JPS5823219B2 - coated metal container - Google Patents

coated metal container

Info

Publication number
JPS5823219B2
JPS5823219B2 JP53049009A JP4900978A JPS5823219B2 JP S5823219 B2 JPS5823219 B2 JP S5823219B2 JP 53049009 A JP53049009 A JP 53049009A JP 4900978 A JP4900978 A JP 4900978A JP S5823219 B2 JPS5823219 B2 JP S5823219B2
Authority
JP
Japan
Prior art keywords
layer
resin
metal
mol
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53049009A
Other languages
Japanese (ja)
Other versions
JPS54143387A (en
Inventor
曽田敦彦
朝倉正芳
矢部健次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP53049009A priority Critical patent/JPS5823219B2/en
Publication of JPS54143387A publication Critical patent/JPS54143387A/en
Publication of JPS5823219B2 publication Critical patent/JPS5823219B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はポリエステル系樹脂を主体゛とした樹脂で被覆
した金属を構成素材とした容器、缶、袋などの被覆金属
容器および容器蓋(以下、容器とは蓋も含む)に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to containers, coated metal containers such as cans, bags, etc. made of metal coated with a resin mainly composed of polyester resin, and container lids (hereinafter, "containers" also include lids). ).

さらに詳しくは本発明は金属基質の耐腐食性および樹脂
被覆層の金属基質に対する密着性、防錆性と表面特性が
均衡して優れ、かつ加工性に優れ素材から形成した容器
、とくに好ましくは側面無継目容器に関するものである
More specifically, the present invention provides a container formed from a material that has excellent corrosion resistance of a metal substrate, adhesion of a resin coating layer to a metal substrate, a balance of rust prevention and surface properties, and excellent workability, particularly preferably a side surface. This invention relates to a seamless container.

金属基質表面を樹脂で被覆して該基質を防錆す)る技術
は従来よく知られているが、これらの技術で用いられる
樹脂は主にエポキシ樹脂、不飽和ポリエステル樹脂、フ
ェノール樹脂などの熱硬化性樹脂が一般的である。
Techniques for coating the surface of metal substrates with resin to prevent the substrate from rusting are well known, but the resins used in these techniques are mainly heat-resistant resins such as epoxy resins, unsaturated polyester resins, and phenolic resins. Curable resins are common.

またポリエステル、ポリ塩化ビニル、ポリオレフ・「ン
などの熱可塑性樹脂の1フイルムで金属基質を被覆する
ことも知られているが、これら熱可塑性樹脂は金属基質
に対する接着力または密着力が劣るために、多官能イソ
シアネートやエポキシ化合物などの熱硬化性化合物を接
着剤またはプライマーとして上記金属基質と熱;可塑性
樹脂の間に介在させているのが現状である。
It is also known to coat a metal substrate with a film of thermoplastic resin such as polyester, polyvinyl chloride, or polyolefin, but these thermoplastic resins have poor adhesion or adhesion to the metal substrate. Currently, a thermosetting compound such as a polyfunctional isocyanate or an epoxy compound is interposed between the metal substrate and the thermoplastic resin as an adhesive or primer.

熱可塑性樹脂の中でもポリエステルが接着力、耐熱性、
柔軟性の点で他の樹脂よりも優れた点が多いのでポリエ
ステル樹脂およびそれらの組成物に関する提案が多くな
されている。
Among thermoplastic resins, polyester has excellent adhesive strength, heat resistance,
Since polyester resins have many advantages over other resins in terms of flexibility, many proposals have been made regarding polyester resins and compositions thereof.

その例を挙げる□ならば、(1)ポリエチレンテレフタ
レート共重合体、(2)ポリブチレンテレフタレート共
重合体、(3)ポリエステルとエチレン・酢酸ビニル共
重合体組成物、(4)ポリエステルとポリスチレン共重
合体組成物などが知られている。
Examples are (1) polyethylene terephthalate copolymer, (2) polybutylene terephthalate copolymer, (3) polyester and ethylene/vinyl acetate copolymer composition, (4) polyester and polystyrene copolymer. Coalescent compositions and the like are known.

従来これらの樹脂および樹脂;組成物は、アルミ、鉄、
銅などの金属に接着剤あるいはプライマーコートなしに
直接被覆して用いることが提案されているが、実際に金
属に被覆して、容器として使用すると次のような欠点が
ある。
Conventionally, these resins and resins; compositions are made of aluminum, iron,
It has been proposed to directly coat metals such as copper without adhesive or primer coating, but actually coating metals and using them as containers has the following drawbacks.

(1)金属との接着力が不十分であり、接着力を上;
げようとすれば、樹脂の融点または軟化点が低下し、柔
軟性、粘着性を帯びるため、接着剤としては使用可能で
あるが、金属被覆材料とじては使用できない。
(1) Adhesive strength to metal is insufficient; increase adhesive strength;
If an attempt is made to remove the resin, the melting point or softening point of the resin decreases and the resin becomes flexible and sticky, so it can be used as an adhesive but cannot be used as a metal coating material.

(2)金属との接着力が平板では実用範囲であっても、
折り曲げたり、絞り加工、製缶加工などを行なうと、接
着力が不足して、金属から剥離してくる。
(2) Even if the adhesive strength with metal is within the practical range for a flat plate,
If it is bent, drawn, or made into a can, the adhesive strength will be insufficient and it will peel off from the metal.

従って、使用に耐えるような容器ができない。Therefore, a container that can withstand use cannot be made.

(3)金属との接着力と成形加工性がうまくバランスし
た組成であっても、容器にして、内容物を充填して、熱
水処理やレトルト処理を行なうと耐熱性がないため、接
着力が低下して金属から。
(3) Even if the composition has a well-balanced adhesive strength with metal and moldability, if it is made into a container, filled with contents, and subjected to hot water treatment or retort treatment, it will not have heat resistance, so the adhesive strength will be is lowered from metal.

剥離したり、表面が軟化して内容物が付着したり、表面
状態が悪くなったりする。
It may peel off, the surface may soften and the contents may adhere to it, or the surface condition may deteriorate.

(4)バリヤ性(気体、液体を通しにくいと云う性質)
、防錆性(気体、液体は通しても、腐蝕性のものはトラ
ップないしは通しにくいと云う性。
(4) Barrier properties (property that makes it difficult for gases and liquids to pass through)
, Rust resistance (gas and liquids can pass through it, but corrosive substances are trapped or difficult to pass through).

質)が不足するので、水分や薬品類が樹脂層を透過して
、金属面に達して錆やすいと云う問題がある。
There is a problem that moisture and chemicals permeate through the resin layer and reach the metal surface, making it easy to rust.

一方、金属容器として代表的な側面無継目容器は、従来
アルミ板またはブリキ板などの金属素材部を絞りダイス
とポンチの間で少なくとも一段の絞り加工に賦し、側面
に継目のない胴部と該胴部に継目なしの一体底部からな
るカップに成形し、ついで所望により前記胴部に、しご
きダイスとポンチの間でしごき加工を加えて、容器胴部
を延伸薄!肉化したものが広く使用されている。
On the other hand, containers with seamless sides, which are typical of metal containers, have conventionally been made by subjecting a metal material such as an aluminum plate or a tin plate to at least one drawing process between a drawing die and a punch, and forming a body with a seamless side surface. The body is formed into a cup with a seamless, integral bottom, and then, if desired, the body is ironed between an ironing die and a punch to stretch and thin the container body! Meat is widely used.

このような絞り加工あるいは絞りしごき加工により形成
された無継目金属容器は、ついでドーミング加工、ネッ
クイン加工あるいはフランジ加工に賦して、缶蓋と巻締
可能な缶胴に成形される。
The seamless metal container formed by such drawing or drawing and ironing is then subjected to doming, neck-in or flanging to form a can body that can be secured to a can lid.

ついで缶胴の;内、外面に保護塗料が塗装され、かつキ
ュアーされる。
A protective coating is then applied to the inner and outer surfaces of the can body and cured.

しかし、このような塗料を金属素材に絞りまたはしごき
加工に先立って塗布することは加工中に塗膜の破損や剥
離を生ずるため、一般に困難である。
However, it is generally difficult to apply such a paint to a metal material prior to drawing or ironing because the paint film may be damaged or peeled off during the process.

とくに液状物を保存するための容器ではJ缶体内面の塗
膜欠点が一点あったとしても、この部分からの腐食が進
行し、内容品のフレーバーの低下、保存性の低下が生じ
る。
In particular, in containers for storing liquid materials, even if there is one defect in the coating on the inner surface of the J can, corrosion will progress from this area, resulting in a decrease in flavor and shelf life of the contents.

したがって上記のように成形後塗装されるのであるが、
この方法では平板あるいはコイル状金属素材に塗料を施
す場7合に比して、著しく塗装能率が悪い。
Therefore, as mentioned above, it is painted after molding.
This method has a significantly lower coating efficiency than the case where paint is applied to a flat plate or coiled metal material.

また空気中の酸素や水分の影響をうけ錆を生じやすい金
属、たとえばブラックプレート、あるいは各種化学処理
鋼板の場合は保護塗料の塗装前、とくに加工中に錆が発
生する場合がしはしはあり、これらの金属素材の無継目
容器への用途が著しく制限されている。
In addition, in the case of metals that are susceptible to rust due to the influence of oxygen and moisture in the air, such as black plate or various chemically treated steel plates, rust may occur before the protective coating is applied, especially during processing. However, the application of these metal materials to seamless containers is severely limited.

このような加工性の面での制約は無継目容器のみならず
袋物容器あるいは容器蓋においてもしばしば認められる
Such limitations in workability are often observed not only in seamless containers but also in bag containers and container lids.

したがって容器素材として用いられる金属基質に対して
、密着性が高く、成形加工性、防錆性の優れた熱可塑性
樹脂を直接被覆し、それを加工して得られる金属容器が
生産性向上、使用金属の多様化および無公害の点からづ
虫く要望されていた。
Therefore, metal substrates used as container materials are directly coated with thermoplastic resins that have high adhesion, moldability, and rust prevention properties, and metal containers obtained by processing the same can improve productivity and use. It was highly requested due to the diversification of metals and its non-polluting properties.

そこで本発明者らはこれらの要求を満足する被覆金属容
器について鋭意検討を行なった結果、特定の熱可塑性ポ
リエステル系樹脂を主体とする複合樹脂層で被覆された
金属基質から製造した容器であれば、密着性、成形加工
性、防錆性などに優れていることを見出し本発明に到達
した。
The inventors of the present invention have conducted intensive studies on coated metal containers that satisfy these requirements, and have found that if the container is made from a metal substrate coated with a composite resin layer mainly composed of a specific thermoplastic polyester resin, The inventors have discovered that this material has excellent adhesion, moldability, rust prevention, etc., and have arrived at the present invention.

すなわち本発明は A・テレフタル酸75〜100モル%(好ましくは、8
0〜100モル%)からなるポリエチレンテレツクレー
ト系樹脂1〜40wt%好ましくは5〜35wt%)、
テレフタル酸60〜100モル%(好ましくは65〜9
0モル%)からなるポリブチレンテレフタレート系樹脂
30〜85wt%(好ましくは35〜80wt%)、ア
イオノマー10〜30wt%(好ましくは15〜25w
t%)とからなる層(A層)、と B・テレフタル酸90〜100モル%(好ましくは95
〜100モル%)からなるポリエチレンテレフタレー手
系、または、ポリブチレンテレフタレート系樹脂75〜
100wt%(好ましくは80〜100wt%)とアイ
オノマー〇〜25wt%(好ましくは0〜20wt%)
とからなる層(B層)、とが積層されてなる複合樹脂層
を箔状またはシート状の金属基質に被覆した素材よりな
る金属容器を提供するものである。
That is, the present invention contains 75 to 100 mol% of A.terephthalic acid (preferably 8
1 to 40 wt%, preferably 5 to 35 wt%) of a polyethylene terecrate resin (0 to 100 mol%),
Terephthalic acid 60-100 mol% (preferably 65-9
30 to 85 wt% (preferably 35 to 80 wt%) of polybutylene terephthalate resin (0 mol%), 10 to 30 wt% (preferably 15 to 25 wt%) of ionomer
t%) (layer A), and B. terephthalic acid 90 to 100 mol% (preferably 95
~100 mol%) polyethylene terephthalate-based or polybutylene terephthalate-based resin 75~
100wt% (preferably 80-100wt%) and ionomer 0-25wt% (preferably 0-20wt%)
and (layer B), and a metal container made of a material in which a foil-like or sheet-like metal substrate is coated with a composite resin layer formed by laminating and.

金属基質に複合樹脂層を被覆する方法は、(1)予め複
合フィルムを製膜しておいて、金属基質に加熱融着によ
り直接ラミネートする方法、(2)金属基・質に直接、
複合フィルム層を押出ラミネートする方法、(3)樹脂
を粉末化して静電塗装あるいは流動浸漬によって多層に
被覆する方法などがある。
There are two methods for coating a metal substrate with a composite resin layer: (1) forming a composite film in advance and laminating it directly onto the metal substrate by heat fusion; (2) directly onto the metal substrate;
There are methods such as extrusion lamination of composite film layers, and (3) a method in which powdered resin is coated in multiple layers by electrostatic coating or fluidized dipping.

また必要とあらば、金属基質にアンカーコートした面に
複合樹脂層を設けることもできる。
Furthermore, if necessary, a composite resin layer can be provided on the anchor-coated surface of the metal substrate.

本発明では、生産性、製造コストの面から考えて(1)
および(2)の方法が好ましい。
In the present invention, from the viewpoint of productivity and manufacturing cost, (1)
Methods (2) and (2) are preferred.

そこで本発明の詳細な説明は(1)の被覆方法を代表例
として述べるが、本発明は必ずしも(1)の方法に限定
されるものではない。
Therefore, the detailed description of the present invention will be given using the coating method (1) as a representative example, but the present invention is not necessarily limited to the method (1).

本発明の第1の特徴は被覆樹脂組成物および複合層の構
成にある。
The first feature of the present invention lies in the coating resin composition and the structure of the composite layer.

すなわち、本発明のA層に用いるポリエチレンテレフタ
レート系樹脂はジカルボン酸成分の75〜100モル%
がテレフタル酸であることが必須である。
That is, the polyethylene terephthalate resin used for layer A of the present invention is 75 to 100 mol% of the dicarboxylic acid component.
is terephthalic acid.

テレフタル酸の残部のジカルボン酸とし4てはイソフタ
ル酸、セバシン酸、アジピン酸、アゼライン酸などの芳
香族および脂肪族ジカルボン酸が0〜25モル%、好ま
しくは0〜20モル%が使用される。
As the remaining dicarboxylic acid of terephthalic acid, aromatic and aliphatic dicarboxylic acids such as isophthalic acid, sebacic acid, adipic acid, and azelaic acid are used in an amount of 0 to 25 mol%, preferably 0 to 20 mol%.

特にイソフタル酸がヒートシール性、接着性、フィルム
の腰の点で特に好ましい。
Isophthalic acid is particularly preferred in terms of heat sealability, adhesiveness, and film stiffness.

ジオール成分としてはエチレングリコールを用いるが、
他のジオール、例えば、ジエチレングリコール、ブタン
ジオール、1,4−シクロヘキサンジメタツール、■、
6−ヘキサンジオールなどをポリブチレンチレフタレー
I・系樹脂の特性を損わないシ範囲内(好ましくは0〜
20モル%)で共重合したものを使うこともできる。
Ethylene glycol is used as the diol component, but
Other diols, such as diethylene glycol, butanediol, 1,4-cyclohexane dimetatool,
The amount of 6-hexanediol etc. is within the range (preferably from 0 to
20 mol%) can also be used.

これらポリエチレンテレフタレート系樹脂の具体例とし
てはポリエチレンテレフタレート(PET)、ポリエチ
レンテレフタレート・イソフタレート(PET/I )
、ポリエチレンテレフタレート・セバケート(PET/
/S)、ポリエチレンテレフタレート・アジペート(P
ET/A)などを挙げることができる。
Specific examples of these polyethylene terephthalate resins include polyethylene terephthalate (PET) and polyethylene terephthalate isophthalate (PET/I).
, polyethylene terephthalate sebacate (PET/
/S), polyethylene terephthalate adipate (P
ET/A).

テレフタル酸が75モル%未満の場合は、複合フィルム
の腰がなく、軟化しやすいため、金属基質にラミネート
す・る際にシワが入りやすかったり、ラミネート時のフ
ィルム幅の減少やフ宅ツキングの原因となるし、バリヤ
性、防錆性の低下を来たす。
If the terephthalic acid content is less than 75 mol%, the composite film has no stiffness and is easily softened, resulting in wrinkles when laminated to a metal substrate, a decrease in the film width during lamination, and problems with adhesive bonding. This causes a decrease in barrier properties and rust prevention properties.

A層に使用するポリブチレンチレフタレ−1一系樹脂は
ジカルボン酸成分の60〜100モル%が・テレフタル
である。
60 to 100 mol % of the dicarboxylic acid component of the polybutylene ethylene terephthalate-1 type resin used in layer A is terephthal.

テレフタル酸の残部のジカルボン酸としてはイソフタル
酸、セバシン酸、アジピン酸、アゼライン酸などのジカ
ルボン酸が0〜40モル%、特にイソフタル酸10〜3
5モル%のものが、フィルムの柔軟性、接着力と製膜性
の・点で好ましい。
The remaining dicarboxylic acid of terephthalic acid is 0 to 40 mol% of dicarboxylic acids such as isophthalic acid, sebacic acid, adipic acid, and azelaic acid, especially isophthalic acid 10 to 3% by mole.
A content of 5 mol % is preferable in terms of film flexibility, adhesive strength, and film formability.

ジオール成分としては1,4−ブタンジオールを用いる
が、エチレングリコール、ジエチレングリコール、ネオ
ペンチルクリコール、■、4−シクロヘキサンジメタツ
ール、1,6−ヘキサンジオールなどの他のジオール成
分をポリブチレンテレフタレート系樹脂の特性を損わな
い範囲内(好ましくは0〜20モル%)で共重合したも
のを使うこともできる−1これらポリブチレンテレフタ
レート(PBT)、ポリブチレンチレフクレート・イソ
フタレート(PBT/I)、ポリブチレンテレフタレー
ト・セバケート(PBT/S)、ポリブチレンテレフタ
レート・アジペート(PBT/A)、ポリブチレン・エ
チレンテレフタレート、ポリブチレン・エチレン・テレ
フタレート・イソフタレートなどが挙げられる。
1,4-butanediol is used as the diol component, but other diol components such as ethylene glycol, diethylene glycol, neopentyl glycol, It is also possible to use copolymerized products within a range (preferably 0 to 20 mol%) that does not impair the properties of the resin. ), polybutylene terephthalate sebacate (PBT/S), polybutylene terephthalate adipate (PBT/A), polybutylene ethylene terephthalate, polybutylene ethylene terephthalate isophthalate, and the like.

テレフタル酸が60モル%未満の場合には、樹脂が低融
点となるため、樹脂を乾燥する際に、チップの融着が起
こり、溶融押出時のトラブルとなる。
If the terephthalic acid content is less than 60 mol %, the resin will have a low melting point, which will cause chips to fuse together when the resin is dried, causing trouble during melt extrusion.

またA層面の滑り性が悪くなるために、フィルムを巻取
る際にしわが入ったり、巻締りが起こり平面性が著しく
損われる。
In addition, since the slipperiness of the surface of the A layer deteriorates, wrinkles occur when the film is wound up, and the winding becomes tight, resulting in a significant loss of flatness.

また、金属基質に被覆したものを積重ねておくとブロッ
キングを起こすという欠点が生じる。
Furthermore, there is a drawback that blocking occurs when coated metal substrates are piled up.

本発明のA層、B層に用いるアイオノマーとはα−オレ
フィンと1〜2価の金属イオンを含むα。
The ionomer used for the A layer and B layer of the present invention is an ionomer containing an α-olefin and a monovalent or divalent metal ion.

β−不飽和カルボン酸のイオン性塩との共重合体である
It is a copolymer with an ionic salt of β-unsaturated carboxylic acid.

具体例を挙げればエチレンとアクリル酸、メタクリル酸
なとのα、β−不飽和カルボン酸との共重合体あるいは
エチレンとマレイン酸、イタコン酸などの不飽和ジカル
ボン酸との共重合体のカルボキシル基の一部または全部
がナトリウム、カリウム、リチウム、亜鉛、マグネシウ
ム、カルシウムなどの1〜2価の金属で中和された重合
体である。
Specific examples include the carboxyl group of a copolymer of ethylene and an α,β-unsaturated carboxylic acid such as acrylic acid or methacrylic acid, or a copolymer of ethylene and an unsaturated dicarboxylic acid such as maleic acid or itaconic acid. It is a polymer in which part or all of is neutralized with a mono- or divalent metal such as sodium, potassium, lithium, zinc, magnesium, or calcium.

また、残余のカルボキシル基の一部を低級アルコールで
エステル化したものも使用できる。
Furthermore, a product obtained by esterifying a portion of the remaining carboxyl groups with a lower alcohol can also be used.

金属としては亜鉛が、樹脂層の滑り性、耐スクラッチ性
およびバリヤ性、防錆性の点で特に好ましい。
As the metal, zinc is particularly preferred in terms of the slipperiness, scratch resistance, barrier properties, and rust prevention properties of the resin layer.

金属で中和する前のアイオノマー中のカルボキシル基を
持つ共重合成分の含有量は1〜20モル%、好ましくは
2〜15モル%である。
The content of the copolymer component having a carboxyl group in the ionomer before neutralization with metal is 1 to 20 mol%, preferably 2 to 15 mol%.

カルボキシル基の中和度は15〜100%であるが、組
成物の溶融押出性から好ましくは20〜80%、更に好
ましくは30〜70%である。
The degree of neutralization of carboxyl groups is 15 to 100%, preferably 20 to 80%, more preferably 30 to 70% in view of the melt extrudability of the composition.

これらアイオノマーの代表例としてはエチレンとアクリ
ル酸、またはメタクリル酸の共重合体(カルボキシル基
を持つ共重合成分2〜15モル%)でナトIJウム、亜
鉛などの金属でカルボキシル基の30〜70%が中和さ
れたものを挙げることができる。
Typical examples of these ionomers include copolymers of ethylene and acrylic acid or methacrylic acid (2 to 15 mol% of the copolymerized component having carboxyl groups), and metals such as sodium and zinc that account for 30 to 70% of carboxyl groups. can be neutralized.

カルボキシル基をもつ共重合成分の含有量および中和度
は組成物の製膜性および柔軟性、防錆性に深く関係する
ものである。
The content of the copolymer component having a carboxyl group and the degree of neutralization are closely related to the film-forming properties, flexibility, and rust prevention properties of the composition.

カルボキシル基をもつ共重合成分の含有量が1モル%未
満では柔軟性、防錆性が劣り、20モル%を越える場合
には耐熱性および製膜性が劣る。
If the content of the copolymer component having a carboxyl group is less than 1 mol %, the flexibility and rust prevention properties will be poor, and if it exceeds 20 mol %, the heat resistance and film forming properties will be poor.

中和度が15%未満では防錆性が劣る。If the degree of neutralization is less than 15%, the rust prevention properties will be poor.

また中和度が80%以上になっても防錆性については何
ら問題にはならないが、組成物の溶融押出温度を高目に
する必要がある。
Further, even if the degree of neutralization is 80% or more, there will be no problem with rust prevention, but it is necessary to increase the melt extrusion temperature of the composition.

従って実質的な障害は少ないが、押出温度範囲が狭くな
る。
Therefore, there is less substantial hindrance, but the extrusion temperature range is narrowed.

これらアイオノマーは商品名゛サーリン″(デュポン社
製)として市販されているものを使用することができる
As these ionomers, those commercially available under the trade name "Surlyn" (manufactured by DuPont) can be used.

A層を構成する組成物は、複合フィルムの滑り性、ラミ
ネート、接着性、成形加工性、防錆性とを両立させるた
めに、それぞれ所定量配合することが必要である。
The composition constituting layer A needs to be blended in a predetermined amount in order to achieve all of the sliding properties, lamination, adhesion, moldability, and rust prevention properties of the composite film.

ポリエチレンテレフタレート系樹脂力月wt%未満では
フィルムの滑り性が悪く、しかも接着力が不足する。
If the amount of polyethylene terephthalate resin is less than 1 wt %, the film will have poor slipperiness and insufficient adhesive strength.

40wt%を越える場合には接着力が低下し、成形加工
性、防錆性が損われる。
When it exceeds 40 wt%, adhesive strength decreases, and moldability and rust prevention properties are impaired.

ポリブチレンテレフタレート系樹脂が30wt%未満で
は、接着力が低下すると共に成形加工性、防錆性が悪く
なる。
If the content of the polybutylene terephthalate resin is less than 30 wt%, the adhesive strength will decrease, and the moldability and rust prevention properties will deteriorate.

85wt%を越える場合にはフィルムの滑り性の悪化と
、防錆性の低下を味わく。
If it exceeds 85 wt%, the slipperiness of the film will deteriorate and the rust prevention properties will deteriorate.

アイオノマーが10wt%未満では滑り性、防錆性が低
下する。
If the ionomer content is less than 10 wt%, slipperiness and rust prevention properties will be reduced.

30wt%を越える場合は、組成物の分散状態が不安定
となり、非常に裂けやすいので、成形加工性が損われる
し、またブロッキング、ラミネート性、耐熱性が悪くな
る。
If it exceeds 30 wt%, the dispersion state of the composition becomes unstable and it is very easy to tear, which impairs molding processability, and also causes deterioration in blocking, lamination properties, and heat resistance.

B層を形成するポリエステルは、テレフタル酸が90〜
100モル%からなるポリエチレンテレフタレート系、
あるいはポリブチレンチレフクレート系樹脂である。
The polyester forming layer B has a terephthalic acid content of 90 to 90%.
Polyethylene terephthalate system consisting of 100 mol%,
Alternatively, it is a polybutylene lenticulate resin.

テレフタル酸含有量が90モル%以上必要な理山は、フ
ィルムの腰、ラミネート性、バリヤ性、防錆性の性能面
からである。
The reason why the terephthalic acid content is required to be 90 mol % or more is from the viewpoint of film stiffness, lamination properties, barrier properties, and rust prevention properties.

残部のジカルボン酸およびエチレングリコール以外に用
いることのできるジオール成分はいずれもA層のポリエ
チレンテレツクレート系樹脂のそれと同じである。
All of the diol components that can be used other than the remaining dicarboxylic acid and ethylene glycol are the same as those of the polyethylene terrecrate resin of layer A.

配合比は75〜100wt%の範囲内が滑り性、ブロッ
キング、バリヤ性、防錆性、耐熱性の面から好ましい。
The blending ratio is preferably within the range of 75 to 100 wt% from the viewpoints of slipperiness, blocking, barrier properties, rust prevention, and heat resistance.

B層に用いるポリブチレンチレフクレートは、テレフタ
ル酸含有量は95モル%以上、特に100モル%のもの
が複合フィルムの腰、ラミネート性、バリヤ性、防錆性
の点から好ましい。
The polybutylene terephthalic acid used in layer B preferably has a terephthalic acid content of 95 mol % or more, particularly 100 mol %, from the viewpoints of stiffness, lamination properties, barrier properties, and rust prevention properties of the composite film.

残部のジカルボン酸およびエチレングリコール以外に用
いることのできるジオール成分はいずれもA層のポリブ
チレンチレフクレート系樹脂のそれと同じである。
All of the diol components that can be used other than the remaining dicarboxylic acid and ethylene glycol are the same as those of the polybutylene ethylene reflex resin of layer A.

配合比は90〜100wt%の範囲のものがバリヤ性、
防錆性、耐熱性の点で特に優れている。
The blending ratio ranges from 90 to 100 wt%, which has barrier properties.
Especially excellent in terms of rust prevention and heat resistance.

B層のアイオノマー配合比は0〜25wt%である。The blending ratio of the ionomer in layer B is 0 to 25 wt%.

成形加工時の変形量が比較的少ない容器の場合には、ア
イオノマー〇wt%の方が防錆性の点で好ましい。
In the case of a container that undergoes relatively little deformation during molding, 0wt% ionomer is preferable in terms of rust prevention.

しかし、絞り比の大きい容器の場合には、アイオノマー
を配合した方が絞り加工性が改良されると共に防錆性も
改良されると云う特徴がある。
However, in the case of containers with a large drawing ratio, the addition of an ionomer improves the drawing processability and also improves the rust prevention properties.

しかし、配合比が25wt%を越えると、逆にB層の表
面荒れが起こり、防錆性の面から好ましくない。
However, if the blending ratio exceeds 25 wt%, the surface of layer B will become rough, which is not preferable from the standpoint of rust prevention.

尚、B層のポリエステルとしては上記の如きポリエチレ
ンテレツクレート系樹脂又はポリブチレンチレフクレー
ト系樹脂で構成されるものであるが、B層の機能を阻害
しない範囲内において他方のポリエステル樹脂を混合し
てもきしつかえない。
The polyester of layer B is composed of polyethylene terrescrate resin or polybutylene terephrate resin as described above, but the other polyester resin may be mixed within the range that does not impede the function of layer B. I can't hold back.

またA層、B層には必要に応じて酸化防止剤、熱安定剤
、紫外線吸収剤、粘度調節剤、可塑剤、核剤、無機微粒
子、有機滑剤、アルミニウムや亜鉛などの金属粉末、顔
料などの添加剤を分散、配合することができる。
In addition, layers A and B may contain antioxidants, heat stabilizers, ultraviolet absorbers, viscosity modifiers, plasticizers, nucleating agents, inorganic fine particles, organic lubricants, metal powders such as aluminum and zinc, pigments, etc., as necessary. Additives can be dispersed and blended.

無機微粒子としては、二酸化ケイ素、ケイ酸アルミニウ
ム、ケイ酸マグネシウムなどの微粒子や、酸化亜鉛、酸
化チタンなどを使用することができる。
As the inorganic fine particles, fine particles of silicon dioxide, aluminum silicate, magnesium silicate, etc., zinc oxide, titanium oxide, etc. can be used.

また上記添加剤と同様な目的で公知の樹脂を組成物全量
に対して20wt%を越えない範囲内で添加することが
できる。
Further, for the same purpose as the above-mentioned additives, a known resin may be added within a range not exceeding 20 wt % based on the total amount of the composition.

本発明の複合樹脂層の構成はA/Bの2層フィルムが普
通である。
The structure of the composite resin layer of the present invention is usually a two-layer film of A/B.

A層、B層はいずれも接着性、防錆性を有するが、A層
の方が、金属との接着性に優、Tしている。
Both the A layer and the B layer have adhesiveness and antirust properties, but the A layer has superior adhesiveness to metal.

またB層は成形加工性、バリヤ性、防錆性の点でA層よ
り優れている。
Furthermore, the B layer is superior to the A layer in terms of moldability, barrier properties, and rust prevention properties.

また防錆性を特に配慮する場合にはB/A/B/A・・
・・・・・・・B/Aの多層複合フィルムの形で使用す
ることもできる。
In addition, when considering rust prevention in particular, B/A/B/A...
It can also be used in the form of a B/A multilayer composite film.

従って本発明の被覆金属板は(B/A/金属)の構成の
ようにA層を金属面にしすることが好ましい。
Therefore, in the coated metal plate of the present invention, it is preferable that the A layer has a metal surface as in the configuration (B/A/metal).

本発明の複合樹脂層の厚みおよびA:Bの厚み比は、そ
の容器の使用目的によって異なるが一般に厚みは5μ〜
17nm1好ましくは10μ〜500μ、更に側面無継
目容器用途には20〜60μのものが特に好ましい。
The thickness of the composite resin layer of the present invention and the thickness ratio of A:B vary depending on the purpose of use of the container, but the thickness is generally 5μ to 5μ.
17 nm1, preferably 10 to 500 microns, and particularly preferably 20 to 60 microns for containers with seamless sides.

A層、B層の厚み比はその容器の使用目的によって適宜
選ぶことができるが、A:B層1 :0.1〜20、好
ましくは1:0.5〜10である。
The thickness ratio of layer A and layer B can be appropriately selected depending on the purpose of use of the container, but it is A:B layer 1:0.1-20, preferably 1:0.5-10.

本発明に於て、例数複合樹脂層として使用するかについ
て述べると(B層/金属)の組合せの場合は接着力が不
足するため、成形加工性が劣る。
Regarding the use of the composite resin layer in the present invention, in the case of the combination (B layer/metal), the adhesive strength is insufficient and the moldability is poor.

特に深絞りにより容器を作る場合にB層が剥離しやすい
ので、防錆性が低下する。
In particular, when a container is made by deep drawing, the B layer is likely to peel off, resulting in a decrease in rust prevention.

(A層/金属)の組合せでは、成形加工法はかなり良い
が、まだ不十分な点がある。
Although the combination of (A layer/metal) has a fairly good molding process, there are still some shortcomings.

例えば、深絞りを行なう時に絞り速度を上げると、金型
に粘着しやすくなったり、表面が荒れたりする。
For example, if the drawing speed is increased during deep drawing, the material will tend to stick to the mold or the surface will become rough.

容器の防錆性は腐蝕性の弱いものであれば短期間は耐え
られるものもあるが、酸性食品とか、魚肉の水煮などを
缶詰にした場合には、防錆性が不足し、缶が錆でしまう
The rust prevention properties of containers may be able to withstand for a short period of time if they are less corrosive, but if acidic foods or boiled fish meat are canned, the rust prevention properties may be insufficient and the cans may deteriorate. It will rust.

しかるに本発明の組合せであれば、成形加工性が良好で
、高速度で深絞り加工を行なうことができ、樹脂層の剥
離もない。
However, with the combination of the present invention, moldability is good, deep drawing can be performed at high speed, and there is no peeling of the resin layer.

また缶詰の缶に使用した場合には、酸性食品、魚肉の水
煮などにも十分耐えることができ、優れた防錆性を得る
ことができる。
Furthermore, when used in cans, it can withstand acidic foods, boiled fish, etc., and has excellent rust prevention properties.

本発明に用いる金属基質としては、リン酸処理鋼板、ク
ロム酸処理鋼板などの各種化学処理鋼板、あるいは電解
クロム酸処理鋼板、表面処理をしていないブラックプレ
ート(生鋼板)、錫、亜鉛などのメッキ鋼板、アルミニ
ウム、銅などがあげられる。
The metal substrates used in the present invention include various chemically treated steel sheets such as phosphate-treated steel sheets and chromic acid-treated steel sheets, electrolytic chromic acid-treated steel sheets, black plates (raw steel sheets) without surface treatment, tin, zinc, etc. Examples include plated steel, aluminum, and copper.

特に各種鋼板を用いる場合、中でも生鋼板、化成処理鋼
板、電解クロム酸処理鋼板が接着力、こ加工性の面で好
ましい。
In particular, when various steel plates are used, raw steel plates, chemical conversion treated steel plates, and electrolytic chromic acid treated steel plates are particularly preferred in terms of adhesive strength and workability.

本発明の第2の特徴は上記被覆金属基質が絞り、しごき
加工性に優れており、側面無継目容器を従来公知の方法
によって簡単に作ることができ、かつ、従来の側面無継
目容器よりも、接着力、防錆こ性が優れている点にある
The second feature of the present invention is that the coated metal substrate has excellent drawing and ironing workability, and a container with seamless sides can be easily made by a conventionally known method, and is better than conventional containers with seamless sides. It has excellent adhesive strength and rust prevention properties.

本発明品の製造方法の一例を次に述べる。An example of the method for manufacturing the product of the present invention will be described below.

被覆金属基質から円板、ダ円形、矩形、正方形などを任
意の形状に打ち抜く、そのさい多角形板の場合には、素
材の破断を防止するために、角の。
When punching discs, circles, rectangles, squares, etc. into arbitrary shapes from coated metal substrates, in the case of polygonal plates, cut corners to prevent the material from breaking.

部分にRを付けることができる。You can add an R to the part.

ついで絞りダイスとポンチを用い絞り加工し、浅絞りさ
れたカップ状成形物を成形する。
Next, drawing is performed using a drawing die and a punch to form a shallowly drawn cup-shaped product.

通常絞り比は1.1〜3,0好ましくは1.2〜2.8
にとられる。
Usually the aperture ratio is 1.1 to 3.0, preferably 1.2 to 2.8
be taken in.

したがって、浅絞り容器にこのカップ状成形物を側面無
継目容器として用いることができる。
Therefore, this cup-shaped molded product can be used as a shallow-drawn container with seamless sides.

しかしながら、底面に比べ側壁の高い深絞り容器は第1
段の絞り工程で得られたカップを再びより小径の再絞り
ダイスと再絞りポンチの間で再絞り加工し深絞りカップ
状容器を製造する。
However, deep-drawn containers with high side walls compared to the bottom are
The cup obtained in the stage drawing process is redrawn again between a redrawing die with a smaller diameter and a redrawing punch to produce a deep drawn cup-shaped container.

このとき絞りダイスとポンチの間のクリアランスを調節
して若干のしごきを加えることもできる。
At this time, you can also add a slight squeeze by adjusting the clearance between the drawing die and punch.

深絞りカップはさらにしごきポンチとしごきダイスの間
でしごき加工される。
The deep-drawn cup is further ironed between an ironing punch and an ironing die.

この場合のしごき率はポンチとダイスの間のクリアラン
スを調節することにより変えられるが普通10〜50%
の範囲にあることが望ましい。
The ironing rate in this case can be changed by adjusting the clearance between the punch and die, but it is usually 10 to 50%.
It is desirable that it be within the range of .

このような方法に用いる金属基質としては通常厚みが3
μ〜1 mm、特に5μ〜0.5 mmで板または箔状
のものが使用される。
The metal substrate used in such a method typically has a thickness of 3.
Plates or foils with a thickness of μ to 1 mm, especially 5 μ to 0.5 mm, are used.

また、容器蓋の製造は、前記被覆金属基質を円板などの
形状に打ち抜き、次いで絞り加工、プレス加工、ビード
加工、ロール加工、スコアリングなどにより、スクリュ
ーキャップ、ペーパー・バ・キュラム・キャップ、アン
カー・キャップ、ハネツクス・キャップ、クラウン・キ
ャップ、ビルファー・プルーフ・キャップ、ビール・オ
フ・キャップ、缶詰(カン・エンド)などのそれ自体周
知の容器蓋の形に成形する。
In addition, the container lid is manufactured by punching the coated metal substrate into a shape such as a disk, and then drawing, pressing, beading, rolling, scoring, etc. to produce a screw cap, paper vacuum cap, etc. It is formed into the shape of a container lid known per se, such as an anchor cap, a honeycomb cap, a crown cap, a beer-proof cap, a beer-off cap, or a can end.

本発明の第3の特徴は被覆金属容器がヒートシール部分
または接着部分を必要とする場合にそれらを表面被覆材
料と同一の樹脂複合層で形成することができることにあ
る。
A third feature of the invention is that if the coated metal container requires heat sealing or adhesive sections, these can be formed from the same resin composite layer as the surface coating material.

すなわち本発明で使用する被覆樹脂層はそれ自体が加熱
により優れたヒートシール性を有するので、例えば被覆
金属基質から缶容器の本体を成形し、この本体をロール
状となした後、末端部を重ね合わせてヒートシールし、
ついでフタ部を巻き締め加工あるいはヒートシールによ
り缶容器を容易に製造することができる。
In other words, since the coating resin layer used in the present invention itself has excellent heat-sealability when heated, for example, after forming the main body of a can from a coated metal substrate and forming this main body into a roll shape, the end portion is Overlap and heat seal,
The can container can then be easily manufactured by rolling or heat sealing the lid.

同様にヒートシール性を生かして袋状容器いわゆるフレ
キシブル・パウチを製造することもでき、この場合は例
えば3〜150μ厚さの金属箔とそれに直接被覆された
10〜100μの混合樹脂層からなる2枚の可撓性シー
トを対面して重ね合せ、その周辺部を熱接着するかまれ
は上記1枚のシートを折り返して対向する周辺部を熱接
着するなどの方法がとられる。
Similarly, it is also possible to manufacture bag-like containers, so-called flexible pouches, by taking advantage of the heat-sealing properties. An alternative method of stacking two flexible sheets facing each other and thermally bonding their peripheral portions is to fold one sheet back and thermally bonding the opposing peripheral portions.

なおヒートシールに際しては接着部分に他のエポキシ樹
脂やイソシアネートなどの熱硬化性の接着剤を適用する
こともできる。
Note that during heat sealing, a thermosetting adhesive such as another epoxy resin or isocyanate may be applied to the bonded portion.

本発明の第4の特徴は、すでに樹脂組成および複合層の
所で述べたが、このように激しい成形加工あるいはヒー
トシールによって製造された金属容器が熱水処理、レト
ルト処理に耐えるとともに、内容物によって金属基質に
錆が発生しないと云う点にある。
The fourth feature of the present invention is that, as already mentioned in the resin composition and composite layer, the metal container manufactured by such intense molding or heat sealing can withstand hot water treatment and retort treatment, and can hold the contents. The advantage is that rust does not occur on the metal substrate.

本発明の金属容器は、複合樹脂層の上に、成形前あるい
は成形後の任意の段階でトップコート、印刷などの表面
処理を行なうことができる。
In the metal container of the present invention, surface treatments such as top coating and printing can be performed on the composite resin layer at any stage before or after molding.

本発明の被覆金属容器は食缶、飲料缶あるいは石油缶な
どの雑缶、菓子缶、コーヒー化、紅茶缶などの化粧缶、
菓子、コーヒーなどを包装する防湿真空パック、カレー
、ビーフシチューなどの加工食品用レトルトパウチ容器
、容器類のフタおよびエアゾールなどの耐圧容器などと
してすぐれた特性を有し、これら用途に極めて有用であ
る。
The coated metal containers of the present invention are food cans, beverage cans, miscellaneous cans such as oil cans, confectionery cans, coffee cans, cosmetic cans such as tea cans,
It has excellent properties and is extremely useful for applications such as moisture-proof vacuum packs for packaging sweets, coffee, etc., retort pouch containers for processed foods such as curry and beef stew, lids for containers, and pressure-resistant containers for aerosols, etc. .

本発明に於ける物性測定方法および評価方法は次の通り
である。
The physical property measurement method and evaluation method in the present invention are as follows.

(1)製缶加工法 トリクロルエチレンで脱脂した板厚0.17mmの低炭
素2回冷圧延生鋼板と被覆フィルムとを重ね合せ130
〜150°Cでロールプレスでラミネートシ仮接着を行
なう。
(1) Can manufacturing method A low carbon twice cold rolled raw steel plate with a thickness of 0.17 mm degreased with trichlorethylene and a coating film are laminated 130
Temporary bonding of the laminate is carried out using a roll press at ~150°C.

次いで240〜280°Cのオーブン中で90秒加熱し
て本接着を行ない、水冷して片面または両面被覆鋼板を
得る。
Next, main adhesion is performed by heating in an oven at 240 to 280°C for 90 seconds, and cooling with water to obtain a steel plate coated on one or both sides.

この被覆鋼板を直径112mmに打ち抜き、絞り加工(
絞り比2.1)を行って、直径53mm、高さ40mm
の缶を作る。
This coated steel plate was punched to a diameter of 112 mm and drawn (
Aperture ratio 2.1), diameter 53mm, height 40mm
Make a can.

また厚さ0.21m7ILの低炭素2回冷圧延生鋼板に
同様に被覆を施し、成形して缶蓋を作った。
Further, a low carbon double cold rolled raw steel plate having a thickness of 0.21 m7IL was coated in the same manner and molded to make a can lid.

製缶加工性の評価は、〇二鋼板のシワ、フィルムのキズ
などの欠点が見られないもの。
The evaluation of can-making workability is that there are no defects such as wrinkles on the steel sheet or scratches on the film.

△:部分的に鋼板にシワが入ったり、フィルム表面の荒
れが見られるもの。
△: Partial wrinkles on the steel plate or roughness on the film surface.

×:鋼板のシワが多く、フィルムの剥離が見られるもの
×: The steel plate has many wrinkles and peeling of the film is observed.

(2)しトルト処理および実缶テスト 製缶した容器をトリミング、フランジ加工し、まぐろ醤
油味付、さけ水煮などの食品を充填し、缶蓋を2重巻締
めして、120℃、90分レトルト処理を行ない缶詰を
作った。
(2) Tort processing and actual can test The canned container is trimmed and flanged, filled with foods such as tuna soy sauce seasoned and boiled salmon, and the can lid is double-sealed and heated at 120℃ and 90℃. Canned food was made by retort processing.

レトルト直後および50℃で6ケ月貯蔵後、開缶して発
錆の状態、樹脂層の接着力を次のように評価した。
Immediately after retorting and after storage at 50° C. for 6 months, the cans were opened and the state of rusting and adhesive strength of the resin layer were evaluated as follows.

防錆性 ◎:金金属変色、発錆が全く見られない。Rust prevention ◎: No gold metal discoloration or rusting observed.

○:内容物の液相と気相の境界面が若干変色したり、ピ
ンホール状の変色、発錆が2,3見られる。
○: Slight discoloration, pinhole-like discoloration, and a few rust spots were observed at the interface between the liquid phase and gas phase of the contents.

△:ピンホール状の錆が若干見られる。×:全面に発錆
するもの。
△: Some pinhole-like rust is observed. ×: Rust occurs on the entire surface.

接着力 ◎:クロスカットを入れても強固に接着してい
るもの。
Adhesive strength ◎: Strong adhesion even after cross-cutting.

■=剥離はしないがクロスカットにより、接着力が若干
低下しているもの。
■ = No peeling, but adhesive strength slightly decreased due to cross-cutting.

△:クロスカットを入れるとフィルムが剥離するもの。△: The film peels off when a cross cut is made.

×:フィルムの刹]離が見られるもの。×: Separation of the film is observed.

実施例 1 25℃、0−りクロフェノール中で測定した固有粘度0
.65のPET、1.0のPBT/I (テレフタル酸
/イソフタル酸のモル比65/35 )、および゛サー
リン″(タイプ1706、メルトインデックスo、7g
7 i omin、ZNタイプ)を表1に示す配合比
でA層、B層樹脂をそれぞれ口径40龍ダのベレクイサ
ーで270℃でペレット化した。
Example 1 Intrinsic viscosity 0 measured in 0-chlorophenol at 25°C
.. 65 PET, 1.0 PBT/I (terephthalic acid/isophthalic acid molar ratio 65/35), and "Surlyn" (type 1706, melt index o, 7 g
The A-layer and B-layer resins were each pelletized at 270° C. using a Berequiser with a diameter of 40 mm at the compounding ratio shown in Table 1.

次いでB層樹脂を275°Cの40mmに6押出機に、
A層樹脂を270℃の40zm$押出機にそれぞれ供給
し、口金(270°C)でA/Bに積層し、B層がキャ
ストドラム面(表面温度55℃)側になるように押出し
、厚さ50μのフィルムを作った。
The B-layer resin was then transferred to a 40mm extruder at 275°C.
The A-layer resins were each supplied to a 40zm$ extruder at 270°C, laminated to A/B with a nozzle (270°C), extruded so that the B layer was on the cast drum surface (surface temperature 55°C), and the thickness was adjusted. A film with a thickness of 50μ was made.

厚み比はA:13=1:1.5であった。The thickness ratio was A:13=1:1.5.

また比較のためにA層のみとB層のみの50μのフィル
ムを270℃で製膜した。
For comparison, 50μ films containing only the A layer and only the B layer were formed at 270°C.

本発明に使用する複合フィルム/f61〜8はフィルム
の腰、滑り性が良好であり、厚み0.17mmの低炭素
2回冷圧延生鋼板に、A層が接するように両面に被覆し
た。
The composite film /f61-8 used in the present invention has good film stiffness and slipperiness, and was coated on both sides of a 0.17 mm thick low carbon twice cold rolled raw steel plate so that the A layer was in contact with it.

被覆作業はフィルムのシワ、気泡などが入らず、表面欠
点のないものを作ることができた。
During the coating process, we were able to create a film with no wrinkles or air bubbles, and no surface defects.

被覆鋼板を製缶(絞り比2.1)j、たところ、何のト
ラブルもなく、きれいな缶を作ることができた。
When the coated steel plate was used to make cans (drawing ratio: 2.1), clean cans were made without any trouble.

サケ水煮をこれらの缶に充填し、巻締を行ってレトルト
処理した。
Boiled salmon was filled into these cans, sealed and retorted.

本発明品は、レトルト直後はもとより、50℃、6ケ月
の貯蔵促進テストでも防錆・性、接着力とも良好で、フ
レーバーの低下もない良好な結果を示した。
The product of the present invention exhibited good rust prevention, properties, and adhesive strength, not only immediately after retorting, but also in an accelerated storage test at 50° C. for 6 months, and showed good results with no deterioration in flavor.

一方、本発明の対象外である//69〜13は次の様な
欠点があった。
On the other hand, //69 to 13, which are not covered by the present invention, had the following drawbacks.

、49はB層の表面あれが著しく、製缶時にB層のバリ
ヤ性の低下が大きく、缶内面が黒変していた。
In No. 49, the surface of the B layer was noticeably rough, the barrier properties of the B layer were greatly reduced during can making, and the inner surface of the can was blackened.

/l610はA層の接着力が不足するため、厳しい絞り
加工で接着力の低下が大きく、レトルト処理でフィルム
が部分的に剥離する。
/l610 has insufficient adhesive strength in the A layer, so the adhesive strength decreases significantly during severe drawing processing, and the film partially peels off during retort processing.

//6.11もA層のPETが多いため/l610と同
様に接着力が低い。
//6.11 also has a low adhesive strength like /l610 because the A layer contains a lot of PET.

/16 ]、 2はA層のみで缶を作つたものであり、
缶はできるが、B層がないためバリヤ性、防錆性(缶内
面が黒変した)が劣るので缶内容器には不向きである。
/16], 2 is a can made of only A layer,
Cans can be made, but since there is no B layer, the barrier properties and rust prevention properties (the inner surface of the can turned black) are poor, so it is unsuitable for use in can containers.

413はA層がない*ぐので、接着力が不足し、絞り加
工時に部分的にフィルムの剥離が見られた。
Since 413 did not have the A layer, the adhesive strength was insufficient, and partial peeling of the film was observed during drawing.

実施例 2 固有粘度0.63のPET1およびPET/I(テレフ
タル酸95.90.80モル%、固有粘度者々0.65
,0.66.0.66)、゛サーリン”1706、PB
T/I (テレフタル酸80.65モル%、固有粘度1
.20 、1.30 )、PBT(固有粘度1.00)
を用いて、表2に示す配合比で各A層、B層の組成物を
ペレット化した。
Example 2 PET1 and PET/I with intrinsic viscosity 0.63 (terephthalic acid 95.90.80 mol%, intrinsic viscosity 0.65
, 0.66.0.66), ``Sarlin'' 1706, PB
T/I (terephthalic acid 80.65 mol%, intrinsic viscosity 1
.. 20, 1.30), PBT (intrinsic viscosity 1.00)
The compositions of each layer A and B were pelletized using a compounding ratio shown in Table 2.

次いで実施例1と同様に製膜してA/Bの構成からなる
厚さ30μ、A:B=に3のフィルムを作った。
Next, a film was formed in the same manner as in Example 1 to form a film having a thickness of 30 μm and having an A/B composition and an A:B ratio of 3.

この複合フィルムを厚さ0.171mの軽度の処理を行
なった電解クロム酸処理鋼板の両面に被覆(仮接着13
0℃、本接着270℃)し、実施例1と同様に深絞りを
行ない、絞り比1.8の缶を作った。
This composite film is coated on both sides of a mildly treated electrolytic chromic acid treated steel plate with a thickness of 0.171 m (temporary adhesion 13
(0°C, main adhesion 270°C), and deep drawing was performed in the same manner as in Example 1 to produce a can with a drawing ratio of 1.8.

同素材から缶蓋も作り、まぐろ醤油味付を充填し、常法
にてレトルト処理を行ない缶詰を作った。
Can lids were also made from the same material, filled with tuna and soy sauce flavoring, and retorted using conventional methods to produce canned goods.

本発明に係る/1614〜18は缶詰の貯蔵促進テスト
でも良好な結果を示した。
/1614-18 according to the present invention also showed good results in the canned storage acceleration test.

一方、本発明の対象外であるAl1゜20はB層に用い
たPET/I、PBT/Iが適当でないため、製缶時に
表面が荒れ、缶の上部に鋼板のシワが入る。
On the other hand, since the PET/I and PBT/I used for the B layer are not suitable for Al1°20, which is outside the scope of the present invention, the surface becomes rough during can manufacturing, and the steel plate wrinkles in the upper part of the can.

また缶詰にした場合、バリヤ性が不足し、発錆が見られ
た。
Furthermore, when canned, the barrier properties were insufficient and rusting was observed.

実施例 3 実施例1で用いたポリエステル樹脂を使用し、A層は表
3の組成、B層はPET/”サーリン″85/15の組
成からなる厚さ50μ、A:B=1:1のA/Bの構成
の複合フィルムを作った。
Example 3 The polyester resin used in Example 1 was used, the A layer had the composition shown in Table 3, and the B layer had the composition of PET/"Surlyn" 85/15, thickness 50μ, A:B=1:1. A composite film with an A/B configuration was made.

ただし、′ゞササ−ン”としては、1652(タルトイ
ンデックス5 g/ 10mm、 Znタイプ)と17
06とを1:1で使用した。
However, as 'Sasan', 1652 (Tart index 5 g/10 mm, Zn type) and 17
06 was used at a ratio of 1:1.

実施例1と同様にして缶および缶蓋を作り、サケ水煮を
充填して缶詰を作った。
Cans and can lids were made in the same manner as in Example 1, and the cans were filled with boiled salmon.

表3から明らかな様に本発明品は実缶テストで良好な結
果を示した。
As is clear from Table 3, the product of the present invention showed good results in the actual can test.

/l624はA層にサーリンが含まれないため、製缶時
に鋼板にシワが発生したり♀七また缶詰に用いた場合、
黒錆が発生した。
/1624 does not contain Surlyn in the A layer, so wrinkles may occur on the steel plate during can manufacturing, and when used for canning,
Black rust occurred.

A625は変形度の大きい缶上部にフィルムの剥離が見
られ、容器としては使用できなかった。
A625 could not be used as a container because peeling of the film was observed on the top of the can, which had a large degree of deformation.

実施例 4 PET(固有粘度0.63)、PET/I(テレフクル
酸85,70モル%、固有粘度0.67 、0.66
)、PBT/I (テレフタル酸共重合比はそれぞれ5
5゜60.65.85モル%、固有粘度1.10,1.
15゜1.28 、1.27 )、゛ゞササ−ン”17
06の各ポリマを用いて表4のA層の組成物をペレット
化した。
Example 4 PET (intrinsic viscosity 0.63), PET/I (terefucuric acid 85.70 mol%, intrinsic viscosity 0.67, 0.66
), PBT/I (terephthalic acid copolymerization ratio is 5, respectively)
5°60.65.85 mol%, intrinsic viscosity 1.10,1.
15゜1.28, 1.27), ゛ゞSasan''17
The composition of layer A in Table 4 was pelletized using each of the polymers shown in Table 4.

B層としてはPET@有粘度0.68、酸化チタン30
wt%含有)/″サーリン 1706を9515の比率
に配合した組成物を作った。
B layer is PET@viscosity 0.68, titanium oxide 30
A composition containing Surlyn 1706 at a ratio of 9515 was prepared.

A層、B層の組成物をそれぞれ2台の押出機に供給し、
実施例1と同様に製膜して厚さ40μの2層フィルム(
A: B層1 : 1.5 )を製膜した。
The compositions of layer A and layer B are each supplied to two extruders,
A two-layer film with a thickness of 40μ was produced in the same manner as in Example 1 (
A:B layer 1:1.5) was formed into a film.

この複合フィルムのA層面をリン酸−クロム酸処理を施
した厚さ0.21mmの鋼板(片面にフェノール・エポ
キシ系塗料10μ塗布)の無塗装面に熱融着(仮接着1
40℃、本接着280°C)により被覆鋼板を作った。
The A layer side of this composite film is thermally bonded (temporary adhesion 1
A coated steel plate was prepared by bonding at 40°C and 280°C for main adhesion.

次いで、複合フィルム面が内側となるように実施例1と
同様に製缶し、絞り比2.0の缶と、缶蓋を作った。
Next, a can was made in the same manner as in Example 1 so that the composite film surface was on the inside, and a can with a drawing ratio of 2.0 and a can lid were made.

さけ水煮を充填し、レトルト処理を行なって缶詰を作っ
た。
Cans were made by filling with boiled salmon and performing retort processing.

本発明のA、 26〜28は、製缶性、防錆性、接着力
とも良好でめった。
A and Nos. 26 to 28 of the present invention were highly evaluated for their good can-manufacturing properties, rust prevention properties, and adhesive strength.

一方/4629.30は、用いたPET* */1.+ PBT/Iの共重合比が適正でなかったた
め、製缶時に缶の上部にシワが入りやすい。
On the other hand, /4629.30 is the PET used * */1. + Because the copolymerization ratio of PBT/I was not appropriate, wrinkles tended to appear at the top of the can during can manufacturing.

貯蔵促進テストにより、内面に黒錆が発生し、接着力が
低下していた。
Accelerated storage tests revealed that black rust had formed on the inner surface, reducing adhesive strength.

実施例 5 実施例1の実験形2の複合フィルムの組成で、A層にア
ルミニウム微粉末1.8wt%添加した以外は/162
と同じ複合フィルム//631を製膜した。
Example 5 The composition of the composite film of Experimental Form 2 of Example 1 was /162 except that 1.8 wt% of aluminum fine powder was added to the A layer.
The same composite film //631 was formed.

このフィルムのA面を実施例2で用いた電解クロム酸処
理鋼板の両面に被覆し、絞り比2.1の缶と、缶蓋を作
った。
Side A of this film was coated on both sides of the electrolytic chromic acid treated steel plate used in Example 2 to produce a can with a drawing ratio of 2.1 and a can lid.

製缶性は良好(◎)で、トマトピユーレ−と食酢を主体
としたトマト・ドレッシングで味付したマグロを充填し
、レトルト処理を行ない缶詰を作った。
The can making property was good (◎), and the cans were filled with tuna seasoned with tomato dressing mainly consisting of tomato puree and vinegar and subjected to retort processing.

このように酸性の強い食品であるにもかかわらず、実缶
テスト50°C,6ケ月後に於いても発錆は見られず(
◎)、接着力もあり(◎)、フレーバーの低下もなかっ
た。
Despite being a highly acidic food, no rust was observed even after 6 months in a real can test at 50°C.
◎), there was good adhesion (◎), and there was no deterioration in flavor.

比較のために、従来から用いられている耐酸性のよいエ
ポキシ・フェノール系缶塗料を1. O0m9/d m
2塗布焼付して、絞り加工で同様に作った缶と比較した
ところ、実缶テスト50°C,6ケ月後で発錆(×)1
が激しく、缶に穴があくほどであった。
For comparison, 1. O0m9/d m
When compared with cans made in the same way by applying 2 coats and baking and drawing, it was found that rust occurred (×) 1 after 6 months in actual can test at 50°C.
It was so intense that it even put a hole in the can.

かくして、本発明品は、耐酸性にも優れた容器であるこ
とが判明した。
Thus, the product of the present invention was found to be a container with excellent acid resistance.

実施例 6 実施例1のA層2,7.9の複合フィルムを厚さ0.2
4mmの生鋼板の両面にA層が接する様に被覆(仮接着
150℃、本接着280°C)した。
Example 6 The composite film of layer A 2, 7.9 of Example 1 was made to have a thickness of 0.2
Both sides of a 4 mm raw steel plate were coated with layer A so as to be in contact with each other (temporary adhesion at 150°C, final adhesion at 280°C).

更に比較のために生鋼板の両面にエポキシ・ユリア塗料
を片面当り、55Tvdm”になるように塗装焼付けた
Furthermore, for comparison, epoxy/urea paint was applied to both sides of a raw steel plate and baked to give a coating strength of 55 Tvdm.

この素材を用いて、直径73 mm、高さ18mmのス
クリーキャップを成形した。
Using this material, a scree cap with a diameter of 73 mm and a height of 18 mm was molded.

このキャップ内にマヨネーズおよびトマトピユーレ−を
それぞれ満杯に満たし、表面をガラス板でおおい、50
°Cにて2週間貯蔵後発錆状態を観察した(表5)。
Fill each cap with mayonnaise and tomato puree, cover the surface with a glass plate, and
After storage for 2 weeks at °C, the state of rust was observed (Table 5).

本発明品は成形加工によって金属からフィルムが剥離す
ることもな(、良好な成形性を示し、防錆性も十分であ
ることがわかった。
It was found that the product of the present invention did not cause the film to peel off from the metal during molding, had good moldability, and had sufficient rust prevention properties.

一方、A層、9はラセン部分に錆が認められ、従来の塗
料キャップは全面に錆がでていた。
On the other hand, in layer A, 9, rust was observed on the helical part, and the conventional paint cap had rust on the entire surface.

Claims (1)

【特許請求の範囲】[Claims] 1 A・テレフタル酸75〜100モル%からなるポリ
エチレンテレツクレート系樹脂1〜4.0 w t%、
テレフタル酸60〜100モル%からなるポリブチレン
チレフクレート系樹脂30〜85wt%、アイオノマー
10〜30wt%とからなる層、と、B・テレフタル酸
90〜100モル%からなるポリエチレンテレツクレー
ト系、あるいはポリブチレンテレフタレート系樹脂75
〜100wt%、アイオノマー〇〜25wt%とからな
る層、とが積層されてなる複合樹脂層を箔状またはシー
ト状の金属基質に被覆した素材よりなる金属容器。
1 polyethylene terephthalic acid resin consisting of 75 to 100 mol% of A. terephthalic acid 1 to 4.0 wt%,
A layer consisting of 30 to 85 wt% of a polybutylene terephthalic acid resin consisting of 60 to 100 mol% of terephthalic acid, and 10 to 30 wt% of an ionomer, and a polyethylene terephthalate type resin consisting of 90 to 100 mol% of B.terephthalic acid, or Polybutylene terephthalate resin 75
A metal container made of a material in which a foil-like or sheet-like metal substrate is coated with a composite resin layer formed by laminating a layer consisting of ~100wt% of ionomer and 0~25wt% of an ionomer.
JP53049009A 1978-04-25 1978-04-25 coated metal container Expired JPS5823219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53049009A JPS5823219B2 (en) 1978-04-25 1978-04-25 coated metal container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53049009A JPS5823219B2 (en) 1978-04-25 1978-04-25 coated metal container

Publications (2)

Publication Number Publication Date
JPS54143387A JPS54143387A (en) 1979-11-08
JPS5823219B2 true JPS5823219B2 (en) 1983-05-13

Family

ID=12819147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53049009A Expired JPS5823219B2 (en) 1978-04-25 1978-04-25 coated metal container

Country Status (1)

Country Link
JP (1) JPS5823219B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187247A (en) * 1981-05-15 1982-11-17 Mitsui Petrochemical Ind Thermoplastic polyester multilayer coated metal laminate
JPS5820646A (en) * 1981-07-30 1983-02-07 大日製罐株式会社 Can drum for corrosion-resistant, shock-resistant film laminated can
JPS5960826U (en) * 1982-10-09 1984-04-20 住友電気工業株式会社 Blind cap for moving cables
JPS5984742A (en) * 1982-10-25 1984-05-16 東洋製罐株式会社 Vessel made of metal with circumferential side-surface joint
JPS6038224U (en) * 1983-08-23 1985-03-16 凸版印刷株式会社 thin wall metal cans
JP3343423B2 (en) * 1993-12-28 2002-11-11 東洋製罐株式会社 Resin-coated metal sheet for drawn ironing can and drawn iron can
JP3284741B2 (en) * 1994-04-05 2002-05-20 東レ株式会社 Polymer multilayer coated metal laminate
US5814385A (en) * 1994-07-19 1998-09-29 Teijin Limited Laminated polyester film to be laminated onto metal plate
TWI225820B (en) * 1998-11-17 2005-01-01 Toyo Kohan Co Ltd Polyester resin film for metal sheet lamination and decorative metal sheet laminated with the same
JP3891762B2 (en) * 2000-07-10 2007-03-14 三井化学株式会社 Transportation and storage method of agricultural chemical composition containing chlorpicrin
JP4532137B2 (en) * 2004-02-27 2010-08-25 ユニチカ株式会社 Film for laminating metal plates, film laminated metal plates, and metal cans
JP4725026B2 (en) * 2004-03-11 2011-07-13 Jfeスチール株式会社 Laminated metal plate for cans

Also Published As

Publication number Publication date
JPS54143387A (en) 1979-11-08

Similar Documents

Publication Publication Date Title
JPS6261427B2 (en)
DK166574B1 (en) Laminate of metal foil and polymers, container or component thereof manufactured from the said laminate and method for manufacturing the laminate
CA1163875A (en) Manufacture of draw-redraw cans using steel sheet material film laminated or extrusion coated with a high density polyethylene graft copolymer
JP2008296439A (en) Resin-coated aluminum alloy plate and molding using the same
JPS5823219B2 (en) coated metal container
CA2616351C (en) Resin-coated metal plate
JPS5935344B2 (en) Heat treatment method for coated metal containers
KR860000054B1 (en) Draw food or beverage can and preparation method thereof
JP4977875B2 (en) Resin-coated metal plate for containers
JP3983131B2 (en) Package
JPS5934580B2 (en) Side seamless metal container and manufacturing method thereof
JPS6052179B2 (en) Resin composition for metal cans
JPS6039020B2 (en) composite film
JP3041153B2 (en) Resin coated metal plate for thinned deep drawn cans
JPS6232217B2 (en)
JPH05270563A (en) Aluminum foil laminated body and food packaging container
CA2114511C (en) Metal sheet covered with polyester resin film for drawn and stretch formed can
JP7361778B2 (en) Container end closure liner and method for preparing container end closure liner
IE63937B1 (en) Profiled-surface metal-plastic composites processes for their preparation and the use of the composites for producing packaging containers
JPS6149113B2 (en)
JP3693820B2 (en) Method for manufacturing can lid using metal plate coated with thermoplastic resin and can lid
JP3413679B2 (en) Polyester composite film for metal lamination
JP2002113809A (en) Resin film laminate plating steel sheet, can using the same and method for manufacturing resin film laminate plating steel sheet
JP2003063519A (en) Resin-coated seamless can
JP2002255169A (en) Resin coated seamless can