外
観にはほとんど影響を与えないために従来の選別方法で
は取り除くことができなかったが、信頼性には大きな影
響を与える事が知られていた。このような従来選別不可
能であると考えられていた微細な磁器的欠陥を有する正
特性サーミスタに周波数を印加すると、交番電界中の抵
抗成分(Re)、容量性リアクタンス(Xc)、更にQc
値に、その微細な磁器的欠陥が大きく影響を与えること
を利用し、従来選別不可能であった不良品を選別する事
が可能である。この評価、選別方法によって、製造され
た正特性サーミスタ全ての中から信頼性不良の正特性サ
ーミスタを除去することができる。また当然ながら素子
形状や組成系がこの他のものでも同様の結果を得てお
り、全ての正特性サーミスタの信頼性評価に適用可能で
ある。
Resistance change width Ψ = logTen(Maximum resistance value R
max/ Minimum resistance value Rmin) Degree of deterioration before and after the reducing load test
Resistance component of impedance of positive temperature coefficient thermistor before test
(R e), Capacitive reactance (Xc), QcRelationship with value
The results of the investigation are shown in FIGS. 1, 2 and 3. (This
R in these figurese, Xc, QcThe value is at a frequency of 10 MHz
It is the measured value. ) As a result, the resistance component is
(Re) Is the capacitance of the positive temperature coefficient thermistor
The crystal grain surface was used as an electrode, and the grain boundary thickness was used as the distance between electrodes.
Since it can be defined as the capacitance of the grain boundary,
If the size of the crystal particles in the mister is small,
It means an increase in surface area or electrode area, and an increase in capacitance.
However, when the grain boundary thickness increases, it decreases on the contrary. this
Therefore, the capacitive reactance (Xc) Key
The grain size, grain boundary thickness and their
You can get all the information. In addition, the resistance component (Re)
Similarly, do not affect the resistance value due to DC application.
The fine porcelain defects in the thermistor
Capacitive reactance (Xc)The value of the
Can be found by In addition, the resistance component (Re) And Yong
Quantitative reactance (Xc) Can be considered as a series connection
Frequency ω in the equivalent circuit of a positive temperature coefficient thermistor
(= 2πf) and resistance component ReAnd capacitive reactance Xcof
Product (ωXcRe) Is relatively larger than 1, this product
Q of this circuit systemc(Quality factor)
Can be approximated by
You can get information. This QcWhen using the value method,
The initial resistance value and static
Accurate and reliable even if there is an extremely large difference in capacitance
You can evaluate the sex. If abnormally large, also capacitive rec
Closet (XcIf the value of) is abnormally small,cThe value of
When the load is abnormally small, the deterioration tendency after the reducing load test is large.
Is recognized. Therefore, the positive characteristic thermistor in the initial state
T's Re, Xc, QcDepending on the value of
It can be seen that it is possible to predict what shows normal deterioration.
In particular, a positive PTC thermistor that causes abnormal deterioration and a positive
The boundary with the ordinary is clear. Correcting these poor reliability
Analyzing the characteristic thermistor, R in Fig. 1evalue
Is a positive thermistor that shows abnormalities,
And impurities are mixed in, X in Fig. 2cValue is abnormal
Positive temperature coefficient thermistors have uneven particle shape and uneven grain boundary thickness.
One of them, Q in Figure 3cValues are shown in Fig. 1 and Fig. 2.
For each of the factors
It turned out that he had a porcelain defect such as Ri. this
Such fine porcelain defects are caused by initial characteristics such as resistance and
With the conventional selection method
Could not be removed, but there is a big shadow on reliability.
It was known to give a sound. Such conventional selection is not possible
With fine porcelain defects that were thought to be
When a frequency is applied to the characteristic thermistor, the resistance in the alternating electric field is reduced.
Anti ingredient (Re), Capacitive reactance (Xc), And Qc
The value is greatly affected by the fine porcelain defects.
To sort defective products that were previously impossible to sort
Is possible. Manufactured by this evaluation and selection method
Of the positive temperature coefficient thermistors
-The mister can be removed. And of course the element
Similar results have been obtained with other shapes and composition systems.
Can be applied to the reliability evaluation of all PTC thermistors.
is there.

