JPH07290665A - Polyester composite film for laminating metal - Google Patents

Polyester composite film for laminating metal

Info

Publication number
JPH07290665A
JPH07290665A JP9003094A JP9003094A JPH07290665A JP H07290665 A JPH07290665 A JP H07290665A JP 9003094 A JP9003094 A JP 9003094A JP 9003094 A JP9003094 A JP 9003094A JP H07290665 A JPH07290665 A JP H07290665A
Authority
JP
Japan
Prior art keywords
layer
polyester
composite film
melting point
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9003094A
Other languages
Japanese (ja)
Other versions
JP3413679B2 (en
Inventor
Kuniharu Mori
邦治 森
Tsutomu Isaka
勤 井坂
Katsuro Kuze
勝朗 久世
Hiromu Nagano
煕 永野
Kunio Takeuchi
邦夫 竹内
Akira Matsuda
明 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP9003094A priority Critical patent/JP3413679B2/en
Publication of JPH07290665A publication Critical patent/JPH07290665A/en
Application granted granted Critical
Publication of JP3413679B2 publication Critical patent/JP3413679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To provide a polyester composite film for laminating metal which has excellent impact resistance and excellent adhesive properties to metal without shrinkage and peeling due to heat history after laminating. CONSTITUTION:A polyester composite film for laminating metal is obtained by laminating a base material layer (A layer) made of polyester having a melting point of 240 deg.C or higher and an adhesive layer (B) made of polyester having a melting point of 200-235 deg.C in such a manner that a ratio (B/A) of a thickness of the A layer to a thickness of the B layer is 0.1-1.0 and a crystallization heat generation amount of the film at 110-180 deg.C is less than 0.1cal/g.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属貼合せ用ポリエス
テル複合フィルムに関し、さらに詳細には、特に飲料
缶、食料缶等の金属缶の内面塗装用として利用されるラ
ミネートフィルムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyester composite film for metal laminating, and more particularly to a laminate film used for the inner surface coating of metal cans such as beverage cans and food cans.

【0002】[0002]

【従来の技術】食料品や液体内容物を缶に密封した食料
缶や飲料缶は、強度、耐熱性、耐寒性に優れていること
から、ブリキ、ティンフリースチール等のスチール系や
アルミニウム等の金属材料が用いられている。これらの
金属缶は特に食品用途として用いる場合、金属臭が内容
物である食料品や飲料に移行するいわゆるフレーバー不
良や、内容物の変質および金属缶自体の内容物による腐
食を防ぐ必要がある。このため、ポリエステルフィルム
をブリキ(錫メッキ鋼板)、クロム処理鋼板(ティンフ
リースチール)、ニッケルメッキ鋼板等に加熱加圧接着
して得られるラミネート鋼板が、金属の持つ強度等の特
性と、プラスチックフィルムの持つ耐食性、バリア性の
両者を満たすものとして研究されてきた。
2. Description of the Related Art Food cans and beverage cans, in which foods and liquid contents are sealed in cans, have excellent strength, heat resistance and cold resistance. A metal material is used. When these metal cans are used for foods in particular, it is necessary to prevent so-called flavor defects in which a metallic odor is transferred to foodstuffs and beverages, which are the contents, deterioration of the contents and corrosion of the metal cans due to the contents. For this reason, laminated steel sheets obtained by heating and pressure-bonding a polyester film to a tin plate (tin-plated steel sheet), a chrome-treated steel sheet (tin-free steel), a nickel-plated steel sheet, etc. have characteristics such as strength of metal and plastic film. Has been researched as satisfying both the corrosion resistance and the barrier property of.

【0003】例えば特公昭57−23584号および特
公昭59−34580号には、特定ポリエステル層を金
属基質上に形成させた被覆金属構造物が開示されてい
る。しかしながらこれらの従来技術のものは、熱接着性
は比較的良好であるが、耐熱性に劣り、ポリエステル層
が比較的弱く耐衝撃性に劣る。このため、特に使用ポリ
エステルの融点以上で鋼板とラミネートした場合は、製
缶工程ライン中に設けられているストッパーに高速で衝
突する際の衝撃で、フィルム、特に缶底部に局所的クラ
ックが発生することがある。一方ラミネート時の温度が
不足する場合は、高速衝撃を受けてもクラックの発生は
起りにくいが、缶壁部に大変形が起ったときにフィルム
破れが生じ易い。また、製缶加工工程や内容物充填前後
の加熱処理工程で密着不良による缶とフィルムの層間剥
離が生じるという問題があった。
For example, JP-B-57-23584 and JP-B-59-34580 disclose a coated metal structure in which a specific polyester layer is formed on a metal substrate. However, these prior arts have relatively good thermal adhesiveness but poor heat resistance, relatively weak polyester layer and poor impact resistance. Therefore, especially when laminated with a steel plate at a melting point of the polyester used or higher, a local crack is generated on the film, especially on the bottom of the can, due to the impact at the time of high-speed collision with the stopper provided in the can manufacturing process line. Sometimes. On the other hand, if the temperature at the time of lamination is insufficient, cracks are unlikely to occur even when subjected to high-speed impact, but film breakage tends to occur when large deformation occurs in the can wall portion. Further, there is a problem that delamination between the can and the film occurs due to poor adhesion in the can manufacturing process and the heat treatment process before and after filling the contents.

【0004】上記問題はこれらのラミネート鋼板用ポリ
エステル層が単層であることに起因する。この観点か
ら、強度・密着性の両方を満足する積層フィルムをラミ
ネートフィルムとして用いることが試みられ、例えば特
開平2−81630号では、110〜180℃間での結
晶化発熱量が0.1〜1.5cal/gであるポリエス
テル複合フィルムが開示された。しかしこのフィルム
は、製缶工程の種々の熱履歴によってラミネート後のフ
ィルムが収縮し、収縮が著しい場合には金属材から剥離
してしまうという重大な問題があった。
The above problems are caused by the fact that these polyester layers for laminated steel sheets are single layers. From this point of view, it has been attempted to use a laminated film satisfying both strength and adhesiveness as a laminate film. For example, in JP-A-2-81630, a crystallization calorific value between 110 and 180 ° C. is 0.1 to 180 ° C. A polyester composite film that is 1.5 cal / g has been disclosed. However, this film has a serious problem that the film after lamination shrinks due to various heat histories in the can making process and peels from the metal material when the shrinkage is remarkable.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明では、製
缶加工時での耐衝撃性を確保し、かつラミネート後の熱
履歴による収縮や剥離の起ることのない良好な密着性を
有する金属貼合せ用ポリエステル複合フィルムを提供す
ることを目的とする。
SUMMARY OF THE INVENTION In the present invention, therefore, a metal having good impact resistance during can-making processing and having good adhesion without shrinkage or peeling due to heat history after lamination. An object is to provide a polyester composite film for laminating.

【0006】[0006]

【課題を解決するための手段】本発明の金属貼合せ用ポ
リエステル複合フィルムは、融点が240℃以上のポリ
エステルからなる基材層(A層)と、融点が200〜2
35℃のポリエステルからなる接着層(B層)が積層さ
れたポリエステル複合フィルムであって、基材層である
A層の厚みに対する接着層B層の厚みの比(B/A)が
0.1〜1.0であり、かつ該複合フィルムの110〜
180℃における結晶化発熱量が0.1cal/g未満
であるところに要旨を有する。
The polyester composite film for metal laminating of the present invention comprises a base material layer (A layer) made of polyester having a melting point of 240 ° C. or higher and a melting point of 200 to 2
A polyester composite film in which an adhesive layer (B layer) made of polyester at 35 ° C. is laminated, and the ratio (B / A) of the thickness of the adhesive layer B layer to the thickness of the A layer which is the base layer is 0.1. ˜1.0, and 110 to 110 of the composite film.
The gist is that the crystallization heat value at 180 ° C. is less than 0.1 cal / g.

【0007】本発明ではクラックの発生状態を高精度に
表現する指標である耐衝撃性電流値が1mA以下である
ことが好ましい。また、基材層を構成するポリエステル
がポリエチレンテレフタレートを30〜90重量%含
み、接着層を構成するポリエステルがポリエチレンテレ
フタレートを0〜20重量%含むものであることは本発
明の好ましい実施態様である。
In the present invention, it is preferable that the impact resistance current value, which is an index for expressing the crack generation state with high accuracy, is 1 mA or less. It is a preferred embodiment of the present invention that the polyester constituting the base material layer contains 30 to 90% by weight of polyethylene terephthalate and the polyester constituting the adhesive layer contains 0 to 20% by weight of polyethylene terephthalate.

【0008】[0008]

【作用】本発明の複合フィルムに用いられる融点240
℃以上のポリエステルからなる基材層(A層)と、融点
200〜235℃のポリエステルからなる接着層(B
層)は、ホモポリエステル、あるいはその混合物や、共
重合ポリエステルを利用すればよく、エチレングリコー
ルとテレフタル酸を重縮合させたポリエチレンテレフタ
レート(PET)は結晶化度が高く260℃前後の高融
点を示すので、PETを多く含むポリエステルは、融点
が240℃以上のA層の主たる構成成分として利用でき
る。PETはA層中30〜90重量%含まれていること
が好ましい。
Function: Melting point 240 used in the composite film of the present invention
A base material layer (A layer) made of polyester having a melting point of 200 ° C. or higher and an adhesive layer (B made of polyester having a melting point of 200 to 235 ° C.)
The layer) may be a homopolyester, a mixture thereof, or a copolyester. Polyethylene terephthalate (PET) obtained by polycondensing ethylene glycol and terephthalic acid has a high crystallinity and a high melting point around 260 ° C. Therefore, the polyester containing a large amount of PET can be used as the main constituent component of the A layer having a melting point of 240 ° C. or higher. PET is preferably contained in the layer A in an amount of 30 to 90% by weight.

【0009】ポリエチレンテレフタレートと共に、ブレ
ンドまたは共重合による導入が可能な他のポリエステル
構成単位としては、ブチレングリコールとテレフタル酸
からなるブチレンテレフタレート、エチレングリコール
とイソフタル酸からなるエチレンイソフタレート、ネオ
ペンチルグリコールとテレフタル酸からなるネオペンチ
ルテレフタレート等を挙げることができる。
Other polyester constitutional units which can be introduced by blending or copolymerization with polyethylene terephthalate include butylene terephthalate consisting of butylene glycol and terephthalic acid, ethylene isophthalate consisting of ethylene glycol and isophthalic acid, neopentyl glycol and terephthalate. Examples thereof include neopentyl terephthalate composed of an acid.

【0010】これらの構成単位は結晶化度を下げ、融点
を低下させるので、これらの構成単位をポリエチレンテ
レフタレート(エチレングリコールとテレフタル酸)と
共重合するか、あるいは上記構成単位を単独重合または
複数の構成単位を共重合したポリマーの形でポリエチレ
ンテレフタレートにブレンドすれば、得られるポリエス
テルの融点が低くなり、融点200〜235℃のB層と
して利用することができる。B層中には、PETは20
重量%以下(0を含む)含まれることが好ましい。
Since these constitutional units lower the crystallinity and lower the melting point, these constitutional units are copolymerized with polyethylene terephthalate (ethylene glycol and terephthalic acid), or the above constitutional units are homopolymerized or plural. When polyethylene terephthalate is blended in the form of a copolymer of structural units, the resulting polyester has a low melting point and can be used as a B layer having a melting point of 200 to 235 ° C. PET is 20 in the B layer.
It is preferably contained in an amount of not more than wt% (including 0).

【0011】その他、ジカルボン酸成分として2,6−
ナフタレンジカルボン酸、アジピン酸、セバシン酸、デ
カンジカルボン酸、アゼライン酸、ドデカンジカルボン
酸、シクロヘキサンジカルボン酸、ダイマー酸等を用い
ることができる。また、ジオール成分としては、1,4
−ブタンジオール、ネオペンチルグリコール、ヘキサン
ジオール、シクロヘキサンジメタノール、デカンジオー
ル、ジ、トリおよびポリエチレングリコール、テトラメ
チレングリコール等を用いることができる。ポリエステ
ルは、ジカルボン酸とグリコールとを直接反応させてか
ら、ジカルボン酸のアルキルエステルとグリコールとを
エステル交換反応させた後重縮合させるか、あるいはジ
カルボン酸のジグリコールエステルを重縮合させる等の
公知の方法によって製造することができる。
In addition, 2,6-dicarboxylic acid component
Naphthalenedicarboxylic acid, adipic acid, sebacic acid, decanedicarboxylic acid, azelaic acid, dodecanedicarboxylic acid, cyclohexanedicarboxylic acid, dimer acid and the like can be used. The diol component is 1,4
-Butane diol, neopentyl glycol, hexane diol, cyclohexane dimethanol, decane diol, di, tri and polyethylene glycol, tetramethylene glycol and the like can be used. Polyester is known in the art, such as direct reaction of dicarboxylic acid and glycol, and then polycondensation after transesterification of alkyl ester of dicarboxylic acid and glycol, or polycondensation of diglycol ester of dicarboxylic acid. It can be manufactured by a method.

【0012】本発明では、基材層(A層)の融点は24
0℃以上とし、接着層(B層)の融点は200〜235
℃としなければならない。基材層の融点が240℃より
低いと耐衝撃性が劣ったものとなり、製缶加工時にクラ
ックが発生する。また接着層の融点が235℃を超える
と金属に対する密着性が劣ってくるので、やはりクラッ
クや剥離の発生が増える。接着層の融点が200℃より
低いと基材層との融点の違いが大きくなり、製缶工程に
おける熱履歴による収縮が起り易くなる。
In the present invention, the melting point of the base material layer (A layer) is 24.
The melting point of the adhesive layer (B layer) is 200 to 235 at 0 ° C. or higher.
Must be ℃. If the melting point of the base material layer is lower than 240 ° C., the impact resistance will be poor and cracks will occur during can manufacturing. Further, if the melting point of the adhesive layer exceeds 235 ° C., the adhesion to the metal becomes poor, so that cracks and peeling also increase. When the melting point of the adhesive layer is lower than 200 ° C., the difference in melting point between the adhesive layer and the base material layer becomes large, and shrinkage due to heat history in the can manufacturing process easily occurs.

【0013】本発明の複合フィルムにおける基材層であ
るA層の厚みに対する接着層B層の厚みの比(B/A)
は0.1〜1.0とすることが重要である。この範囲で
あると、A層によって充分な耐衝撃性が確保でき、しか
もB層によって金属に対する良好な密着性を持ち、かつ
両層の厚みのバランスが取れているので製缶時の熱履歴
による収縮や剥離が起らない。B/Aが0.1より小さ
いと、A層が厚過ぎるか、B層が薄過ぎるので、熱履歴
による収縮や剥離が起ってしまう。また、B/Aが1.
00を超えると、A層よりB層の厚みが厚くなるので、
複合フィルムとしての耐衝撃性が低下し、製缶工程でク
ラックが発生し易くなるため、好ましくない。なお、A
層の好ましい厚さは5〜60μmである。5μmより薄
いと、耐衝撃性の確保が難しく、60μmを超えると複
合フィルム全体が厚過ぎて、製缶時の熱履歴による収縮
や剥離が起り易くなる。
Ratio (B / A) of the thickness of the adhesive layer B layer to the thickness of the layer A which is the base material layer in the composite film of the present invention.
Is important to be 0.1 to 1.0. Within this range, the layer A can secure sufficient impact resistance, the layer B has good adhesion to metal, and the thicknesses of both layers are well balanced. No shrinkage or peeling occurs. When B / A is smaller than 0.1, the layer A is too thick or the layer B is too thin, so that shrinkage or peeling due to thermal history occurs. Also, B / A is 1.
If it exceeds 00, the thickness of the B layer becomes thicker than that of the A layer.
This is not preferable because the impact resistance of the composite film is lowered and cracks are likely to occur in the can making process. In addition, A
The preferred thickness of the layer is 5-60 μm. If it is thinner than 5 μm, it is difficult to secure impact resistance, and if it exceeds 60 μm, the whole composite film is too thick, and it tends to cause shrinkage or peeling due to heat history during can making.

【0014】本発明では、目に見えないクラックも把握
するために耐衝撃性電流値を採用した。耐衝撃性電流値
とは、金属板にフィルムを貼合わせた後、耐衝撃性試験
(デュポン式)を行い、塩水中の通電量を測定して得ら
れる値である。具体的には、複合フィルムの接着層B層
側を、225℃に加熱したティンフリー鋼板(T−1、
0.29mm)に水冷ロールで圧着した後、水中におい
て急冷しラミネート鋼板を作成し、先端径12.7m
m、重量1kgの衝撃子を用い、落下距離30cmで衝
撃を与えた後、生じた微細クラックの有無を、図1に示
した通電装置でチェックする。通電装置においては、直
径20mmの円筒の底にフィルム面を上側にして衝撃テ
スト後のサンプルラミネート鋼板を密着させ陽極とし、
容器内に設けた白金電極を陰極として、1%の塩化ナト
リウム水溶液を満たした後に6Vの直流電流を負荷し、
流れた電流量が測定され、この耐衝撃性電流値が1mA
以下の時、より好ましくは0のとき、フィルムには衝撃
子による生じたクラックがほとんど、もしくは全く存在
せず、良好な耐衝撃性を示すことになる。
In the present invention, the impact resistance current value is adopted to grasp invisible cracks. The impact resistance current value is a value obtained by laminating a film on a metal plate, then performing an impact resistance test (Dupont type), and measuring the amount of electricity passed in salt water. Specifically, the adhesive layer B layer side of the composite film was heated to 225 ° C., a tin-free steel plate (T-1,
(0.29 mm) with a water-cooled roll, and then rapidly cooled in water to form a laminated steel plate, with a tip diameter of 12.7 m.
An impactor having a weight of 1 m and a weight of 1 kg was used to apply an impact at a drop distance of 30 cm, and then the presence or absence of fine cracks generated was checked with the current-carrying device shown in FIG. In the current-carrying device, the bottom of a cylinder having a diameter of 20 mm was used as the anode by closely contacting the sample laminated steel plate after the impact test with the film surface facing upward.
Using a platinum electrode provided in the container as a cathode, a 1% sodium chloride aqueous solution was filled, and then a direct current of 6 V was applied,
The amount of current flowing is measured, and the impact resistance current value is 1 mA.
In the following cases, more preferably 0, the film has little or no cracks generated by impactors, and shows good impact resistance.

【0015】本発明では、上記基材層(A層)と接着層
(B層)が積層された複合フィルムの110〜180℃
における結晶化発熱量が0.1cal/g未満でなけれ
ばならない。結晶化発熱量とは結晶化に伴う発熱量であ
り、窒素気流中、示差走査型熱量計(DSC)を用いて
10℃/分の昇温速度でDSC曲線を測定し、110〜
180℃での結晶化に伴う発熱ピーク面積から換算され
る発熱量を、サンプル重量で割った値(cal/g)を
結晶化発熱量としている。上記温度範囲内の結晶化発熱
量が0.1cal/gを超えると、金属とラミネートし
た後の熱履歴によって収縮や剥離を起こすため好ましく
ない。
In the present invention, the composite film in which the base material layer (A layer) and the adhesive layer (B layer) are laminated is at 110 to 180 ° C.
The calorific value of crystallization must be less than 0.1 cal / g. The crystallization calorific value is a calorific value associated with crystallization, and a DSC curve was measured at a temperature rising rate of 10 ° C./min in a nitrogen stream using a differential scanning calorimeter (DSC),
The value (cal / g) obtained by dividing the heat generation amount converted from the heat generation peak area associated with crystallization at 180 ° C. by the sample weight is used as the crystallization heat generation amount. If the amount of heat generated by crystallization within the above temperature range exceeds 0.1 cal / g, shrinkage or peeling may occur due to the heat history after lamination with a metal, which is not preferable.

【0016】本発明の複合フィルムを製造する方法とし
ては、基材層A層を構成するポリエステルと、接着層B
層を構成するポリエステルを、独立した別々の押出機で
押出し、ダイ外またはダイ内で2層化することによって
未延伸複合フィルムが得られるので、その後公知の延伸
工程を行えば良い。未延伸フィルムは、速度差を有する
ロール間でのロール延伸法、クリップに把持して拡げて
いくテンター延伸法、空気圧によって円周方向に拡げる
インフレーション法等の公知の延伸法によって、少なく
とも1軸に配向処理される。延伸条件としては、例えば
70〜110℃で縦方向に2〜4倍延伸し、次いで80
〜110で横方向に3〜5倍延伸することができるが、
延伸方法に応じて適宜条件変更が可能である。さらに本
発明においては、延伸後に120〜230℃で熱処理を
行うことが好ましい。
As the method for producing the composite film of the present invention, polyester constituting the base material layer A and the adhesive layer B are used.
Since the unstretched composite film can be obtained by extruding the polyesters constituting the layers by independent separate extruders and forming two layers outside or inside the die, a known stretching step may be performed thereafter. The unstretched film is at least uniaxially formed by a known stretching method such as a roll stretching method between rolls having a speed difference, a tenter stretching method in which a clip is held and expanded by a clip, or an inflation method in which the film is expanded in the circumferential direction by air pressure. It is oriented. The stretching conditions include, for example, 70 to 110 ° C. and 2 to 4 times in the machine direction, and then 80
Although it can be stretched 3 to 5 times in the transverse direction at 110,
The conditions can be changed appropriately according to the stretching method. Further, in the present invention, it is preferable to perform heat treatment at 120 to 230 ° C. after stretching.

【0017】本発明の金属貼合せ様ポリエステル複合フ
ィルムは以上の工程を経て製造することができる。貼り
合わせる対象金属としては特に限定されないが、金属缶
用のブリキ(錫メッキ鋼板)、クロム処理鋼板(ティン
フリースチール)、ニッケルメッキ鋼板等が例示され
る。ラミネート温度は、基材層A層のポリエステルの融
点より低い240度以下で行うことがA層の耐衝撃性を
確保できるため好ましい。
The metal-bonded polyester composite film of the present invention can be manufactured through the above steps. The metal to be bonded is not particularly limited, but examples thereof include tin plates (tin-plated steel plates) for metal cans, chrome-treated steel plates (tin-free steel), and nickel-plated steel plates. The lamination temperature is preferably 240 ° C. or lower, which is lower than the melting point of the polyester of the base material layer A, because the impact resistance of the layer A can be secured.

【0018】本発明の金属貼合せ用ポリエステル複合フ
ィルムは高融点の基材層A層の存在によって耐衝撃性を
確保し、接着層B層の存在によって良好な金属との密着
性を示す。また、複合フィルムとした時の結晶化発熱量
を0.1cal/g未満としたので、前記鋼板とのラミ
ネート後も熱履歴によって収縮や、剥離を起こすことが
ない。なお、上記複合フィルムには、必要に応じて公知
の添加剤、酸化防止剤、熱安定剤、紫外線吸収剤、可塑
剤、無機系粒子、無機・有機系滑材、顔料、耐電防止剤
等を分散・配合させてもよい。
The polyester composite film for metal laminating of the present invention secures impact resistance by the presence of the high melting point base material layer A layer, and exhibits good adhesion to metal by the presence of the adhesive layer B layer. In addition, since the amount of heat generated by crystallization when the composite film is formed is less than 0.1 cal / g, shrinkage or peeling does not occur due to thermal history even after lamination with the steel sheet. In the composite film, known additives, antioxidants, heat stabilizers, ultraviolet absorbers, plasticizers, inorganic particles, inorganic / organic lubricants, pigments, antistatic agents, etc. may be added as necessary. It may be dispersed and mixed.

【0019】[0019]

【実施例】以下実施例によって本発明をさらに詳述する
が、下記実施例は本発明を制限するものではなく、前・
後記の趣旨を逸脱しない範囲で変更実施することは全て
本発明の技術範囲に包含される。
The present invention will be described in more detail with reference to the following examples, but the following examples do not limit the present invention.
All modifications and implementations that do not depart from the spirit of the description below are included in the technical scope of the present invention.

【0020】実施例で用いた測定・評価方法は次の通り
である。 1)融点 各層の組成物を300℃で5分間加熱溶融し混合した
後、液体窒素で急冷して得たサンプル10mgを用い、
窒素気流中、示差走査型熱量計(DSC)を用いて10
℃/分の昇温速度でDSC曲線を測定し、融解に伴う吸
熱ピークの頂点温度を融点とした。
The measurement / evaluation methods used in the examples are as follows. 1) Melting point The composition of each layer was heated and melted at 300 ° C. for 5 minutes, mixed, and then rapidly cooled with liquid nitrogen.
10 using a differential scanning calorimeter (DSC) in a nitrogen stream
The DSC curve was measured at a temperature rising rate of ° C / min, and the peak temperature of the endothermic peak associated with melting was taken as the melting point.

【0021】2)結晶化発熱量 フィルム状態のものをサンプルとして上記融点測定と同
様にしてDSC曲線を測定し、110〜180℃での結
晶化に伴う発熱ピーク面積から換算される発熱量を、サ
ンプル重量で割った値を結晶化発熱量(cal/g)と
した。
2) Crystallization calorific value A DSC curve was measured in the same manner as in the above melting point measurement using a film state sample as a sample, and the calorific value converted from the exothermic peak area accompanying crystallization at 110 to 180 ° C. The value obtained by dividing by the sample weight was taken as the heat value for crystallization (cal / g).

【0022】3)耐衝撃性評価 複合フィルムの接着層B層側を、225℃に加熱したテ
ィンフリー鋼板(T−1、0.29mm)に水冷ロール
で圧着した後、水中において急冷しラミネート鋼板を作
成し、これをサンプルとしてデュポン式衝撃テストを行
った。先端径12.7mm、重量1kgの衝撃子を用
い、落下距離30cmで衝撃を与えた後、生じた微細ク
ラックの有無を、図1に示した通電装置でチェックし
た。直径20mmの円筒の底にフィルム面を上側にして
衝撃テスト後のサンプルラミネート鋼板を密着させ陽極
とし、容器内に設けた白金電極を陰極として、1%の塩
化ナトリウム水溶液を満たした後に6Vの直流電流を負
荷し、流れた電流量を測定した。電流量が小さければ小
さいほど、フィルムには衝撃子による生じたクラックが
少なく、良好な耐衝撃性を示すことになる。
3) Impact resistance evaluation The adhesive layer B side of the composite film was pressure-bonded to a tin-free steel plate (T-1, 0.29 mm) heated to 225 ° C. with a water-cooled roll, and then rapidly cooled in water to obtain a laminated steel plate. Was prepared, and a DuPont type impact test was performed using this as a sample. Using an impactor having a tip diameter of 12.7 mm and a weight of 1 kg, after applying an impact at a drop distance of 30 cm, the presence or absence of fine cracks generated was checked with the current-carrying device shown in FIG. A sample laminated steel plate after the impact test was adhered to the bottom of the cylinder with a diameter of 20 mm with the film surface facing upwards to serve as an anode, and a platinum electrode provided in the container was used as a cathode, and a 1% sodium chloride aqueous solution was filled, and then a direct current of 6 V was applied. A current was applied and the amount of current that flowed was measured. The smaller the amount of current, the smaller the number of cracks caused by impactors in the film, and the better the impact resistance.

【0023】4)加熱による収縮量と剥離の有無 上記耐衝撃性評価に用いたものと同様のラミネート鋼板
を3cm×3cmに切断したサンプルのフィルム面に、
カッターで対角線に切り目を入れ、230℃で10分間
加熱した後のフィルムの収縮状態を図2に示した距離で
評価した。また剥離の有無を目視で評価した。
4) Shrinkage due to heating and presence / absence of peeling Laminated steel sheets similar to those used in the above impact resistance evaluation were cut into a film surface of a sample cut into 3 cm × 3 cm,
A diagonal line was cut with a cutter, and the shrinkage state of the film after heating at 230 ° C. for 10 minutes was evaluated at the distance shown in FIG. Further, the presence or absence of peeling was visually evaluated.

【0024】なお以下の実施例および比較例で用いたポ
リエステルの略号と内容は次の通りである。 PET :ポリエチレンテレフタレート PBT :ポリブチレンテレフタレート PETI10:エチレンテレフタレート・エチレンイソ
フタレートコポリマー(エチレンイソフタレートの繰り
返し単位10モル%) PETI22:エチレンテレフタレート・エチレンイソ
フタレートコポリマー(エチレンイソフタレートの繰り
返し単位22モル%) PENPT :テレフタル酸とエチレングリコール/ネ
オペンチルグリコールコポリマー(グリコール成分中の
ネオペンチルグリコール量30モル%)
The abbreviations and contents of the polyesters used in the following examples and comparative examples are as follows. PET: Polyethylene terephthalate PBT: Polybutylene terephthalate PETI10: Ethylene terephthalate / ethylene isophthalate copolymer (10 mol% repeating units of ethylene isophthalate) PETI22: Ethylene terephthalate / ethylene isophthalate copolymer (22 mol% repeating units of ethylene isophthalate) PENPT : Terephthalic acid and ethylene glycol / neopentyl glycol copolymer (neopentyl glycol content in the glycol component is 30 mol%)

【0025】実施例1 基材層A層に、PET85重量%とPETI10を15
重量%含むポリエステルを、接着層B層としてPETI
10のみを用いた。両層をダイ外結合で2層化した後、
290℃で押出し急冷して未延伸フィルムを得た。この
未延伸フィルムを100℃で縦方向に3.5倍延伸し、
次いで横方向に4.0倍延伸した後、200℃で熱処理
することによって、全体厚み25μmのポリエステル複
合フィルムを得た。このときA層は22μm、B層は3
μmであり、B層/A層は0.14となった。前記測定
手法で評価した特性結果を表1に示した。
EXAMPLE 1 85% by weight of PET and 15% of PETI10 were added to the base layer A layer.
Polyester containing weight% of PETI as the adhesive layer B layer
Only 10 was used. After making both layers by die outside bonding,
It was extruded at 290 ° C. and rapidly cooled to obtain an unstretched film. This unstretched film was stretched 3.5 times in the longitudinal direction at 100 ° C.,
Then, the film was stretched in the transverse direction by 4.0 times and then heat-treated at 200 ° C. to obtain a polyester composite film having an overall thickness of 25 μm. At this time, the A layer is 22 μm and the B layer is 3 μm.
μm, and the ratio of B layer / A layer was 0.14. Table 1 shows the characteristic results evaluated by the measurement method.

【0026】実施例2 基材層A層に、PET40重量%とPETI10を60
重量%含むポリエステルを用いた以外は実施例1と同様
にして、全体厚み25μm(B層/A層=3μm/22
μm=0.14)のポリエステル複合フィルムを得た。
特性評価結果を表1に示した。
EXAMPLE 2 40% by weight of PET and 60% of PETI10 were added to the base layer A layer.
The total thickness is 25 μm (B layer / A layer = 3 μm / 22) in the same manner as in Example 1 except that the polyester containing the weight% is used.
A polyester composite film of μm = 0.14) was obtained.
The characteristic evaluation results are shown in Table 1.

【0027】実施例3 基材層A層に、PET80重量%とPBT20重量%含
むポリエステルを用いた以外は実施例1と同様にして、
全体厚み25μm(B層/A層=3μm/22μm=
0.14)のポリエステル複合フィルムを得た。特性評
価結果を表1に示した。 実施例4 実施例1のA層、B層の組合せで、全体厚み20μm
(B層/A層=10μm/10μm=1.0)のポリエ
ステル複合フィルムを得た。特性評価結果を表1に示し
た。
Example 3 In the same manner as in Example 1 except that polyester containing 80% by weight of PET and 20% by weight of PBT was used for the base layer A,
Overall thickness 25 μm (B layer / A layer = 3 μm / 22 μm =
A polyester composite film of 0.14) was obtained. The characteristic evaluation results are shown in Table 1. Example 4 A total thickness of 20 μm was obtained by combining the layers A and B of Example 1.
A polyester composite film of (B layer / A layer = 10 μm / 10 μm = 1.0) was obtained. The characteristic evaluation results are shown in Table 1.

【0028】実施例5 基材層A層に、PET40重量%とPETI10を60
重量%含むポリエステルを用い、接着層B層にPET2
0重量%とPETI22を80重量%含むポリエステル
を用いた以外は実施例1と同様にして、全体厚み20μ
m(B層/A層=10μm/10μm=1.0)のポリ
エステル複合フィルムを得た。特性評価結果を表1に示
した。
Example 5 40 wt% of PET and 60 of PETI10 were added to the base layer A layer.
Polyester containing 2% by weight is used, and PET2 is used for the adhesive layer B layer.
The total thickness is 20 μm in the same manner as in Example 1 except that a polyester containing 0% by weight and 80% by weight of PETI 22 is used.
m (B layer / A layer = 10 μm / 10 μm = 1.0) to obtain a polyester composite film. The characteristic evaluation results are shown in Table 1.

【0029】比較例1 PETI10のみを実施例1と同様にして、厚み25μ
mの単層ポリエステルフィルムとした。特性評価結果を
表1に示した。 比較例2 基材層A層をPETI10単独とし、接着層B層にPE
T50重量%とPETI22を50重量%含むポリエス
テルを用いた以外は実施例1と同様にして、全体厚み2
5μm(B層/A層=3μm/22μm=0.14)の
ポリエステル複合フィルムを得た。特性評価結果を表1
に示した。
Comparative Example 1 Only PETI 10 was manufactured in the same manner as in Example 1 and had a thickness of 25 μm.
m as a single-layer polyester film. The characteristic evaluation results are shown in Table 1. Comparative Example 2 The base layer A layer was PETI10 alone, and the adhesive layer B layer was PE.
An overall thickness of 2 was obtained in the same manner as in Example 1 except that a polyester containing 50% by weight of T50 and 50% by weight of PETI22 was used.
A polyester composite film of 5 μm (B layer / A layer = 3 μm / 22 μm = 0.14) was obtained. Table 1 shows the characteristic evaluation results.
It was shown to.

【0030】比較例3 接着層B層にPET40重量%とPETI10を60重
量%含むポリエステルを用いた以外は実施例1と同様に
して、全体厚み25μm(B層/A層=3μm/22μ
m=0.14)のポリエステル複合フィルムを得た。特
性評価結果を表1に示した。
COMPARATIVE EXAMPLE 3 The entire thickness was 25 μm (B layer / A layer = 3 μm / 22 μm) in the same manner as in Example 1 except that polyester containing 40% by weight of PET and 60% by weight of PETI was used for the B layer of the adhesive layer.
A polyester composite film having m = 0.14) was obtained. The characteristic evaluation results are shown in Table 1.

【0031】比較例4 接着層B層をPENPTのみとした以外は実施例1と同
様にして、全体厚み25μm(B層/A層=3μm/2
2μm=0.14)のポリエステル複合フィルムを得
た。特性評価結果を表1に示した。
Comparative Example 4 The entire thickness was 25 μm (B layer / A layer = 3 μm / 2) in the same manner as in Example 1 except that the adhesive layer B layer was made of PENPT only.
A polyester composite film having a thickness of 2 μm = 0.14) was obtained. The characteristic evaluation results are shown in Table 1.

【0032】比較例5 接着層B層をPET10重量%、PETI22を90重
量%とした以外は実施例1と同様にして、全体厚み25
μm(B層/A層=15μm/10μm=1.5)のポ
リエステル複合フィルムを得た。特性評価結果を表1に
示した。
Comparative Example 5 An overall thickness of 25 was obtained in the same manner as in Example 1 except that the adhesive layer B layer was 10 wt% PET and the PETI 22 was 90 wt%.
A polyester composite film of μm (B layer / A layer = 15 μm / 10 μm = 1.5) was obtained. The characteristic evaluation results are shown in Table 1.

【0033】比較例6 基材層A層をPET単独、接着層B層をPET20重量
%、PETI22を80重量%とし、横延伸後の熱処理
温度を240℃とした以外は実施例1と同様にして、全
体厚み25μm(B層/A層=3μm/22μm=0.
14)のポリエステル複合フィルムを得た。特性評価結
果を表1に示した。
Comparative Example 6 Same as Example 1 except that the base layer A layer was PET alone, the adhesive layer B layer was 20 wt% PET, PETI 22 was 80 wt% and the heat treatment temperature after transverse stretching was 240 ° C. Total thickness 25 μm (B layer / A layer = 3 μm / 22 μm = 0.
A polyester composite film of 14) was obtained. The characteristic evaluation results are shown in Table 1.

【0034】[0034]

【表1】 [Table 1]

【0035】実施例1〜5の複合フィルムは耐衝撃性に
優れている上、加熱しても全く収縮や剥離を起こさない
ことがわかる。比較例1は本発明で規定するA層が存在
せず、比較例2はA層の融点が低いため、いずれも耐衝
撃性に劣るものであった。比較例3はB層の融点が高い
のでフィルム全体の剛性が大きくなり、金属に対する密
着性が悪くなって、耐衝撃性が劣っている。また、加熱
後の収縮量も多いことがわかる。比較例4はB層の融点
が低いため、加熱による収縮量が大きい。比較例5はA
層に比べてB層の厚みが大き過ぎるため、耐衝撃性に劣
り加熱後の収縮量も大きくなっている。比較例6はB層
の融点が低く結晶化発熱量も大きいため、耐衝撃性、加
熱後の収縮量共に劣っていた。
It can be seen that the composite films of Examples 1 to 5 have excellent impact resistance and do not shrink or peel even when heated. In Comparative Example 1, the A layer defined in the present invention was not present, and in Comparative Example 2, the melting point of the A layer was low, and thus the impact resistance was poor. In Comparative Example 3, since the B layer has a high melting point, the rigidity of the entire film is high, the adhesion to metal is poor, and the impact resistance is poor. Further, it can be seen that the amount of shrinkage after heating is large. In Comparative Example 4, since the melting point of the B layer is low, the amount of shrinkage due to heating is large. Comparative Example 5 is A
Since the thickness of the B layer is too large compared to the layer, the impact resistance is poor and the shrinkage amount after heating is large. In Comparative Example 6, since the melting point of the B layer was low and the amount of heat generated by crystallization was large, both impact resistance and the amount of shrinkage after heating were poor.

【0036】[0036]

【発明の効果】本発明の金属貼合せ用ポリエステル複合
フィルムは以上の様に構成されているので、耐衝撃性に
優れ、かつラミネート後の熱履歴が加えられても収縮や
剥離の起ることのない良好な対金属密着性を有するフィ
ルムである。本発明のポリエステル複合フィルムは、飲
料缶、食品缶用金属に貼合せて用いられ、缶内壁の保護
を初め、缶内部のフレーバー不良や、金属の腐食および
内容物の変性を防ぐ効果を有する。また製缶後の加熱殺
菌(レトルト)処理にも充分耐え得る高性能な複合フィ
ルムである。
EFFECT OF THE INVENTION Since the polyester composite film for metal laminating of the present invention is constituted as described above, it is excellent in impact resistance and shrinks or peels off even if heat history after lamination is applied. It is a film having good adhesiveness to metal, which has no The polyester composite film of the present invention is used by being stuck to a metal for beverage cans and food cans, and has an effect of protecting the inner wall of the can, preventing flavor defects inside the can, corrosion of metal, and denaturation of contents. It is also a high-performance composite film that can withstand heat sterilization (retort) treatment after can making.

【図面の簡単な説明】[Brief description of drawings]

【図1】耐衝撃性テストにおける通電試験装置を示す説
明図である。
FIG. 1 is an explanatory diagram showing a current-carrying test device in a shock resistance test.

【図2】熱収縮量の測定箇所を示す説明図である。FIG. 2 is an explanatory diagram showing measurement points of a heat shrinkage amount.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永野 煕 愛知県犬山市大字木津字前畑344番地 東 洋紡績株式会社犬山工場内 (72)発明者 竹内 邦夫 愛知県犬山市大字木津字前畑344番地 東 洋紡績株式会社犬山工場内 (72)発明者 松田 明 愛知県犬山市大字木津字前畑344番地 東 洋紡績株式会社犬山工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nagano 344 Maebata, Kizu character, Inuyama City, Aichi Prefecture Inuyama Plant, Toyobo Co., Ltd. (72) Inventor Akira Matsuda 344 Maebata, Kizu character, Inuyama City, Aichi Prefecture Toyobo Co., Ltd. Inuyama Factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 融点が240℃以上のポリエステルから
なる基材層(A層)と、融点が200〜235℃のポリ
エステルからなる接着層(B層)が積層されたポリエス
テル複合フィルムであって、基材層であるA層の厚みに
対する接着層B層の厚みの比(B/A)が0.1〜1.
0であり、かつ該複合フィルムの110〜180℃にお
ける結晶化発熱量が0.1cal/g未満であることを
特徴とする金属貼合せ用ポリエステル複合フィルム。
1. A polyester composite film in which a base material layer (A layer) made of polyester having a melting point of 240 ° C. or higher and an adhesive layer (B layer) made of polyester having a melting point of 200 to 235 ° C. are laminated. The ratio (B / A) of the thickness of the adhesive layer B layer to the thickness of the layer A that is the base material layer is 0.1 to 1.
0, and the calorific value of crystallization at 110 to 180 ° C. of the composite film is less than 0.1 cal / g.
【請求項2】 耐衝撃性電流値が1mA以下である請求
項1に記載の複合フィルム。
2. The composite film according to claim 1, which has an impact resistance current value of 1 mA or less.
【請求項3】 上記基材層を構成するポリエステルがポ
リエチレンテレフタレートを30〜90重量%含み、接
着層を構成するポリエステルがポリエチレンテレフタレ
ートを0〜20重量%含むものである請求項1に記載の
複合フィルム。
3. The composite film according to claim 1, wherein the polyester constituting the substrate layer contains 30 to 90% by weight of polyethylene terephthalate, and the polyester constituting the adhesive layer contains 0 to 20% by weight of polyethylene terephthalate.
JP9003094A 1994-04-27 1994-04-27 Polyester composite film for metal lamination Expired - Fee Related JP3413679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9003094A JP3413679B2 (en) 1994-04-27 1994-04-27 Polyester composite film for metal lamination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9003094A JP3413679B2 (en) 1994-04-27 1994-04-27 Polyester composite film for metal lamination

Publications (2)

Publication Number Publication Date
JPH07290665A true JPH07290665A (en) 1995-11-07
JP3413679B2 JP3413679B2 (en) 2003-06-03

Family

ID=13987278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9003094A Expired - Fee Related JP3413679B2 (en) 1994-04-27 1994-04-27 Polyester composite film for metal lamination

Country Status (1)

Country Link
JP (1) JP3413679B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536209A (en) * 1999-02-02 2002-10-29 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Polymer film containing heat-sealable layer and substrate layer
JP2017069211A (en) * 2016-10-06 2017-04-06 大日本印刷株式会社 Packaging material for electrochemical cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536209A (en) * 1999-02-02 2002-10-29 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Polymer film containing heat-sealable layer and substrate layer
JP2017069211A (en) * 2016-10-06 2017-04-06 大日本印刷株式会社 Packaging material for electrochemical cell

Also Published As

Publication number Publication date
JP3413679B2 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
KR100218846B1 (en) Biaxially oriented laminated polyester film for use as film to be bonded onto metal sheet
JP2004322643A (en) Coextrusion transparent biaxially oriented polyester film, its manufacturing method and lid material for tray comprising the film
EP1908583B1 (en) Resin-coated metal plate
JP3396954B2 (en) Polyester composite film for metal lamination, laminated metal plate and metal container
JP3095891B2 (en) Polyester film for metal plate lamination processing
JPS5823219B2 (en) coated metal container
JP3413679B2 (en) Polyester composite film for metal lamination
JPH06218875A (en) Polyamide coated molded object and polyamide film used therein
JP3876459B2 (en) Polyester film, laminated metal plate, method for producing the same, and metal container
JPH07331196A (en) Composite polyester film for lamination with metal and metallic sheet or container laminated therewith
JP4059966B2 (en) White film for metal lamination
JP3917888B2 (en) Polyester-based laminated paper, production method thereof, food container material comprising the laminated paper
JP3391090B2 (en) Polyester composite film for bonding metal sheets
EP0719636B1 (en) Laminated polyester film for metallic lamination
JP3601165B2 (en) Polyester film, laminated metal plate and metal container
JPH0631362A (en) Manufacture of multi-drawing can made of laminated steel sheet with high adhesion
JP3893240B2 (en) Polyester film laminated metal plate, method for producing the same, and metal container
JP3796110B2 (en) Polyester film laminate metal plate and metal container
JPH0639981A (en) Polyester film for metallic sheet laminating fabrication
JPH05269819A (en) Film for laminating on metal and manufacture thereof
JP3304002B2 (en) Polyester composite film for metal lamination
JPH0747650A (en) Polyester composite film for lamination of metal
JP3301212B2 (en) Polyester composite film for metal lamination
JP2001253032A (en) Thermoplastic resin film, thermoplastic resin film-coated metal plate and can using the same
JP2001315284A (en) Polyester laminate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees