JPH07292522A - Production of polyester fiber - Google Patents

Production of polyester fiber

Info

Publication number
JPH07292522A
JPH07292522A JP10600894A JP10600894A JPH07292522A JP H07292522 A JPH07292522 A JP H07292522A JP 10600894 A JP10600894 A JP 10600894A JP 10600894 A JP10600894 A JP 10600894A JP H07292522 A JPH07292522 A JP H07292522A
Authority
JP
Japan
Prior art keywords
speed
polyester
rubber
terephthalate
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10600894A
Other languages
Japanese (ja)
Inventor
Koji Kakumoto
幸治 角本
Shuji Miyazaki
修二 宮崎
Akira Kanatsuki
亮 金築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP10600894A priority Critical patent/JPH07292522A/en
Publication of JPH07292522A publication Critical patent/JPH07292522A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform the manufacturing of polyester fibers having a combination of excellent dimensional stability and high heat resistance desired for industrial materials, particularly suitable for rubber-reinforcing purposes stably in an industrial scale in high productivity. CONSTITUTION:Polyethylene terephthalate of 0.8-1.1 intrinsic viscosity or a polyester mainly comprising the same is combined with 0.05 to 0.5wt.% of a diaryl terephthalate and melt-extruded into fibers, taken up at a speed of 1,700 to 3,500m/min, then subjected to heat-drawing so that the elongation of the drawn yarn attains 10 to 20% at break.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、産業資材用、特にゴム
補強用繊維に適した、熱に対する寸法安定性が優れると
同時に、耐熱性に優れたポリエステル繊維の製造法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polyester fiber which is suitable for industrial materials, especially for rubber-reinforcing fiber, and which has excellent dimensional stability against heat and heat resistance.

【0002】[0002]

【従来の技術】ポリエチレンテレフタレート繊維で代表
されるポリエステル繊維は、産業資材用繊維として広く
使用されており、特に、ゴム補強用繊維として優れた性
能を有しているが、近年、高性能化への要求の高まりと
ともに、高熱環境下での寸法安定性と耐熱性を同時に満
たす繊維が要望されている。
2. Description of the Related Art Polyester fibers represented by polyethylene terephthalate fibers are widely used as fibers for industrial materials, and particularly have excellent performance as fibers for rubber reinforcement. Along with the increasing demand for the fiber, there is a demand for a fiber that simultaneously satisfies the dimensional stability and heat resistance in a high heat environment.

【0003】寸法安定性を高める方法として、紡糸速度
の高速化により、分子配向度の高い未延伸糸を引き取
り、熱延伸を施す方法が知られている(特公昭63− 528
号、同63− 529号等)。また、近年より高度な性能の要
求により、紡糸速度はさらに高速化の方向に進み、紡糸
ドラフトゾーンで配向結晶化させる方法が提案されてい
る(特開昭60−259620号、特公平3− 21647号等)。し
かし、これらの方法で製造した繊維は、分子の非晶部分
の配向度が低く、寸法安定性は優れているが、強度は従
来の産業資材用繊維より劣っており、また、配向度の低
い非晶部がゴム中で劣化しやすいため、耐熱性がゴム補
強用繊維として満足されるレベルに達しないという大き
な欠点を持っている。
As a method of increasing the dimensional stability, there is known a method in which an undrawn yarn having a high degree of molecular orientation is taken in by increasing the spinning speed and subjected to hot drawing (Japanese Patent Publication No. 63-528).
No. 63-529). In recent years, due to the demand for higher performance, a method has been proposed in which the spinning speed further increases, and oriented crystallization is performed in the spinning draft zone (Japanese Patent Laid-Open No. 60-259620, Japanese Patent Publication No. 3-21647). Etc.). However, the fibers produced by these methods have a low degree of orientation of the amorphous portion of the molecule and are excellent in dimensional stability, but are inferior in strength to conventional fibers for industrial materials, and have a low degree of orientation. Since the amorphous part is easily deteriorated in rubber, it has a major drawback that the heat resistance does not reach a level satisfying as a rubber-reinforcing fiber.

【0004】ゴム中での劣化を防ぐ方法として、繊維を
コード化した後のディップ処理時に、コードを劣化成分
から保護する成分を付与する方法が提案されている(特
開平2− 99667号、同2−127562号、同3− 59168号
等)。しかし、これらはいずれも繊維の表面を保護する
のみで、内部構造の改質には至っておらず、配向結晶化
を伴う高速紡糸により得た繊維に対しては、大きな効果
は期待できない。
As a method of preventing deterioration in rubber, there has been proposed a method of imparting a component for protecting the cord from a deteriorated component at the time of dip treatment after the fiber is coded (Japanese Patent Laid-Open No. 99667/1990). 2-127562, 3-59168, etc.). However, all of these only protect the surface of the fiber, and have not yet improved the internal structure, and a large effect cannot be expected for the fiber obtained by high-speed spinning accompanied by oriented crystallization.

【0005】繊維の内部構造を改良する方法としては、
プラズマ延伸法(特開平3−137219号)や放電部分での
延伸法(特開平5−148712号)等の新規な延伸法を採用
する方法も提案されているが、これらは、装置が大がか
りであったり、高速延伸に適していない等、工業的規模
の生産には適していない。
As a method for improving the internal structure of fibers,
A method of adopting a new stretching method such as a plasma stretching method (Japanese Patent Laid-Open No. 3-137219) or a drawing method in a discharge part (Japanese Patent Laid-Open No. 5-148712) has been proposed, but these require large-scale equipment. However, it is not suitable for industrial scale production because it is not suitable for high-speed drawing.

【0006】このように、熱に対する寸法安定性とゴム
中での耐熱性を兼ね備えたポリエステル繊維の工業的規
模での開発は、未だ達成されていない。
As described above, the development of polyester fibers having both dimensional stability against heat and heat resistance in rubber on an industrial scale has not yet been achieved.

【0007】[0007]

【発明が解決しようとする課題】本発明は、産業資材用
途、特に、ゴム補強用に適する、良好な寸法安定性と耐
熱性を兼ね備えたポリエステル繊維を、工業的に安定し
て生産性よく製造することのできるポリエステル繊維の
製造法を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention provides a polyester fiber having good dimensional stability and heat resistance, which is suitable for industrial materials, particularly for rubber reinforcement, and is industrially stable with high productivity. The present invention is intended to provide a method for producing a polyester fiber that can be manufactured.

【0008】[0008]

【課題を解決するための手段】本発明は上記課題を解決
するもので、その要旨は、固有粘度が 0.8〜1.1 のポリ
エチレンテレフタレート又はこれを主体とするポリエス
テルに対し、ジアリールテレフタレートを0.05〜0.5 重
量%添加して溶融紡糸し、紡出糸条を1700〜3500m/分
の引取速度で引き取り、紡糸に連続して、延伸糸の切断
伸度が10〜20%となるように熱延伸することを特徴とす
るポリエステル繊維の製造法にある。
Means for Solving the Problems The present invention is to solve the above problems, and the gist thereof is to add 0.05 to 0.5 weight of diaryl terephthalate to polyethylene terephthalate having an intrinsic viscosity of 0.8 to 1.1 or a polyester mainly composed of polyethylene terephthalate. % And melt-spun, the spun yarn is drawn at a take-up speed of 1700 to 3500 m / min, and continuously drawn, and hot drawn so that the cutting elongation of the drawn yarn is 10 to 20%. It is a feature of the polyester fiber manufacturing method.

【0009】以下、本発明について詳細に説明する。本
発明におけるポリエステルは、実質的にポリエチレンテ
レフタレート(PET)からなるものであり、PET本
来の性質を損なわない範囲において共重合成分を含有し
ていてもよく、耐熱剤、難燃剤、艶消剤等の添加剤を含
有していてもよい。そして、紡糸に供するポリエステル
としては、固有粘度(フェノールとテトラクロロエタン
との等重量混合溶剤を用いて20℃で測定)が 0.8〜1.1
の範囲にあるものを使用することが必要である。固有粘
度がこの範囲より低いと、繊維の強度や耐熱性が劣った
ものとなり、一方、この範囲より高いと、紡糸応力が高
く、配向結晶化をコントロールしにくいため、好ましく
ない。
The present invention will be described in detail below. The polyester in the present invention is substantially composed of polyethylene terephthalate (PET), and may contain a copolymerization component in a range that does not impair the original properties of PET, such as a heat-resistant agent, a flame retardant, and a matting agent. The additive may be included. And, as the polyester to be used for spinning, the intrinsic viscosity (measured at 20 ° C. using an equal weight mixed solvent of phenol and tetrachloroethane) is 0.8 to 1.1.
It is necessary to use the one in the range of. If the intrinsic viscosity is lower than this range, the strength and heat resistance of the fiber will be poor. On the other hand, if the intrinsic viscosity is higher than this range, the spinning stress will be high and it will be difficult to control the oriented crystallization, which is not preferable.

【0010】本発明の特徴は、PETにジアリールテレ
フタレートを添加して溶融紡糸することにある。ジアリ
ールテレフタレートは、PETと相溶性があり、繊維中
での分散性に優れ、分子鎖の流動を促進し、低張力での
製糸を可能とし、非晶部の不均一な配向に起因する熱劣
化や収縮率の増加を抑制する。また、この化合物は、適
度な結晶化を誘発するため、PETの結晶構造を阻害す
ることがなく、少量の添加であれば、強度や重合度に影
響することもない。さらに、ジアリールテレフタレート
を添加することにより延伸性が良好となり、スピンドロ
ー法のような高速延伸に十分対応でき、生産性が向上す
る。
A feature of the present invention is that melt-spinning is performed by adding diaryl terephthalate to PET. Diaryl terephthalate is compatible with PET, has excellent dispersibility in fibers, promotes the flow of molecular chains, enables low-tension yarn production, and causes thermal degradation due to non-uniform orientation of the amorphous part. And suppresses an increase in shrinkage. Further, since this compound induces appropriate crystallization, it does not hinder the crystal structure of PET, and if added in a small amount, it does not affect the strength or the degree of polymerization. Furthermore, the addition of diaryl terephthalate improves the drawability, can sufficiently cope with the high speed drawing such as the spin draw method, and improves the productivity.

【0011】本発明におけるジアリールテレフタレート
は、アリール基の炭素原子数が14以下のものが好まし
く、アルキル基やバロゲン原子等を置換基として有して
いてもよい。ジアリールテレフタレートのアリール基の
具体例としては、フェニル基、o−、p−又はm−トリ
ル基、o−クロロフェニル基、α−又はβ−ナフチル
基、o−又はp−フェニルフェニル基、2,4−ジエチル
フェニル基、2−メチル−4−クロロフェニル基等が挙
げられる。(2個のアリール基は、同一でも異なるもの
でもよい。)
The diaryl terephthalate in the present invention preferably has an aryl group having 14 or less carbon atoms, and may have an alkyl group, a valogen atom or the like as a substituent. Specific examples of the aryl group of diaryl terephthalate include phenyl group, o-, p- or m-tolyl group, o-chlorophenyl group, α- or β-naphthyl group, o- or p-phenylphenyl group, 2,4 -Diethylphenyl group, 2-methyl-4-chlorophenyl group and the like. (The two aryl groups may be the same or different.)

【0012】ジアリールテレフタレートの添加量は、ポ
リエステルに対し、0.05〜0.5 重量%とすることが必要
であり、この範囲より少ないと効果が少なく、この範囲
より多いとポリエステルの重合度が低下する等、強伸度
特性に影響するため、好ましくない。
The amount of diaryl terephthalate added is required to be 0.05 to 0.5% by weight based on the polyester. If it is less than this range, the effect is small, and if it is more than this range, the degree of polymerization of the polyester decreases. This is not preferable because it affects the strength and elongation characteristics.

【0013】本発明においては、まず、ジアリールテレ
フタレートを添加したPETを紡糸温度 290〜310 ℃で
溶融紡糸し、紡出糸条を、加熱筒等を配設し、口金下方
5〜20cmの範囲の雰囲気温度を 250〜350 ℃とした領域
を通過させた後、冷却することが好ましい。紡糸温度及
び雰囲気温度がこの範囲より低いと、初期応力が高く、
高速引取りが困難になり、また、この範囲より高いと、
その後の冷却が不完全になる。冷却は、10〜30℃の冷却
風を40m/分以上の風速で20cm以上の長さにわたって吹
き付ける方法で行うことが望ましい。
In the present invention, first, PET to which diaryl terephthalate has been added is melt-spun at a spinning temperature of 290 to 310 ° C., and a spun yarn is arranged in a heating cylinder or the like, and the range of 5 to 20 cm below the spinneret. It is preferable to cool after passing through a region where the ambient temperature is 250 to 350 ° C. When the spinning temperature and the ambient temperature are lower than this range, the initial stress is high,
High-speed collection becomes difficult, and if it is higher than this range,
Subsequent cooling is incomplete. Cooling is preferably performed by a method of blowing cooling air of 10 to 30 ° C. at a wind speed of 40 m / min or more over a length of 20 cm or more.

【0014】引取速度は、1700〜3500m/分とすること
が必要である。引取速度がこの範囲より低いと、紡糸応
力が低く、配向結晶化度が低くなるので、寸法安定性が
悪くなり、この範囲より高いと、最高延伸倍率が低くな
り、耐熱性が悪くなる。
The take-up speed must be 1700-3500 m / min. If the take-up speed is lower than this range, the spinning stress will be low and the oriented crystallinity will be low, resulting in poor dimensional stability. If it is higher than this range, the maximum draw ratio will be low and the heat resistance will be poor.

【0015】引取った糸条は、紡糸に連続して延伸する
スピンドロー法により熱延伸する。熱延伸は二段以上の
多段で行うことが好ましく、加熱は加熱ローラ、加熱蒸
気、ヒートプレート、ヒートボックス等適宜の加熱手段
により行うことができる。延伸は、延伸糸の切断伸度が
10〜20%となるように行うことが必要である。切断伸度
が10%未満になるようにするには、延伸倍率を切断延伸
倍率近くにしなければならないため、延伸性が悪いとと
もに、ディップコードにしたときの乾熱収縮率が高くな
る。一方、切断伸度が20%を超えるものは、延伸が不十
分で強度が低いと同時に、高伸度が影響してゴム中での
耐熱性が劣ったものとなる。延伸糸の切断伸度が10〜20
%となるようにするには、延伸倍率を適切に選定して延
伸すればよく、通常、延伸倍率は、 3.5〜1.7 の範囲
で、引取速度に応じて定められる。
The taken-up yarn is heat-drawn by a spin draw method in which the yarn is continuously drawn. The hot stretching is preferably performed in multiple stages of two or more stages, and heating can be performed by an appropriate heating means such as a heating roller, heating steam, a heat plate, and a heat box. Stretching has a cutting elongation of the drawn yarn.
It is necessary to carry out so as to be 10 to 20%. In order to achieve a cutting elongation of less than 10%, the draw ratio must be close to the cut draw ratio, so that the drawability is poor and the dry heat shrinkage ratio when the dip cord is used is high. On the other hand, when the breaking elongation exceeds 20%, the stretching is insufficient and the strength is low, and at the same time, the high elongation affects the heat resistance in the rubber. Cutting elongation of drawn yarn is 10 ~ 20
In order to achieve the value of 0.1%, the stretching ratio may be appropriately selected and the stretching may be performed. Usually, the stretching ratio is set in the range of 3.5 to 1.7 according to the take-up speed.

【0016】本発明の方法によれば、強度が 7.0g/d
以上、 180℃での乾熱収縮率が 4.0%以下のポリエステ
ル繊維が製造でき、ディップコードにしたときの 177℃
での乾熱収縮率を 1.5%以下、ゴム中 160℃で3時間保
持後の強力保持率を70%以上とすることができる。
According to the method of the present invention, the strength is 7.0 g / d.
Above, polyester fibers with a dry heat shrinkage ratio of 180% or less at 180 ° C can be manufactured, and 177 ° C when the dip cord is used.
The dry heat shrinkage at 1.5% or less and the tenacity retention after holding at 160 ° C in rubber for 3 hours can be 70% or more.

【0017】[0017]

【実施例】以下、本発明を実施例により具体的に説明す
る。なお、特性値の測定法は次のとおりである。 (a) 強伸度 島津製作所製オートグラフS−100 を用い、試料長25c
m、引張速度30cm/分の条件で測定した。 (b) 乾熱収縮率 原糸については、 180℃で30分間無張力下で熱処理し、
ディップコードについては、 177℃で 0.015g/dの荷
重をかけて熱処理して測定した。 (c) ゴム中での耐熱性 ディップコードをゴム中に埋め込み、温度 160℃、圧力
25kg/cm2 で3時間加硫し、取り出したコードの強力を
測定し、埋め込む前の強力に対する強力保持率を算出し
て評価した。
EXAMPLES The present invention will be specifically described below with reference to examples. The measuring method of the characteristic value is as follows. (a) Tensile strength Using Autograph S-100 manufactured by Shimadzu Corporation, sample length 25c
The measurement was performed under the conditions of m and a pulling speed of 30 cm / min. (b) Dry heat shrinkage The raw yarn is heat treated at 180 ° C for 30 minutes under no tension,
The dip code was measured by heat treatment at 177 ° C. with a load of 0.015 g / d. (c) Heat resistance in rubber Dip cord is embedded in rubber, temperature is 160 ℃, pressure
It was vulcanized at 25 kg / cm 2 for 3 hours, the strength of the taken out cord was measured, and the strength retention ratio to the strength before embedding was calculated and evaluated.

【0018】実施例1 固有粘度が 1.0のPETチップに対し、ジフェニルテレ
フタレート(DPT)を表1に示す添加量で添加し、混
合したものをエスクトルーダー型溶融紡糸機に供給し、
直径 0.5mmの紡糸孔を 500個有する紡糸口金を用いて、
紡糸温度 305℃で紡出し、口金直下に配設した長さ13c
m、温度 325℃の加熱筒を通した後、長さ30cmの円筒型
冷却装置より、風速60m/分、温度18℃の冷却風を糸条
に吹き付けて冷却した。冷却された糸条を70℃の加熱引
取ローラで表1に示した引取速度で引き取り、引取ロー
ラと 140℃の第1延伸ローラとの間で 1.5倍に延伸し、
次いで、第1延伸ローラと 200℃の第2延伸ローラとの
間で表1に示した全延伸倍率となるように延伸し、第2
ローラと 230℃の熱処理ローラとの間で 0.97 倍の弛緩
熱処理を行った後、巻き取り、1500d/500fのポリエス
テル繊維を得た。得られた繊維の物性を測定した結果を
表1に示す。なお、No. 1及び2が本発明の実施例で、
No. 3〜8は比較例である。
Example 1 To a PET chip having an intrinsic viscosity of 1.0, diphenyl terephthalate (DPT) was added at the addition amount shown in Table 1, and the mixture was supplied to an escutruder type melt spinning machine,
Using a spinneret with 500 spinning holes with a diameter of 0.5 mm,
Spinning at a spinning temperature of 305 ° C and a length of 13c placed directly under the spinneret
After passing through a heating cylinder having a temperature of 325 ° C. and a temperature of 325 ° C., a cooling air having a wind speed of 60 m / min and a temperature of 18 ° C. was blown onto the yarn from a cylindrical cooling device having a length of 30 cm to cool the yarn. The cooled yarn was taken up by a heating take-up roller of 70 ° C at a take-up speed shown in Table 1, and drawn 1.5 times between the taking-up roller and the first drawing roller of 140 ° C.
Then, stretching was performed between the first stretching roller and the second stretching roller at 200 ° C. so that the total stretching ratio shown in Table 1 was obtained,
A relaxation heat treatment of 0.97 times was performed between the roller and the heat treatment roller at 230 ° C., and then wound up to obtain 1500 d / 500 f polyester fiber. The results of measuring the physical properties of the obtained fibers are shown in Table 1. No. 1 and 2 are examples of the present invention,
No. 3 to 8 are comparative examples.

【0019】[0019]

【表1】 [Table 1]

【0020】次に、No. 1〜8の原糸をリング撚糸機に
よりZ方向に39回/10cmの下撚をかけ、下撚をかけたも
のを2本合糸してS方向に39回/10cmの上撚をかけて生
コードとした。この生コードに、リッツラー社製ディッ
ピングマシンを用い、固形分15重量%のRFL液を 3.5
〜4.0 重量%付着させ、乾燥ゾーン 160℃×60秒、熱処
理ゾーン 240℃×50秒×2回の条件で処理し、ディップ
コードとした。ディップコードの強度、強力保持率(原
糸の強力に対する)、乾熱収縮率及びゴム中での耐熱性
を測定した結果を表2に示す。
Next, the No. 1 to 8 raw yarns are twisted 39 times / 10 cm in the Z direction by a ring twisting machine, and two twisted yarns are combined and twisted in the S direction 39 times. / 10 cm top twist was applied to make a raw cord. Using a dipping machine manufactured by Ritzler, an RFL liquid having a solid content of 15% by weight was added to the raw cord to 3.5
Approximately 4.0% by weight was adhered, and treated under the conditions of a drying zone of 160 ° C x 60 seconds and a heat treatment zone of 240 ° C x 50 seconds x 2 times to obtain a dip code. Table 2 shows the results of measuring the strength of the dip cord, the tenacity retention ratio (relative to the tenacity of the raw yarn), the dry heat shrinkage ratio, and the heat resistance in rubber.

【0021】[0021]

【表2】 [Table 2]

【0022】本発明の実施例であるNo. 1及び2では、
いずれもディップコードでの乾熱収縮率が1.5 %以下
で、ゴム中の耐熱性は70%以上であった。これに対し
て、比較例であるNo. 3では、ジフェニルテレフタレー
トの添加量が多いため、粘度低下をきたし、紡糸調子も
悪く、コードの強度、耐熱性ともに不満足であった。ま
た、No. 4では、ジフェニルテレフタレート無添加のた
め、耐熱性、乾熱収縮率ともに劣っていた。さらに、N
o. 5では、引取速度が低いため、延伸倍率を高くする
必要があり、乾熱収縮率が高く、No. 6では、引取速度
が高いため、延伸倍率を低くする必要があり、強度と耐
熱性が低かった。また、No. 7では、延伸不十分(切断
伸度が大きい)で、強度及びゴム中での耐熱性が悪く、
No. 8では、延伸しすぎ(切断伸度が小さい)で、延伸
性が悪く、ディップコードでの乾熱収縮率が高かった。
In Nos. 1 and 2 which are the embodiments of the present invention,
The dry heat shrinkage of the dip cords was 1.5% or less, and the heat resistance in the rubber was 70% or more. On the other hand, in Comparative Example No. 3, since the amount of diphenyl terephthalate added was large, the viscosity was lowered, the spinning condition was also poor, and the strength and heat resistance of the cord were unsatisfactory. In addition, in No. 4, since diphenyl terephthalate was not added, both heat resistance and dry heat shrinkage were inferior. Furthermore, N
In o. 5, the take-up speed is low, so the draw ratio must be high, and the dry heat shrinkage rate is high. In No. 6, the take-up speed is high, so the draw ratio must be low, and the strength and heat resistance are high. The sex was low. Further, in No. 7, the stretching was insufficient (the cutting elongation was large), and the strength and heat resistance in rubber were poor,
In No. 8, the stretchability was poor due to overstretching (the cutting elongation was small), and the dry heat shrinkage with the dip cord was high.

【0023】[0023]

【発明の効果】本発明によれば、産業資材用途、特に、
ゴム補強用に適する、良好な寸法安定性と耐熱性を兼ね
備えたポリエステル繊維を工業的に安定して生産性よく
製造することができる。
INDUSTRIAL APPLICABILITY According to the present invention, industrial material applications, particularly,
A polyester fiber having good dimensional stability and heat resistance, which is suitable for rubber reinforcement, can be industrially produced stably with high productivity.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 固有粘度が 0.8〜1.1 のポリエチレンテ
レフタレート又はこれを主体とするポリエステルに対
し、ジアリールテレフタレートを0.05〜0.5 重量%添加
して溶融紡糸し、紡出糸条を1700〜3500m/分の引取速
度で引き取り、紡糸に連続して、延伸糸の切断伸度が10
〜20%となるように熱延伸することを特徴とするポリエ
ステル繊維の製造法。
1. A polyethylene terephthalate having an intrinsic viscosity of 0.8 to 1.1, or a polyester mainly composed of polyethylene terephthalate, is added with 0.05 to 0.5% by weight of diaryl terephthalate and melt-spun, and a spun yarn is produced at 1700 to 3500 m / min. Taken at the take-up speed, continuous to the spinning, the cutting elongation of the drawn yarn is 10
A method for producing a polyester fiber, which comprises heat-drawing so that the content is about 20%.
JP10600894A 1994-04-20 1994-04-20 Production of polyester fiber Pending JPH07292522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10600894A JPH07292522A (en) 1994-04-20 1994-04-20 Production of polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10600894A JPH07292522A (en) 1994-04-20 1994-04-20 Production of polyester fiber

Publications (1)

Publication Number Publication Date
JPH07292522A true JPH07292522A (en) 1995-11-07

Family

ID=14422656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10600894A Pending JPH07292522A (en) 1994-04-20 1994-04-20 Production of polyester fiber

Country Status (1)

Country Link
JP (1) JPH07292522A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104265336A (en) * 2014-06-13 2015-01-07 上海鑫荻良实业发展有限公司 Halogen-free flame retardant antistatic polyester net false roof for underground coal mine and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104265336A (en) * 2014-06-13 2015-01-07 上海鑫荻良实业发展有限公司 Halogen-free flame retardant antistatic polyester net false roof for underground coal mine and preparation method thereof

Similar Documents

Publication Publication Date Title
CA1314673C (en) High-tenacity conjugated fiber and process for preparation thereof
EP0080906B1 (en) Polyester fibres and their production
EP0169415B1 (en) Polyester fiber
KR950007813B1 (en) Polyester fiber for industrial use and process for preparation thereof
US6511747B1 (en) High strength polyethylene naphthalate fiber
US6641765B2 (en) Polyester multifilament yarn
CN1727539B (en) Polyester multi-filament yarn for tire cord
US20050161854A1 (en) Dimensionally stable yarns
JPH0733610B2 (en) Manufacturing method of polyester tire cord
KR20090072050A (en) A method for producing high modulus - low shrinkage polyester multifilament yarn
JPH07292522A (en) Production of polyester fiber
JPH0428806B2 (en)
JPH0323644B2 (en)
JPH07138812A (en) Production of polyester fiber
JP2839817B2 (en) Manufacturing method of polyester fiber with excellent thermal dimensional stability
JPH07252725A (en) Production of polyester fiber
JPS63315608A (en) Polyester fiber
KR101086745B1 (en) High tenacity polyethylene terephthalate fibers and process for preparing the same
KR100230664B1 (en) Polyester fiber for reinforcing rubber and preparation thereof
JP2753978B2 (en) Industrial polyester fiber and method for producing the same
KR20070072038A (en) A process for producing polyester multi-filament yarns having excellent adhesion to polyvinyl chloride and products
JPH062209A (en) Production of polyester fiber for reinforcing rubber
JPH07118920A (en) Polyester fiber
KR100595992B1 (en) Polyethylene-2,6- naphthalate fibers by high speed spinning
JPH07102417A (en) Polyester fiber yarn for rubber reinforcement