【0015】[0015]

【発明の効果】以上詳述したように、本発明は、正特性
サーミスタ素子のインピーダンスの抵抗成分(Re)及
び容量性リアクタンス(Xc)及びQcの値によって正特
性サーミスタの信頼性を予測評価できるので、簡便かつ
安価に高信頼性の正特性サーミスタを提供することがで
き、その工業的利用価値は大きい。
As described above in detail, according to the present invention, the reliability of the positive temperature coefficient thermistor is determined by the resistance component (R e ) of the impedance of the positive temperature coefficient thermistor element, the capacitive reactance (X c ), and the value of Q c. Since the predictive evaluation can be performed, a highly reliable positive temperature coefficient thermistor can be provided easily and inexpensively, and its industrial utility value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における、周波数10MHzで
測定した正特性サーミスタのインピーダンスの抵抗成分
(Re)の値と初期と還元負荷試験後の抵抗値変化幅の
差の関係を示すグラフ
FIG. 1 is a graph showing the relationship between the value of the resistance component (R e ) of the impedance of a positive temperature coefficient thermistor measured at a frequency of 10 MHz and the difference between the resistance value change widths at the initial stage and after the reduction load test in one example of the present invention.

【図2】本発明の一実施例における、周波数10MHzで
測定した正特性サーミスタのインピーダンスの容量性リ
アクタンス(Xc)の値と、初期と還元負荷試験後の抵
抗値変化幅の差(ΔΨ)の値の関係を示すグラフ
FIG. 2 is a difference (ΔΨ) between a value of a capacitive reactance (X c ) of impedance of a positive temperature coefficient thermistor measured at a frequency of 10 MHz and a resistance value change width between an initial stage and a reducing load test in one example of the present invention. Graph showing the relationship between the values of

【図3】本発明の一実施例における、周波数10MHzで
測定した正特性サーミスタのQ cの値と初期の還元負荷
試験後の抵抗値変化幅の差(ΔΨ)の関係を示すグラフ
FIG. 3 shows a frequency of 10 MHz in one embodiment of the present invention.
Q of the measured positive temperature coefficient thermistor cValue and initial reduction load
Graph showing the relationship of the difference (ΔΨ) in resistance value change width after the test

───────────────────────────────────────────────────── フロントページの続き (72)発明者 畑 拓興 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takuko Hata 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正特性サーミスタのインピーダンス
(Z)を測定し、インピーダンス(Z)の抵抗成分(R
e)の値(複素インピーダンスの実数部)により正特性
サーミスタを評価する正特性サーミスタの評価方法。
1. The impedance (Z) of a positive temperature coefficient thermistor is measured, and the resistance component (R) of the impedance (Z) is measured.
A method for evaluating a positive temperature coefficient thermistor in which a positive temperature coefficient thermistor is evaluated based on the value of e ) (real part of complex impedance).
【請求項2】 正特性サーミスタのインピーダンス
(Z)を測定し、インピーダンス(Z)の容量性リアク
タンス(Xc)の値(複素インピーダンスの虚数部)に
より正特性サーミスタを評価する正特性サーミスタの評
価方法。
2. An evaluation of a PTC thermistor in which the impedance (Z) of the PTC thermistor is measured, and the PTC thermistor is evaluated by the value of the capacitive reactance (X c ) of the impedance (Z) (imaginary part of complex impedance). Method.
【請求項3】 正特性サーミスタの抵抗成分(Re)と
容量性リアクタンス(Xc)が直列接続と考えたときの
正特性サーミスタの等価回路系におけるQc(Qual
ity factor)の値を測定し、このQcの値に
より正特性サーミスタを評価する正特性サーミスタの評
価方法。
3. When the resistance component (R e ) of the positive temperature coefficient thermistor and the capacitive reactance (X c ) are considered to be connected in series, Q c (Qual in the equivalent circuit system of the positive temperature coefficient thermistor).
The method for evaluating a positive temperature coefficient thermistor in which a positive temperature coefficient thermistor is measured and the positive temperature coefficient thermistor is evaluated based on the value of Q c .
JP08675194A 1994-04-25 1994-04-25 Evaluation method of PTC thermistor Expired - Fee Related JP3259512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08675194A JP3259512B2 (en) 1994-04-25 1994-04-25 Evaluation method of PTC thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08675194A JP3259512B2 (en) 1994-04-25 1994-04-25 Evaluation method of PTC thermistor

Publications (2)

Publication Number Publication Date
JPH07294568A true JPH07294568A (en) 1995-11-10
JP3259512B2 JP3259512B2 (en) 2002-02-25

Family

ID=13895476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08675194A Expired - Fee Related JP3259512B2 (en) 1994-04-25 1994-04-25 Evaluation method of PTC thermistor

Country Status (1)

Country Link
JP (1) JP3259512B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005081270A1 (en) * 2004-02-25 2005-09-01 Murata Manufacturing Co.,Ltd. Ptc element screening method
JP2007309948A (en) * 2000-08-01 2007-11-29 Kansai Electric Power Co Inc:The Electrical characteristic degradation detecting method and its device
JP2016039376A (en) * 2014-08-08 2016-03-22 三菱マテリアル株式会社 Defect detection method for thermistor element
CN106124860A (en) * 2016-06-15 2016-11-16 晶傲威电气(常州)有限公司 A kind of evaluation method of permanent-magnet brushless DC electric machine armature winding resistance resistance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309948A (en) * 2000-08-01 2007-11-29 Kansai Electric Power Co Inc:The Electrical characteristic degradation detecting method and its device
JP4740201B2 (en) * 2000-08-01 2011-08-03 関西電力株式会社 Electrical characteristics deterioration detection method
WO2005081270A1 (en) * 2004-02-25 2005-09-01 Murata Manufacturing Co.,Ltd. Ptc element screening method
US7605352B2 (en) 2004-02-25 2009-10-20 Murata Manufacturing Co., Ltd. Method for sorting positive temperature coefficient (PTC) elements
JP2016039376A (en) * 2014-08-08 2016-03-22 三菱マテリアル株式会社 Defect detection method for thermistor element
CN106124860A (en) * 2016-06-15 2016-11-16 晶傲威电气(常州)有限公司 A kind of evaluation method of permanent-magnet brushless DC electric machine armature winding resistance resistance

Also Published As

Publication number Publication date
JP3259512B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
Sinclair Characterisation of electro-materials using ac impedance spectroscopy
US4326414A (en) Humidity detecting apparatus
JPH07294568A (en) Evaluation method of positive-temperature-coefficient thermistor
US4968964A (en) High temperature SiC thin film thermistor
Bhushan et al. Electrical and dielectric behavior of a zinc oxide composite
JPS604561B2 (en) Ceramic electrical resistor with non-linear voltage dependent characteristics and its manufacturing method
JPH0421329B2 (en)
JP3554786B2 (en) Semiconductor ceramic, degaussing positive temperature coefficient thermistor, degaussing circuit, and method of manufacturing semiconductor ceramic
JPH08162302A (en) Thermistor and its manufacture
JPH1012043A (en) Conductive composition and boundary layer ceramic capacitor
JPH0922801A (en) Semiconductor ceramic
JP2688382B2 (en) Inspection method of zinc oxide arrester
JPH01130501A (en) High-voltage resistor
JP3246003B2 (en) Positive thermistor element
JPH0927404A (en) Nonlinear resistor, and life evaluation thereof
JP2003059784A (en) Method for sorting multilayer ceramic capacitor
JPH04206603A (en) Manufacture of positive temperature coefficient thermistor
JPH06267712A (en) Sorting method for varistor
KR100246298B1 (en) Semiconductive Ceramic
JPH0794305A (en) Non-linearly voltage dependent resistor and manufacture thereof
JPS6025004B2 (en) Barium titanate semiconductor porcelain
JPS6116933B2 (en)
JPH01291414A (en) Grain boundary insulated semiconductor porcelain composition
JPH01228102A (en) Positive coefficient thermistor material and manufacture thereof
JPH0831613A (en) Semiconductor ceramic element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071214

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees