JPH07252725A - Production of polyester fiber - Google Patents
Production of polyester fiberInfo
- Publication number
- JPH07252725A JPH07252725A JP6066743A JP6674394A JPH07252725A JP H07252725 A JPH07252725 A JP H07252725A JP 6066743 A JP6066743 A JP 6066743A JP 6674394 A JP6674394 A JP 6674394A JP H07252725 A JPH07252725 A JP H07252725A
- Authority
- JP
- Japan
- Prior art keywords
- heat resistance
- polyester
- speed
- fiber
- spinning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Tires In General (AREA)
- Reinforced Plastic Materials (AREA)
- Artificial Filaments (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、産業資材用、特にゴム
補強用繊維に適した、熱に対する寸法安定性が優れると
同時に、耐熱性に優れたポリエステル繊維の製造法に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polyester fiber which is suitable for industrial materials, especially for rubber-reinforcing fiber, and which has excellent dimensional stability against heat and heat resistance.
【0002】[0002]
【従来の技術】ポリエチレンテレフタレート繊維で代表
されるポリエステル繊維は、産業資材用繊維として広く
使用されており、特に、ゴム補強用繊維として優れた性
能を有しているが、近年、高性能化への要求の高まりと
ともに、高熱環境下での寸法安定性と耐熱性を同時に満
たす繊維が要望されている。2. Description of the Related Art Polyester fibers represented by polyethylene terephthalate fibers are widely used as fibers for industrial materials, and particularly have excellent performance as fibers for rubber reinforcement. Along with the increasing demand for the fiber, there is a demand for a fiber that simultaneously satisfies the dimensional stability and heat resistance in a high heat environment.
【0003】寸法安定性を高める方法として、紡糸速度
の高速化により、分子配向度の高い未延伸糸を引き取
り、熱延伸を施す方法が知られている(特公昭63− 528
号、同63− 529号等)。また、近年、より高度な性能の
要求により、紡糸速度はさらに高速化の方向に進み、紡
糸ドラフトゾーンで配向結晶化させる方法が提案されて
いる(特開昭60−259620号、特公平3− 21647号等)。
しかし、これらの方法で製造した繊維は、分子の非晶部
分の配向度が低く、寸法安定性が優れているが、強度
は、従来の産業資材用繊維より劣っており、また、配向
度の低い非晶部がゴム中で劣化しやすいため、耐熱性が
ゴム補強用繊維とし満足されるレベルに達しないという
大きな欠点を持っている。As a method of increasing the dimensional stability, there is known a method in which an undrawn yarn having a high degree of molecular orientation is taken in by increasing the spinning speed and subjected to hot drawing (Japanese Patent Publication No. 63-528).
No. 63-529). Further, in recent years, due to the demand for higher performance, a method has been proposed in which the spinning speed further increases, and oriented crystallization is carried out in a spinning draft zone (Japanese Patent Laid-Open No. 60-259620, Japanese Patent Publication No. 3-259620). No. 21647).
However, the fibers produced by these methods have a low degree of orientation of the amorphous portion of the molecule and are excellent in dimensional stability, but the strength is inferior to the conventional fibers for industrial materials, and the degree of orientation is Since the low amorphous part is easily deteriorated in the rubber, it has a major drawback that the heat resistance does not reach a level satisfactory as a rubber-reinforcing fiber.
【0004】ゴム中での劣化を防ぐ方法として、繊維を
コード化した後のディップ処理時に、コードを劣化成分
から保護する成分を付与する方法が提案されている(特
開平2− 99667号、同2−127562号、同3− 59168号
等)。しかし、これらはいずれも繊維の表面を保護する
のみで、内部構造の改質には至っておらず、配向結晶化
を伴う高速紡糸により得た繊維に対しては、大きな効果
は期待できない。As a method of preventing deterioration in rubber, there has been proposed a method of imparting a component for protecting the cord from a deteriorated component at the time of dip treatment after the fiber is coded (Japanese Patent Laid-Open No. 99667/1990). 2-127562, 3-59168, etc.). However, all of these only protect the surface of the fiber, and have not yet improved the internal structure, and a large effect cannot be expected for the fiber obtained by high-speed spinning accompanied by oriented crystallization.
【0005】繊維の内部構造を改良する方法としては、
プラズマ延伸法(特開平3−137219号)や、放電部分で
の延伸法(特開平5−148712号)等、新規な延伸法を採
用する方法も提案されているが、これらは、装置が大が
かりであったり、高速延伸に適していない等、工業的規
模の生産には適していない。As a method for improving the internal structure of fibers,
A method of adopting a novel stretching method such as a plasma stretching method (Japanese Patent Laid-Open No. 3-137219) and a stretching method in a discharge part (Japanese Patent Laid-Open No. 5-148712) has also been proposed, but these require large-scale equipment. And is not suitable for industrial scale production, such as not suitable for high-speed drawing.
【0006】このように、熱に対する寸法安定性とゴム
中での耐熱性を兼ね備えたポリエステル繊維の工業的規
模での開発は、未だに達成されていない。As described above, the development of polyester fibers having both dimensional stability against heat and heat resistance in rubber on an industrial scale has not been achieved yet.
【0007】[0007]
【発明が解決しようとする課題】本発明は、産業資材用
途、特に、ゴム補強用に適する、良好な寸法安定性と耐
熱性を兼ね備えたポリエステル繊維を、工業的に安定し
て生産性よく製造することのできるポリエステル繊維の
製造法を提供しようとするものである。DISCLOSURE OF THE INVENTION The present invention provides a polyester fiber having good dimensional stability and heat resistance, which is suitable for industrial materials, particularly for rubber reinforcement, and is industrially stable with high productivity. The present invention is intended to provide a method for producing a polyester fiber that can be manufactured.
【0008】[0008]
【課題を解決するための手段】本発明は、上記課題を解
決するもので、その要旨は、固有粘度が 0.8〜1.1 のポ
リエチレンテレフタレート又はこれを主体とするポリエ
ステルに対し、粒径が5μm以下のフッ素四ケイ素雲母
粒子を0.05〜1.0 重量%添加し、溶融紡出した糸条を20
00〜3500m/分の引取速度で引き取り、紡糸に連続し
て、 1.5〜3.0 倍に延伸することを特徴とするポリエス
テル繊維の製造法にある。Means for Solving the Problems The present invention is to solve the above-mentioned problems, and its gist is to provide a polyethylene terephthalate having an intrinsic viscosity of 0.8 to 1.1 or a polyester mainly composed of polyethylene terephthalate having a particle size of 5 μm or less. Twenty percent of the melt spun yarn was added with 0.05 to 1.0% by weight of tetrafluorosilicon mica particles.
It is a method for producing a polyester fiber, which is characterized in that it is drawn at a drawing speed of 00 to 3500 m / min, and is continuously drawn to a draw ratio of 1.5 to 3.0 times.
【0009】以下、本発明について詳細に説明する。本
発明におけるポリエステル繊維は、実質的にポリエチレ
ンテレフタレート(PET)からなるものであり、ポリ
エステル本来の性質を損なわない程度において、耐熱
剤、難燃剤、艶消剤等の第3成分を含有していてもよ
い。固有粘度は、フェノールとテトラクロロエタンとの
等重量混合溶剤を用いて20℃での測定した値で 0.8〜1.
1 の範囲にある必要がある。固有粘度がこの範囲より低
いと、強度や耐熱性が劣ったものとなり、また、この範
囲より高いと、紡糸応力が高く、配向結晶化をコントロ
ールしにくいため、好ましくない。The present invention will be described in detail below. The polyester fiber in the present invention is substantially composed of polyethylene terephthalate (PET), and contains a third component such as a heat-resistant agent, a flame retardant, and a matting agent to the extent that the original properties of polyester are not impaired. Good. The intrinsic viscosity is a value measured at 20 ° C using an equal weight mixed solvent of phenol and tetrachloroethane, and is 0.8 to 1.
Must be in the 1 range. When the intrinsic viscosity is lower than this range, the strength and heat resistance are inferior, and when it is higher than this range, the spinning stress is high and it is difficult to control the oriented crystallization, which is not preferable.
【0010】本発明の特徴は、PETの溶融時にフッ素
四ケイ素雲母粒子を添加したPETを溶融紡糸すること
にある。この添加物は、高温環境下で非常に安定であ
り、自身の耐熱性に優れていると同時に、PETに添加
することにより、PETの非晶部に分散し、繊維全体の
耐熱性を向上させることが可能となる。A feature of the present invention is to melt-spin PET in which fluorine tetrasilicon mica particles are added when PET is melted. This additive is extremely stable in a high temperature environment and has excellent heat resistance of itself, and at the same time, when added to PET, it is dispersed in the amorphous part of PET to improve the heat resistance of the entire fiber. It becomes possible.
【0011】フッ素四ケイ素雲母粒子としては、コープ
ケミカル社から合成雲母「MEシリーズ」として市販さ
れているものが好ましく用いられる。As the tetrafluorosilicon mica particles, those commercially available from Corp Chemical Co., Ltd. as synthetic mica "ME series" are preferably used.
【0012】フッ素四ケイ素雲母粒子の粒径は、5μm
以下とする必要があり、特に2μm以下のものが好まし
い。この範囲内であれば、PET中での分散性に優れ、
適度な結晶化を誘発するため、PETの結晶構造を阻害
することはなく、少量の添加であれば、強度や重合度の
低下を起こすこともない。粒径がこの範囲より大きい
と、PET中での分散性が悪く、極在する粒子のために
紡糸時に応力が均一に加わらず、分子配向に斑ができ、
寸法安定性が悪くなる。また、極端な場合には、粒子近
傍に応力が集中し、切断に至ることもある。The particle size of the tetrafluorosilicon mica particles is 5 μm.
It is necessary to make it below, and it is particularly preferable that it is 2 μm or less. Within this range, the dispersibility in PET is excellent,
Since it induces appropriate crystallization, it does not hinder the crystal structure of PET, and addition of a small amount does not cause a decrease in strength or degree of polymerization. If the particle size is larger than this range, the dispersibility in PET is poor, the stress is not evenly applied during spinning due to the extremely existing particles, and the molecular orientation is uneven.
Dimensional stability deteriorates. Further, in extreme cases, stress may be concentrated in the vicinity of the particles, leading to cutting.
【0013】フッ素四ケイ素雲母粒子の添加量は、ポリ
エステルに対し、0.05〜1.0 重量%とする必要があり、
この範囲より少ないと効果が少なく、この範囲より多い
とポリエステルの重合度が低下する等、強度特性に影響
するため、好ましくない。The amount of tetrafluorosilicon mica particles added is required to be 0.05 to 1.0% by weight based on the polyester.
If it is less than this range, the effect is small, and if it is more than this range, the degree of polymerization of the polyester is deteriorated and strength properties are affected.
【0014】本発明においては、まず、フッ素四ケイ素
雲母粒子を添加したPETを紡糸温度 290〜310 ℃で溶
融紡糸し、紡出糸条を、加熱筒等を配設し、口金下方5
〜15cmの範囲の雰囲気温度を 250〜350 ℃とした領域を
通した後、冷却することが好ましい。紡糸温度及び雰囲
気温度がこの範囲より低いと初期応力が高すぎ、高速引
取が困難になり、また、紡糸温度及び雰囲気温度がこの
範囲より高いとその後の冷却が不完全になる。冷却方法
は、10〜30℃の冷却風を40m/分以上の風速で20cm以上
の長さにわたって吹き付けることが望ましい。In the present invention, first, PET to which fluorine tetrasilicon mica particles are added is melt-spun at a spinning temperature of 290 to 310 ° C., a spun yarn is arranged in a heating cylinder, etc.
It is preferable to cool after passing through a region where the atmospheric temperature in the range of -15 cm is 250-350 ° C. If the spinning temperature and the ambient temperature are lower than this range, the initial stress is too high, and high-speed take-up becomes difficult, and if the spinning temperature and the ambient temperature are higher than this range, the subsequent cooling is incomplete. As a cooling method, it is desirable to blow cooling air of 10 to 30 ° C. at a wind speed of 40 m / min or more over a length of 20 cm or more.
【0015】引取速度は、2000〜3500m/分とする必要
がある。引取速度がこの範囲より低いと、紡糸応力が低
く、配向結晶化が起こらず、寸法安定性が悪くなり、こ
の範囲より高いと、最高延伸倍率が低くなり、耐熱性が
悪くなる。The take-up speed must be 2000-3500 m / min. If the take-up speed is lower than this range, the spinning stress is low, oriented crystallization does not occur, and the dimensional stability becomes poor. If it is higher than this range, the maximum draw ratio becomes low and the heat resistance becomes poor.
【0016】引取った糸条は、紡糸に連続して延伸する
スピンドロー法により熱延伸する。本発明の場合、スピ
ンドロー法のような高速延伸にも十分対応でき、生産性
の上でも有利である。熱延伸は二段以上の多段延伸が好
ましく、加熱方法は加熱ローラや加熱蒸気、ヒートプレ
ート、ヒートボックス等による方法があり、特に限定さ
れるものではない。総延伸倍率は 1.5〜3.0 倍とする必
要がある。総延伸倍率がこの範囲より低いと、強度、耐
熱性ともに劣ったものになり、この範囲より高いと、良
好な寸法安定性が保てなくなる。The drawn yarn is heat-drawn by the spin draw method in which the yarn is continuously drawn. In the case of the present invention, it is possible to sufficiently cope with high-speed drawing such as the spin draw method, which is advantageous in terms of productivity. The hot stretching is preferably a multi-stage stretching of two or more stages, and the heating method includes a method using a heating roller, heated steam, a heat plate, a heat box, etc., and is not particularly limited. The total draw ratio must be 1.5 to 3.0 times. If the total draw ratio is lower than this range, the strength and heat resistance will be poor, and if it is higher than this range, good dimensional stability cannot be maintained.
【0017】本発明では、上記の製造法により、強度が
7.0g/d以上、 180℃での乾熱収縮率が 4.0%以下の
ポリエステル繊維が製造でき、ディップコードにしたと
きの177℃での乾熱収縮率を 1.5%以下、ゴム中 160℃
での3時間後の強力保持率を70%以上とすることができ
る。In the present invention, the strength is increased by the above manufacturing method.
A polyester fiber with a dry heat shrinkage of 7.0 g / d or more and a dry heat shrinkage of 4.0% or less at 180 ° C can be produced, and the dry heat shrinkage of 177 ° C at the time of dip cord is 1.5% or less, 160 ° C in rubber.
The tenacity retention after 3 hours can be 70% or more.
【0018】[0018]
【実施例】以下、本発明を実施例により具体的に説明す
る。なお、本発明における特性値の測定法は次のとおり
である。 (a) 強伸度 島津製作所製オートグラフS−100 を用い、試料長25c
m、引張速度30cm/分の条件で測定した。 (b) 乾熱収縮率 原糸については、 180℃で30分間無張力下で熱処理し、
ディップコードについては、 177℃で 0.015g/dの荷
重をかけて熱処理して測定した。 (c) ゴム中での耐熱性 ディップコードをゴム中に埋め込み、温度 160℃、圧力
25kg/cm2 で3時間加硫し、取り出したコードの強力を
測定し、埋め込む前の強力に対する強力保持率を算出し
た。EXAMPLES The present invention will be specifically described below with reference to examples. In addition, the measuring method of the characteristic value in this invention is as follows. (a) Tensile strength Using Autograph S-100 manufactured by Shimadzu Corporation, sample length 25c
The measurement was performed under the conditions of m and a pulling speed of 30 cm / min. (b) Dry heat shrinkage The raw yarn is heat treated at 180 ° C for 30 minutes under no tension,
The dip code was measured by heat treatment at 177 ° C. with a load of 0.015 g / d. (c) Heat resistance in rubber Dip cord is embedded in rubber, temperature is 160 ℃, pressure
It was vulcanized at 25 kg / cm 2 for 3 hours, the strength of the taken out cord was measured, and the strength retention ratio to the strength before embedding was calculated.
【0019】実施例1 固有粘度が 0.9のPETチップに対し、平均粒径が2μ
mのフッ素四ケイ素雲母粒子(コープケミカル社製「M
E−100 」) を表1に示す添加量で添加し、混合したも
のをエクストルーダー型溶融紡糸機に供給し、直径 0.5
mmの紡糸孔を 500個有する紡糸口金から紡糸温度 305℃
で紡出し、口金直下に配設した長さ13cm、温度 325℃の
加熱筒を通した後、長さ30cmの円筒型冷却装置より、風
速60m/分、温度18℃の冷却風を糸条に吹付け、70℃の
加熱引取ローラで引取り、引取ローラと 140℃の第1延
伸ローラとの間で1.5 倍に延伸し、次いで、第1延伸ロ
ーラと 200℃の第2延伸ローラとの間で延伸後、第2延
伸ローラと 230℃の熱処理ローラとの間で0.97倍の弛緩
熱処理を行った後、巻取り、1500d/500 fのポリエス
テル繊維を得た。その際、引取速度及び引取りローラと
第2延伸ローラとの間の総延伸倍率を表1に示す値に設
定し、 No.1〜6の繊維を得た。得られた繊維の物性を
測定した値を表1に示す。なお、 No.1、2が本発明例
で、 No.3〜6は比較例である。Example 1 A PET chip having an intrinsic viscosity of 0.9 has an average particle size of 2 μm.
m Fluorine tetrasilicon mica particles (“M
E-100 ") was added in the amount shown in Table 1, and the mixture was fed to an extruder type melt spinning machine to give a diameter of 0.5.
Spinning temperature 305 ℃ from spinneret with 500 mm spinning holes
After passing through a heating cylinder with a length of 13 cm and a temperature of 325 ° C arranged just below the spinneret, a cooling air with a wind speed of 60 m / min and a temperature of 18 ° C was formed into a thread from a cylindrical cooling device with a length of 30 cm. Spraying and drawing with a heating take-up roller of 70 ° C, stretching 1.5 times between the take-up roller and the first drawing roller of 140 ° C, and then between the first drawing roller and the second drawing roller of 200 ° C. After being stretched at 1, a relaxation heat treatment of 0.97 times was performed between the second stretching roller and the heat treatment roller at 230 ° C., and then wound up to obtain 1500 d / 500 f polyester fiber. At that time, the take-up speed and the total draw ratio between the take-off roller and the second draw roller were set to the values shown in Table 1 to obtain Nos. 1 to 6 fibers. Table 1 shows the measured values of the physical properties of the obtained fiber. Nos. 1 and 2 are examples of the present invention, and Nos. 3 to 6 are comparative examples.
【0020】[0020]
【表1】 [Table 1]
【0021】さらに、 No.1〜6の原糸をリング撚糸機
によりZ方向に39回/10cmの下撚をかけ、下撚をかけた
ものを2本合糸してS方向に39回/10cmの上撚をかけて
生コードとした。次いで、リッツラー社製ディッピング
マシンを用い、固形分15%のRFL液を3.5〜4.0 %付
着させ、乾燥ゾーン 160℃×60秒、熱処理ゾーン 240℃
×50秒×2回の条件で処理し、ディップコードとした。
ディップコードの強度、乾熱収縮率及びゴム中での耐熱
性を測定した結果を表2に示す。Further, the No. 1 to 6 raw yarns are twisted 39 times in the Z direction by a ring twisting machine / 10 cm, and two twisted yarns are twisted into 39 times in the S direction. A 10 cm twist was made into a raw cord. Then, using a dipping machine manufactured by Ritzler Co., 3.5 to 4.0% of RFL liquid having a solid content of 15% is deposited, and a drying zone is 160 ° C for 60 seconds and a heat treatment zone is 240 ° C.
It was processed under the condition of × 50 seconds × 2 times to obtain a dip code.
Table 2 shows the results of measuring the strength of the dip cord, the dry heat shrinkage ratio, and the heat resistance in rubber.
【0022】[0022]
【表2】 [Table 2]
【0023】本発明例の No.1、2では、いずれもディ
ップコードでの乾熱収縮率が 1.5%以下で、ゴム中での
耐熱性は70%以上であった。一方、 No.3では、フッ素
四ケイ素雲母粒子の添加量が多いため、紡糸調子が悪
く、延伸倍率が低くなり、コードの強度、乾熱収縮率、
耐熱性ともに不満足であった。 No.4では、フッ素四ケ
イ素雲母粒子無添加のため、耐熱性が劣り、乾熱収縮率
が高く、 No.5では、引取速度が低いため、延伸倍率が
高くなり、乾熱収縮率が高かった。 No.6では、引取速
度が高いため、延伸倍率が低くなり、強度と耐熱性が低
かった。In No. 1 and No. 2 of the present invention, the dry heat shrinkage of the dip cord was 1.5% or less, and the heat resistance in rubber was 70% or more. On the other hand, in No. 3, since the amount of fluorine tetrasilicon mica particles added was large, the spinning condition was poor, the draw ratio was low, and the cord strength, dry heat shrinkage,
The heat resistance was unsatisfactory. In No. 4, the heat resistance is poor and the dry heat shrinkage is high because no fluorine tetrasilicon mica particles are added. In No. 5, the draw ratio is high because the take-up speed is low, and the dry heat shrinkage is high. It was In No. 6, since the take-up speed was high, the draw ratio was low, and the strength and heat resistance were low.
【0024】[0024]
【発明の効果】本発明によれば、産業資材用途、特に、
ゴム補強用に適する、良好な寸法安定性と耐熱性を兼ね
備えたポリエステル繊維を、工業的に安定して生産性よ
く製造することができる。INDUSTRIAL APPLICABILITY According to the present invention, industrial material applications, particularly,
A polyester fiber suitable for rubber reinforcement and having both good dimensional stability and heat resistance can be industrially produced stably with high productivity.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 D01D 5/098 D01F 6/62 301 H 302 C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location D01D 5/098 D01F 6/62 301 H 302 C
Claims (1)
レフタレート又はこれを主体とするポリエステルに対
し、粒径が5μm以下のフッ素四ケイ素雲母粒子を0.05
〜1.0 重量%添加し、溶融紡出した糸条を2000〜3500m
/分の引取速度で引き取り、紡糸に連続して、 1.5〜3.
0 倍に延伸することを特徴とするポリエステル繊維の製
造法。1. A fluorine tetrasilicon mica particle having a particle size of 5 μm or less is added to polyethylene terephthalate having an intrinsic viscosity of 0.8 to 1.1 or a polyester mainly composed of polyethylene terephthalate.
~ 1.0% by weight, melt spun yarn 2000 ~ 3500m
/ 3 min./min.
A method for producing a polyester fiber, which comprises stretching the fiber 0 times.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6066743A JPH07252725A (en) | 1994-03-09 | 1994-03-09 | Production of polyester fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6066743A JPH07252725A (en) | 1994-03-09 | 1994-03-09 | Production of polyester fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07252725A true JPH07252725A (en) | 1995-10-03 |
Family
ID=13324667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6066743A Pending JPH07252725A (en) | 1994-03-09 | 1994-03-09 | Production of polyester fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07252725A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103603068A (en) * | 2013-07-30 | 2014-02-26 | 桐昆集团股份有限公司 | Production method for polyester fluorescence medium-strength fiber |
-
1994
- 1994-03-09 JP JP6066743A patent/JPH07252725A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103603068A (en) * | 2013-07-30 | 2014-02-26 | 桐昆集团股份有限公司 | Production method for polyester fluorescence medium-strength fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5049447A (en) | Polyester fiber for industrial use and process for preparation thereof | |
CA1314673C (en) | High-tenacity conjugated fiber and process for preparation thereof | |
US6511747B1 (en) | High strength polyethylene naphthalate fiber | |
US4357385A (en) | Filamentary yarn useful for the weft component of a tire cord fabric and a tire cord fabric including such a yarn | |
KR20120072860A (en) | Process for preparing high modulus polyester tire cord having an excellent dimensional satability | |
CN1171138A (en) | Process for manufacturing continuous polyester filament yarn | |
CN1327049C (en) | Production process of industrial polyester multifilament tow | |
JPH0627366B2 (en) | Polyvinyl alcohol fiber, tire cord made of the fiber, and methods for producing the same | |
US20050161854A1 (en) | Dimensionally stable yarns | |
JPS5953736A (en) | Polyester tire cord and production thereof | |
JPH07138812A (en) | Production of polyester fiber | |
JPH07252725A (en) | Production of polyester fiber | |
JPS62299513A (en) | Production of polyphenylene sulfide monofilament | |
JP2004100087A (en) | Recycled polyester fiber | |
JPH0428806B2 (en) | ||
JPH07292522A (en) | Production of polyester fiber | |
JPH02210018A (en) | Polyamide fiber for reinforcing v-belt | |
JP2960755B2 (en) | Manufacturing method of polyester fiber | |
KR930010802B1 (en) | Method for preparation of polyester tyre cord or tyre cord yarn | |
JP2839817B2 (en) | Manufacturing method of polyester fiber with excellent thermal dimensional stability | |
JP2776003B2 (en) | Method for producing polyester fiber | |
KR101086745B1 (en) | High tenacity polyethylene terephthalate fibers and process for preparing the same | |
JPH07102417A (en) | Polyester fiber yarn for rubber reinforcement | |
JPH06192913A (en) | Production of polyester fiber | |
JPH07118920A (en) | Polyester fiber |