JPH07290084A - Water quality improving device - Google Patents

Water quality improving device

Info

Publication number
JPH07290084A
JPH07290084A JP6091850A JP9185094A JPH07290084A JP H07290084 A JPH07290084 A JP H07290084A JP 6091850 A JP6091850 A JP 6091850A JP 9185094 A JP9185094 A JP 9185094A JP H07290084 A JPH07290084 A JP H07290084A
Authority
JP
Japan
Prior art keywords
water quality
quality improving
water
air supply
hollow portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6091850A
Other languages
Japanese (ja)
Other versions
JP3388017B2 (en
Inventor
Katsuhiro Ishikawa
川 勝 廣 石
Kenji Taguchi
口 健 二 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP09185094A priority Critical patent/JP3388017B2/en
Publication of JPH07290084A publication Critical patent/JPH07290084A/en
Application granted granted Critical
Publication of JP3388017B2 publication Critical patent/JP3388017B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PURPOSE:To provide a water quality improving device capable of energy- savingly replenishing dissolved oxygen at the bottom of the waters as the source of the area of polluted water. CONSTITUTION:Plural hollow-fiber membranes 2a having a hollow part 2b and pierced with many gas-permeable holes to communicate the hollow part 2b with the outside are bundled to constitute a hollow-fiber bundle 2. The bundle 2 is held by a base material 3 having a passage communicated with the hollow part 2b, and a gas feed pipe 4 is connected to the base material 3. The water quality improving unit 1 consists of the hollow-fiber bundle 2, base material 3 and gas feed pipe 4, and a gas blowing device is connected to the gas feed pipe 4. The pressure in the hollow part 2b of the bundle 2 is maintained below the bubble point, and the oxygen-contg. gas is blown.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は河川水の貯留池、修景・
親水池、湖沼、ダム貯水池、運河・港湾などの水質汚濁
水域に設置される水質改善装置に係り、とりわけ水質汚
濁水域底層のDO不足を解消することができる水質改善
装置に関する。
The present invention relates to a reservoir for river water, landscape
The present invention relates to a water quality improving device installed in a water polluted water region such as a hydrophilic pond, a lake, a dam reservoir, a canal or a harbor, and particularly to a water quality improving device capable of eliminating DO deficiency in the bottom layer of the water polluted water region.

【0002】[0002]

【従来の技術】河川水の貯留池、修景・親水池、湖沼、
ダム貯水池、および運河・港湾等の水域の水質汚濁が近
年、問題視されているが、水質改善の実例はまだ少な
い。現状、実用あるいは研究開発されている水質改善技
術として、下水二次処理水をろ過及びオゾン処理してせ
せらぎ水として再利用するもの、ダム貯水池に気泡塔を
設け発藻の抑制をするもの、公園池底に散気板を設け散
気するもの、河川水などを礫間接触酸化装置に導入し浄
化するものなどがある。
[Prior Art] Reservoir for river water, scenic / hydrophilic pond, lake,
Although water pollution in dam reservoirs and water areas such as canals and harbors has been regarded as a problem in recent years, there are still few examples of water quality improvement. Currently, as practical or research and development water quality improvement technology, one that recycles sewage secondary treated water by filtration and ozone treatment and reuse as murmuring water, one that suppresses algae by installing a bubble tower in a dam reservoir, park Some are equipped with air diffusers at the bottom of the pond to diffuse air, and some are introduced into the gravel contact oxidation device to purify river water.

【0003】[0003]

【発明が解決しようとする課題】上記各実例ではそれぞ
れの効果は認められるが、次に述べる問題がある。すな
わち下水二次処理水を再利用する水質改善技術では、せ
せらぎ水として清流を維持する上では十分な処理が行な
われるが、造水コトが高いという問題がある。しかも、
せせらぎ水の流下先が修景池などの広大な滞留水域とな
る場合、せせらぎ水に富栄養化の要因となる栄養物が多
く含まれているため、この水域の富栄養化が避けられ
ず、底層での溶存酸素(DO)の不足により自然浄化能
力が失われ、水質汚濁と悪臭ガスの発生に至ることもあ
る。
Although the respective effects can be recognized in each of the above examples, there are the following problems. In other words, the water quality improvement technology that reuses the sewage secondary treated water is sufficient for maintaining a clear stream as murmuring water, but has the problem of high desalination quality. Moreover,
When the flow-down destination of the babbling water becomes a vast accumulated water area such as Shukei Pond, since the babbling water contains many nutrients that cause eutrophication, eutrophication of this water area is unavoidable, Due to lack of dissolved oxygen (DO) in the bottom layer, natural purification capacity is lost, which may lead to water pollution and generation of malodorous gas.

【0004】ダム貯水池に気泡塔を設置した場合、上昇
気泡流と水温差により中層から表層、表層横流から中層
への下降流と緩やかな循環流を形成し、藻類の繁殖に必
要な日光の及ばない中層域に藻類を移動させ、その繁殖
を抑制することができる。しかしながら、この循環流の
形成は、雨水の流入や貯水の使用量の変動あるいは水温
分布の変動などの影響を受けやすく、その効果が不十分
になることがある。また気泡塔が十分な機能を示して
も、水域全体の富栄養化状態は変わらず、特に、水域全
体に棲息する生物の死骸の溜まり場所である底層でのD
O不足が深刻となり、自然(生物)の浄化機能の低下の
ほか、季節的水温分布変化による淡水での青潮現象の発
生などの水質汚濁を防止することはできない。
When a bubble tower is installed in a dam reservoir, due to rising bubbly flow and water temperature difference, it forms a downward flow from the middle layer to the surface layer, a downflow from the surface layer to the middle layer, and a gentle circulation flow, and the sunlight necessary for the propagation of algae spreads. Algae can be moved to the middle region where there is no water and their reproduction can be suppressed. However, the formation of this circulating flow is susceptible to inflow of rainwater, fluctuations in the amount of stored water used, fluctuations in water temperature distribution, etc., and its effect may be insufficient. Even if the bubble column shows sufficient function, the eutrophication state of the whole water area does not change, and especially in the bottom layer where dead bodies of organisms living in the whole water area are accumulated.
O deficiency becomes serious, and the water (water) pollution such as occurrence of blue tide phenomenon in fresh water due to seasonal water temperature distribution change cannot be prevented, in addition to deterioration of the purification function of nature (organism).

【0005】池などの底層のDO補給方法として、散気
板などから空気の気泡を放出させるものが一般的に考え
られているが、上昇気泡による溶解効率が低く供給した
空気の大半以上を大気へ放出するむだがあり、最もDO
を必要とする底層へのDO補給を効率的に実施すること
が困難である。また河川水などの浄化に一部実用化され
ている礫間接触酸化装置などの水処理装置は、その処理
対象水を数時間以上は滞留(反応)させるため処理槽が
必要となり、処理槽を設置するための広大な設置スペー
スを水域外に確保することが困難な場合が多く、設置や
運転コトも高くなるという問題がある。
As a DO replenishing method for the bottom layer of a pond or the like, it is generally considered that air bubbles are released from a diffuser plate or the like, but the dissolution efficiency due to rising bubbles is low and most of the supplied air is atmospheric. There is a waste to release to, most DO
It is difficult to efficiently perform DO supply to the bottom layer, which requires In addition, a water treatment device such as a gravel contact oxidation device that has been partially put into practical use for purification of river water requires a treatment tank because the water to be treated stays (reacts) for several hours or more. It is often difficult to secure a vast installation space outside the water area for installation, and there is a problem that the installation and operation costs will also be high.

【0006】本発明はこのような点を考慮してなされた
ものであり、汚濁水域の底層のDO不足を解消し、底層
に棲息する生物による自然浄化能力を省エネルギーで回
復することができる水質改善装置を提供することを目的
とする。
The present invention has been made in view of the above points, and it is possible to eliminate the DO deficiency in the bottom layer of a polluted water area and improve the water quality by recovering the natural purification ability of organisms living in the bottom layer with energy saving. The purpose is to provide a device.

【0007】[0007]

【課題を解決するための手段】本発明は、中空部を有
し、この中空部と外方とを連通する多数のガス透過孔が
形成された多孔質膜からなる水質改善素子と、この水質
改善素子を保持するとともに、水質改善素子の中空部と
連通する連通路を有する基材と、この基材に接続された
送気管とを有し、水中底部に設置される水質改善ユニッ
トと、前記送気管に接続され、前記水質改善素子の中空
部内の圧力がバブル点以下となる酸素含有気体を送気す
る送気装置と、を備えたことを特徴とする水質改善装
置、中空部を有する多孔質体と、この多孔質体の内面ま
たは外面に設けられた多孔質膜と、前記中空部に接続さ
れた送気管とを有し、水中底部に配置される水質改善ユ
ニットと、前記送気管に接続され、前記多孔質体の中空
部内の圧力がバブル点以下となるよう酸素含有気体を送
気する送気装置と、を備えたことを特徴とする水質改善
装置、および中空部を有し、この中空部と外方とを連通
する多数のガス透過孔が形成された多孔質体からなる複
数の水質改善素子と、この水質改善素子をその両端部で
保持するとともに、水質改善素子の中空部と連通する連
通路を有する基材と、前記複数の水質改善素子の基材同
志を連結する継材と、前記基材に接続された送気管とを
有し、水中底部に配置される水質改善ユニットと、前記
送気管に接続され、前記水質改善素子の中空部内の圧力
がバブル点以下となるよう酸素含有気体を送気する送気
装置と、を備えたことを特徴とする水質改善装置であ
る。
DISCLOSURE OF THE INVENTION The present invention provides a water quality improving element comprising a porous membrane having a hollow portion and a large number of gas permeation holes communicating the hollow portion with the outside, and the water quality improving element. While holding the improvement element, having a base material having a communication passage communicating with the hollow portion of the water quality improvement element, and an air supply pipe connected to this base material, a water quality improvement unit installed at the bottom of the water, and A water quality improving device, characterized in that it is connected to an air sending pipe, and an air sending device for sending an oxygen-containing gas whose pressure in the hollow part of the water quality improving element is equal to or lower than a bubble point, and a porous part having a hollow part. A porous body, a porous membrane provided on the inner surface or the outer surface of this porous body, and an air supply pipe connected to the hollow portion, a water quality improving unit arranged at the bottom of the water, and the air supply pipe. The pressure inside the hollow part of the porous body is connected to the bubble point. An air supply device for supplying an oxygen-containing gas to the bottom, and a water quality improving device characterized by comprising: a hollow part; and a large number of gas permeation holes communicating the hollow part with the outside. A plurality of water quality improving elements consisting of a porous body formed, and holding the water quality improving element at both ends thereof, a base material having a communication passage communicating with the hollow portion of the water quality improving element, and the plurality of water quality A joint material connecting the base materials of the improvement element, and an air supply pipe connected to the base material, a water quality improvement unit arranged at the bottom of the water, and connected to the air supply pipe, of the water quality improvement element An air supply device for supplying an oxygen-containing gas so that the pressure in the hollow portion becomes equal to or lower than the bubble point.

【0008】[0008]

【作用】本発明によれば、送気装置から水質改善ユニッ
ト内に酸素含有気体が供給される。この場合、水質改善
ユニットの水質改善素子または多孔質体内部の中空部内
の圧力がバブル点以下となるので、水質改善素子または
多孔質体から水中底部へ溶存酸素がバブルレスで補給さ
れる。このため、酸素含有気体中の酸素をむだなく水中
底部に溶解させることができる。
According to the present invention, the oxygen-containing gas is supplied from the air supply device into the water quality improving unit. In this case, since the pressure in the water quality improving element of the water quality improving unit or the hollow portion inside the porous body is equal to or lower than the bubble point, dissolved oxygen is replenished from the water quality improving element or the porous body to the bottom of the water without bubbles. Therefore, oxygen in the oxygen-containing gas can be dissolved in the bottom of the water without waste.

【0009】[0009]

【実施例】第1の実施例 以下、図面を参照して本発明の実施例について説明す
る。図1(a)(b)および図2は、本発明による水質
改善装置の第1の実施例を示す図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment An embodiment of the present invention will be described below with reference to the drawings. 1 (a) (b) and FIG. 2 are views showing a first embodiment of a water quality improving device according to the present invention.

【0010】このうち、図1(a)(b)は水質改善装
置の構成を示す図であり、図2は複数の水質改善ユニッ
トを水中の底面に配設した状態を示す図である。
Of these, FIGS. 1 (a) and 1 (b) are views showing the structure of the water quality improving device, and FIG. 2 is a view showing a state in which a plurality of water quality improving units are arranged on the bottom surface in water.

【0011】図1(a)(b)に示すように水質改善ユ
ニット1は、多数のガス透過孔を有する浮遊性多孔質膜
からなる水質改善素子としての中空糸束2と、中空糸束
2を保持するとともに中空糸束2の中空部2bと連通す
る連通路(図示せず)を有する基材3と、基材3に接続
され中空糸束2の中空部2bと連通する送気管4で構成
される。
As shown in FIGS. 1 (a) and 1 (b), a water quality improving unit 1 includes a hollow fiber bundle 2 as a water quality improving element composed of a floating porous membrane having a large number of gas permeation holes, and a hollow fiber bundle 2. A base material 3 for holding the hollow fiber bundle 2 and having a communication path (not shown) communicating with the hollow portion 2b of the hollow fiber bundle 2, and an air supply pipe 4 connected to the base material 3 and communicating with the hollow portion 2b of the hollow fiber bundle 2. Composed.

【0012】中空糸束2は水処理ろ過で一般的に用いら
れている0.3〜数mm程度の外径をもち0.1μm程度
のガス透過孔が形成された中空糸膜2aを複数本まとめ
たものであり、各中空糸膜2a内が中空部2a内で中空
部2bとなっている。本実施例では中空糸膜2aとして
浮力により水中に浮遊する材料が選定される。中空糸束
2の浮遊上端部は、図1(b)では封止端末形となって
いるが、中空糸束2の両端末とも基材3に固着し、中空
糸束2の浮遊上端部が逆U字形になる一般的なものでも
よい。送気管4には、別の水質改善ユニット1や後述す
る送気本管との配管接続のための継手5が設けられる
が、継手5を基材3に設けてもよい。
The hollow fiber bundle 2 has a plurality of hollow fiber membranes 2a having an outer diameter of about 0.3 to several mm and a gas permeation hole of about 0.1 μm, which is generally used in water treatment filtration. The hollow fiber membranes 2a are hollow portions 2b in the hollow portions 2a. In this embodiment, a material that floats in water due to buoyancy is selected as the hollow fiber membrane 2a. The floating upper end of the hollow fiber bundle 2 has a sealed terminal shape in FIG. 1B, but both ends of the hollow fiber bundle 2 are fixed to the base material 3, and the floating upper end of the hollow fiber bundle 2 is A general U-shaped one may be used. The air supply pipe 4 is provided with another water quality improvement unit 1 and a joint 5 for pipe connection with an air supply main pipe described later, but the joint 5 may be provided on the base material 3.

【0013】また図2に示すように送気管4には、後述
する送気本管7を介して酸素含有気体、例えば空気を送
気する送気装置9が接続され、この送気装置9により中
空糸膜2a内の中空部2b内の圧力がバブルポイント
(1〜2×105 pa)以下となるよう送気される。
As shown in FIG. 2, an air supply device 9 for supplying an oxygen-containing gas, for example, air, is connected to the air supply pipe 4 via an air supply main pipe 7 described later. Air is fed so that the pressure in the hollow portion 2b in the hollow fiber membrane 2a becomes equal to or lower than the bubble point (1 to 2 × 10 5 pa).

【0014】また図2において、図1に示す水質改善ユ
ニット1が例えば3個直列に送気管4の継手5を介して
連結され、連結された一連の水質改善ユニット1に関
し、その一方端が保守用の開閉弁6を介して送気本管7
に接続され、送気本管7から最遠部となる水質改善ユニ
ット1の継手5の他方端に封止材8が取付けられてい
る。送気本管7には、一連の水質改善ユニット1が必要
な数だけ汚濁水域底面に自在に配設される。また、送気
本管7の送気装置9からの最遠部にも、封止材8が取付
けられている。これら一連の水質改善ユニット1は汚濁
水域底面上に据置く形で配設される。このような底面に
は起伏があるのが一般的であるので、その送気管4およ
び送気本管8等としては軟質管が用いられ、継手材5と
しては保守を考慮して簡単に脱着できるものが使用され
る。なお、上述のように中空糸束2と基材3と送気管4
とによって水質改善ユニット1が構成され、一連の水質
改善ユニット1と水質改善ユニット1に送気本管7を介
して接続された送気装置9とによって水質改善装置が構
成される。
Further, in FIG. 2, for example, three water quality improvement units 1 shown in FIG. 1 are connected in series via a joint 5 of an air supply pipe 4, and a series of water quality improvement units 1 are connected, one end of which is maintained. Main air supply 7 through open / close valve 6 for
The sealing material 8 is attached to the other end of the joint 5 of the water quality improving unit 1 which is the farthest part from the air supply main pipe 7. In the air supply main 7, a required number of a series of water quality improvement units 1 are freely arranged on the bottom surface of the polluted water area. A sealing material 8 is also attached to the farthest part of the air supply main 7 from the air supply device 9. These series of water quality improvement units 1 are installed in the form of being installed on the bottom surface of the polluted water area. Since such a bottom surface is generally undulated, soft tubes are used as the air supply tube 4 and the air supply main tube 8 and the like, and the joint material 5 can be easily detached in consideration of maintenance. Stuff used. In addition, as described above, the hollow fiber bundle 2, the base material 3, and the air pipe 4
Constitutes a water quality improving unit 1, and a series of water quality improving units 1 and an air feeding device 9 connected to the water quality improving unit 1 via an air feeding main pipe 7 constitute a water quality improving device.

【0015】次にこのような構成からなる本実施例の作
用について説明する。まず送気装置9から送気本管7に
酸素含有気体が、中空糸束2の中空部2b内の圧力がバ
ブル点(ポイント)以下の所要圧力となるよう供給され
る。酸素含有気体は一般的には圧縮空気で十分である
が、高濃度酸素、純酸素を用いるとより低圧力で酸素供
給という目的が達成される。酸素含有気体は送気本管7
から各水質改善ユニット1の中空糸束2に供給され、中
空糸束2からガス透過孔を経て近傍の水中にバブルが発
生しない状態、すなわちバブルレスでDOが補給され
る。
Next, the operation of this embodiment having such a configuration will be described. First, the oxygen-containing gas is supplied from the air supply device 9 to the main air supply pipe 7 so that the pressure in the hollow portion 2b of the hollow fiber bundle 2 becomes a required pressure below the bubble point. Compressed air is generally sufficient as the oxygen-containing gas, but when high-concentration oxygen or pure oxygen is used, the purpose of supplying oxygen at a lower pressure is achieved. Oxygen-containing gas is the main air supply pipe 7
Is supplied to the hollow fiber bundles 2 of each water quality improvement unit 1 from the hollow fiber bundles 2 through the gas permeation holes so that no bubbles are generated in the nearby water, that is, DO is replenished without bubbles.

【0016】このように中空糸束2からガス透過孔を経
て、バブルレスでDOが補給される場合、中空糸膜2a
の多数のガス透過孔を介して行われる内部の気体と外部
の液体との間の気液接触により、送気酸素含有気体中の
酸素はむだなく水中に溶解する。気液接触によるDO補
給速度は、気液接触面積、および飽和DOと実際のDO
との差に比例して大きくなり、酸素含有気体の酸素濃度
が高い程、また酸素含有気体の圧力が高い程大きくな
る。中空糸束2として水処理ろ過用に使用される0.1
μm程度のガス透過孔を有する中空糸膜2aを用いる
と、中空糸膜2aの中空部2b内を1〜2×105 Pa
のバブルポイント圧力より低い圧力とすることにより、
中空糸束2近傍の水中のDO不足を解消することができ
る。なお、中空部2b内をバブルポイント圧力以下とし
た場合でも、送気装置9からの実際の送気圧力は水深相
当分を加えた圧力となる。また汚濁水域の悪化が大きい
場合、あるいは水質改善ユニット1の底面配設密度を小
さくしなければならず空気によるDO補給が不足する場
合は、空気に代えて高濃度酸素や純酸素にすればよい。
中空糸膜2aのガス透過孔の大きさは、水中細菌類の中
空内部への侵入防止と送気圧力を可能な限り高く維持す
るうえで0.45μm以下が好ましく、またその有効率
は気液接触面積を上げる意味で大きい方が望ましい。
When DO is supplied bubblelessly from the hollow fiber bundle 2 through the gas permeation holes in this way, the hollow fiber membrane 2a
Due to the gas-liquid contact between the internal gas and the external liquid that is performed through the multiple gas permeation holes, the oxygen in the fed oxygen-containing gas is dissolved in the water without difficulty. The DO replenishment rate by gas-liquid contact depends on the gas-liquid contact area, the saturated DO and the actual DO.
It increases in proportion to the difference between the above and the higher the oxygen concentration of the oxygen-containing gas and the higher the pressure of the oxygen-containing gas. 0.1 used as a hollow fiber bundle 2 for water treatment filtration
When the hollow fiber membrane 2a having gas permeation holes of about μm is used, the inside of the hollow portion 2b of the hollow fiber membrane 2a is 1 to 2 × 10 5 Pa.
By setting the pressure lower than the bubble point pressure of
The lack of DO in water near the hollow fiber bundle 2 can be eliminated. Even when the inside of the hollow portion 2b is set to be equal to or lower than the bubble point pressure, the actual air supply pressure from the air supply device 9 is a pressure to which a water depth equivalent amount is added. Further, when the deterioration of the polluted water area is large, or when the density of the bottom surface of the water quality improvement unit 1 needs to be reduced and the DO supply by air is insufficient, high-concentration oxygen or pure oxygen may be used instead of air. .
The size of the gas permeation holes of the hollow fiber membrane 2a is preferably 0.45 μm or less in order to prevent invasion of water-borne bacteria into the hollow interior and to maintain the air supply pressure as high as possible, and the effective rate is gas-liquid. A larger size is desirable to increase the contact area.

【0017】この間、中空糸束2は浮力で水中で浮遊
し、水草状の形態になり、水質浄化に寄与する微生物、
微少動物、魚類などの好適な繁殖域が形成され、汚濁水
域の自然浄化能力が回復する作用をもたらす。また水質
改善ユニット1が汚濁水域の底面上に適切な分布で配設
されることにより、従来DO不足により自然浄化機能が
失われていた汚濁水域底層のDO不足を省エネルギー的
に解消することができる。さらに大きな接触面積を有す
る水質改善ユニット1を基地とする底層域の生物活性域
が形成され、自然浄化機能が十分に発揮されるようにな
る。
During this time, the hollow fiber bundle 2 floats in the water by buoyancy and becomes a water grass-like form, which contributes to water purification,
Suitable breeding areas for small animals, fishes, etc. are formed, which brings about the effect of restoring the natural purification ability of polluted water areas. Further, by arranging the water quality improvement unit 1 in an appropriate distribution on the bottom surface of the polluted water area, the DO shortage of the bottom layer of the polluted water area where the natural purification function has been lost due to the DO shortage in the related art can be eliminated in energy saving. . A biologically active area in the bottom layer based on the water quality improvement unit 1 having a larger contact area is formed, and the natural purification function is sufficiently exerted.

【0018】このように、本実施例によれば、中空糸束
2の上端部が固着されず垂直状に近い形で浮遊するた
め、DOの溶解と水中拡散が促進され、また自然浄化能
力が発揮される底層の上下幅が拡大できる。さらに自然
沈降物の沈積に対する耐用年数を大きくできる。また自
然沈降物が沈積して水中部分の中空糸束2の表面積が減
少しても、酸素含有気体の圧力設定を上げることによ
り、表面積の減少分を補充できる。また、個々の水質改
善ユニット1、あるいは一連の水質改善ユニット1の送
気管4および送気本管7を軟質管にすることにより、自
然沈降物の沈積量が多くなった場合、引掛竿等により簡
単に水質改善ユニット1を少し上方に移動でき、長年に
わたって、水質改善装置の効果を維持できる。第2の実施例 本発明の第2の実施例を図3および図4により説明す
る。図3に示すように水質改善ユニット10は一対の基
材12と一対の送気管13とを平面的に組立ててなり、
水質改善素子としての中空糸束11の両端がそれぞれ相
対する基材12に固着され、全体として平面的に組立て
られている。また送気管13には継手14が設けられて
いるが、継手14を基材12に設けてもよい。
As described above, according to this embodiment, since the upper end of the hollow fiber bundle 2 is not fixed and floats in a nearly vertical shape, the dissolution of DO and the diffusion in water are promoted, and the natural purification ability is improved. The vertical width of the bottom layer exerted can be expanded. In addition, the service life of natural sediments can be increased. Even if the natural sediment deposits and the surface area of the hollow fiber bundle 2 in the underwater portion decreases, the decrease in the surface area can be supplemented by increasing the pressure setting of the oxygen-containing gas. In addition, when the air feed pipe 4 and the air feed main pipe 7 of the individual water quality improvement units 1 or a series of water quality improvement units 1 are made to be soft pipes, when the amount of natural sediment deposited increases, a hook rod or the like may be used. The water quality improving unit 1 can be easily moved slightly upward, and the effect of the water quality improving device can be maintained for many years. Second Embodiment A second embodiment of the present invention will be described with reference to FIGS. 3 and 4. As shown in FIG. 3, the water quality improvement unit 10 is constructed by planarly assembling a pair of base materials 12 and a pair of air supply pipes 13,
Both ends of the hollow fiber bundle 11 as the water quality improving element are fixed to the opposing base materials 12 and are assembled in a plane as a whole. Although the air supply pipe 13 is provided with the joint 14, the joint 14 may be provided on the base material 12.

【0019】中空糸束11は多数のガス透過孔が形成さ
れた中空部2bを有する中空糸膜2aからなる(図1
(b))。なお、中空糸束11の代わりに、管状体、あ
るいは織物状中空糸を用いてもよい。図4に、織物状中
空糸11aを水質改善素子とする部分構成を示す。図3
および図4に示す水質改善ユニット10は、第1の実施
例の水質改善ユニット1と同様に、汚濁水域の底面に配
設されて水質改善装置を構成する。
The hollow fiber bundle 11 comprises a hollow fiber membrane 2a having a hollow portion 2b in which a large number of gas permeation holes are formed (FIG. 1).
(B)). Instead of the hollow fiber bundle 11, a tubular body or a woven hollow fiber may be used. FIG. 4 shows a partial configuration in which the woven hollow fiber 11a is used as a water quality improving element. Figure 3
The water quality improving unit 10 shown in FIG. 4 and the water quality improving unit 1 of the first embodiment are arranged on the bottom surface of the polluted water area to form a water quality improving device.

【0020】なお、継手14には、送気本管7等を介し
て送気装置9が接続され、送気装置9により中空部2b
内の圧力がバブルポイント以下となるよう送気される。
An air supply device 9 is connected to the joint 14 via the air supply main pipe 7 and the like, and the hollow part 2b is connected by the air supply device 9.
Air is delivered so that the internal pressure is below the bubble point.

【0021】次にこのような構成からなる本実施例の作
用について説明する。
Next, the operation of this embodiment having such a configuration will be described.

【0022】図3において、中空糸束11は表面積が大
きいため、DO補給や自然浄化能力の効率が高くなる。
また中空糸束11の代わりに有機材料の管状体を用いた
場合は、中空糸束11より表面積は小さくなるが、機械
的強度が上がり、より強固な水質改善ユニット10が構
成できる。
In FIG. 3, since the hollow fiber bundle 11 has a large surface area, the efficiency of DO replenishment and natural purification is high.
When a tubular body made of an organic material is used instead of the hollow fiber bundle 11, the surface area is smaller than that of the hollow fiber bundle 11, but the mechanical strength is increased and a stronger water quality improvement unit 10 can be configured.

【0023】図4において、織物状中空糸11aは中空
糸束11に用いた中空糸膜2a(図1(b)参照)を織
物状にしたものであり、中空糸膜2aの支持強度が向上
し、中空糸膜2aの全表面積を最大限に活用できる表面
積の大きい水質改善ユニット10が構成される。
In FIG. 4, a woven hollow fiber 11a is a hollow fiber membrane 2a (see FIG. 1 (b)) used for the hollow fiber bundle 11, which is woven to improve the supporting strength of the hollow fiber membrane 2a. Then, the water quality improvement unit 10 having a large surface area that can maximize the total surface area of the hollow fiber membrane 2a is configured.

【0024】本実施例における中空糸束11または織物
状中空糸11aは、汚濁水域の底面に近接して平面的に
配設される。このため底層の底面寄りの自然浄化に好適
となる。底面は自然沈降物の沈積場所となっており、有
機物が多いためDO不足が解消されると汚濁水域で最大
の自然浄化能力が発揮されることになる。
The hollow fiber bundle 11 or the woven hollow fiber 11a in this embodiment is arranged in a plane near the bottom of the polluted water area. Therefore, it is suitable for natural purification near the bottom of the bottom layer. The bottom surface is where natural sediments are deposited, and since there is a lot of organic matter, when the DO shortage is resolved, the maximum natural purification capacity will be exhibited in the polluted water area.

【0025】図3および図4に示すように、本実施例で
は水質改善ユニット10が自然沈積物で軽く覆われた状
態で使用できるため、景観を損うことなく目的が達せら
れる効果もある。
As shown in FIG. 3 and FIG. 4, in this embodiment, the water quality improving unit 10 can be used in a state where it is lightly covered with natural sediment, so that the purpose can be achieved without damaging the landscape.

【0026】なお、中空糸束11の代わりに用いる管状
体としては、有機材料のものだけでなく、セラミックス
や金属焼結などの無機材料のものを用いることができ、
この場合は、水質改善ユニット10の機械的強度が向上
する。第3の実施例 本発明の第3の実施例を図5(a)(b)により説明す
る。図5(a)(b)において、第3の実施例は、図3
および図4に示す水質改善ユニット10のいずれかある
いはそれらを多段に組合せて集積形水質改善ユニット2
0を構成したものである。すなわち、図5(a)に示す
ように集積形水質改善ユニット20は、水質改善ユニッ
ト10を平面状に多段に組合せてなり、各水質改善ユニ
ット10同志は、お互いの基材12、送気材13または
継手14のいずれかと連結されている。また図5(b)
に示すように、集積形水質改善ユニット22を、水質改
善ユニット10を複数個垂直形に連結して構成してもよ
い。なお水質改善ユニット10の連結形態は、図5
(a)(b)に示す例に限らず傾斜形に連結してもよ
い。これら集積形水質改善ユニット20,22は、第1
および第2の実施例の水質改善ユニット1及び10と同
様に底面21に配設され水質改善装置を構成する。
As the tubular body used in place of the hollow fiber bundle 11, not only an organic material but also an inorganic material such as ceramics or metal sintered can be used.
In this case, the mechanical strength of the water quality improvement unit 10 improves. Third Embodiment A third embodiment of the present invention will be described with reference to FIGS. 5A and 5B, the third embodiment is similar to FIG.
And any one of the water quality improvement units 10 shown in FIG.
0 is configured. That is, as shown in FIG. 5 (a), the integrated water quality improvement unit 20 is formed by combining the water quality improvement units 10 in a planar manner in multiple stages, and each water quality improvement unit 10 has a base material 12 and an air supply material. It is connected to either 13 or the joint 14. Also, FIG. 5 (b)
As shown in, the integrated water quality improvement unit 22 may be configured by vertically connecting a plurality of water quality improvement units 10. The connection form of the water quality improvement unit 10 is shown in FIG.
Not limited to the examples shown in (a) and (b), they may be connected in an inclined shape. These integrated type water quality improvement units 20 and 22 are
And, like the water quality improvement units 1 and 10 of the second embodiment, the water quality improvement device is arranged on the bottom surface 21.

【0027】次にこのような構成からなる本実施例の作
用について説明する。本実施例の集積形水質改善ユニッ
ト20,22は、底面より高い位置にまで達するので、
底層の下から上までの広範囲にわたって自然浄化能力が
発揮され、自然沈積物に対する耐用年数を大きくするこ
とができる。また本実施例の集積形水質改善ユニット2
0,22はより強固に構成されるため、本来の機能を長
年にわたって維持できる。さらに汚濁水域が完全閉鎖域
でない限り水域の底層にも水流があり、集積形水質改善
ユニット20,22は底面より上方に突出した形になる
ので、この汚濁水流に対する自然浄化能力も合せ持たせ
ることができる。このため集積形水質改善装置20,2
2の配設場所から下流域の水質改善にも貢献することが
できる。したがって、所定の汚濁水域の水質改善を実施
する場合、所定場所の底面や底層に水質改善装置20,
22を配設するとともに、所定の汚濁場所の上流域に集
積形水質改善装置20,22を配設することにより、よ
り効果的な水質改善がなされることになる。この場合、
汚濁水流の高さ位置や強さ、流入浮遊物の沈積物の状況
に合せたより良い設計ができる。第4の実施例 本発明の第4の実施例を図6(a)(b)により説明す
る。図6(a)に示すように、水質改善ユニット32は
中空部を有する平板状の多孔質体30と、中空部に接続
された送気管31と、多孔質体30の内面に設けられた
ガス透過孔を有する多孔質膜とで構成される。多孔質体
30は、セラミックス、焼結金属などの無機材料やゴ
ム、プラスチックスなどの有機材料でつくられ、また多
孔質膜は多孔質体30と同種のあるいは異種材料からな
り、ガス透過孔を多数有している。多孔質膜の内側は、
中空部となっているが、酸素含有気体の拡散が自由にで
きるすき間があれば中空部の形態は問わない。また多孔
質体30の外表面は、多孔質膜のガス透過孔より大きい
孔を多数有している。なお、多孔質膜のガス透過孔の大
きさは、前述の第1の実施例と同様である。また、図6
(b)に示すように、水質改善ユニット34を岩状など
のブロック状の多孔質体33で構成してもよい。また、
送気管31には、送気装置9(図2参照)が接続され、
この送気装置9によって中空部内がバブルポイント以下
の圧力となるよう送気される。
Next, the operation of this embodiment having such a configuration will be described. Since the integrated water quality improvement units 20 and 22 of this embodiment reach a position higher than the bottom surface,
The natural purification ability is exerted over a wide range from the bottom to the top of the bottom layer, and the service life to natural sediments can be increased. In addition, the integrated type water quality improvement unit 2 of this embodiment
Since 0 and 22 are more rigidly configured, their original functions can be maintained for many years. Further, unless the polluted water area is a completely closed area, there is a water flow in the bottom layer of the water area, and the integrated water quality improvement units 20 and 22 project upward from the bottom surface. You can Therefore, the integrated type water quality improvement device 20, 2
It is also possible to contribute to the improvement of water quality in the downstream area from the installation location of No. 2. Therefore, when water quality improvement in a predetermined polluted water area is carried out, the water quality improvement device 20,
By arranging 22 and arranging the integrated type water quality improving devices 20 and 22 in the upstream region of a predetermined polluted place, the water quality can be improved more effectively. in this case,
A better design can be made according to the height position and strength of the polluted water flow and the situation of the inflow floating sediment. Fourth Embodiment A fourth embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 6A, the water quality improving unit 32 includes a flat plate-shaped porous body 30 having a hollow portion, an air supply pipe 31 connected to the hollow portion, and a gas provided on the inner surface of the porous body 30. And a porous membrane having permeation holes. The porous body 30 is made of an inorganic material such as ceramics or sintered metal, or an organic material such as rubber or plastics, and the porous membrane is made of the same or different material as the porous body 30 and has gas permeation holes. I have many. The inside of the porous membrane is
Although it is a hollow portion, the shape of the hollow portion does not matter as long as there is a gap in which the oxygen-containing gas can freely diffuse. The outer surface of the porous body 30 has a large number of pores larger than the gas permeation pores of the porous membrane. The size of the gas permeation holes of the porous membrane is the same as in the first embodiment described above. In addition, FIG.
As shown in (b), the water quality improvement unit 34 may be composed of a block-shaped porous body 33 such as a rock. Also,
An air supply device 9 (see FIG. 2) is connected to the air supply pipe 31,
The air supply device 9 supplies air so that the inside of the hollow portion has a pressure below the bubble point.

【0028】本実施例による水質改善ユニット32およ
び34は、自然の岩石状に製作でき、これらが汚濁水域
の底面に配設されても、不自然さがなく景観上の利点が
ある。なお、多孔質膜は多孔質体30,33の外面また
は内面のいずれに設けてもよい。第5の実施例 本発明の第5の実施例を図7(a)(b)および図8
(a)(b)により説明する。図7(a)(b)に示す
ように、水質改善ユニット40は多数のガス透過孔を有
する水質改善素子としての中空状の軟質多孔質膜41
と、この多孔質膜41の両端末に固着された基材42
と、複数の多孔質膜41の基材42同志を連結するため
の継材43と、遠端の多孔質膜41の端末基材42に取
付けられた封止材44とにより長尺状に構成される。多
孔質膜41のガス透過孔は、第1の実施例のものと同様
であり、多孔質膜41は図7(a)に示すように管状体
に形成されている。
The water quality improvement units 32 and 34 according to the present embodiment can be manufactured in the shape of natural rocks, and even if they are arranged on the bottom surface of the polluted water area, there is no unnaturalness and there is a landscape advantage. The porous film may be provided on either the outer surface or the inner surface of the porous bodies 30, 33. Fifth Embodiment FIG. 7 (a) (b) and FIG. 8 show a fifth embodiment of the present invention.
This will be described with reference to (a) and (b). As shown in FIGS. 7A and 7B, the water quality improving unit 40 has a hollow soft porous membrane 41 as a water quality improving element having a large number of gas permeation holes.
And a base material 42 fixed to both ends of the porous film 41
And a sealing member 44 attached to the terminal base material 42 of the porous membrane 41 at the far end, and a joint material 43 for connecting the base materials 42 of the plurality of porous membranes 41 to each other. To be done. The gas permeation holes of the porous membrane 41 are similar to those of the first embodiment, and the porous membrane 41 is formed in a tubular body as shown in FIG. 7 (a).

【0029】また、図7(b)に示すように管状体のも
のに限らず、水質改善素子として中空糸束4を用いても
よい。この場合、基材46と中空糸束45は、基材46
の固着部47で一体化される。図7(b)に示すように
水質改善素子が中空糸束45からなり浮遊性を有する場
合は、基材46、継材43、または封止材44として沈
む材料を使用し、水質改善ユニット40全体を水中に沈
下するようにする。継材43や封止材44は通常、継手
と呼ばれる汎用のものが使用できる。
Further, as shown in FIG. 7B, the hollow fiber bundle 4 is not limited to the tubular body, and the hollow fiber bundle 4 may be used as the water quality improving element. In this case, the base material 46 and the hollow fiber bundle 45 are
They are integrated by the fixing portion 47 of. As shown in FIG. 7B, when the water quality improving element is composed of the hollow fiber bundle 45 and has a floating property, a sinking material is used as the base material 46, the joint material 43, or the sealing material 44, and the water quality improving unit 40 is used. Make the whole submerged. As the joint material 43 and the sealing material 44, a general-purpose material called a joint can be usually used.

【0030】図8に示すように水質改善ユニット40
は、汚濁水域の底面上に自在に配設され、封止材44の
付いていない方の端末基材42、46は保守用の開閉弁
48を介して送気本管49に配管接続される。送気本管
49には、多孔質膜または中空糸束の中空部内がバブル
点以下の圧力となるよう酸素含有気体を送気する送気装
置9(図2参照)に接続されている。
As shown in FIG. 8, the water quality improvement unit 40
Is freely arranged on the bottom surface of the polluted water area, and the terminal base materials 42 and 46 without the sealing material 44 are connected to the air supply main pipe 49 through the on-off valve 48 for maintenance. . The air supply main tube 49 is connected to an air supply device 9 (see FIG. 2) that supplies the oxygen-containing gas so that the inside of the hollow portion of the porous membrane or the hollow fiber bundle has a pressure below the bubble point.

【0031】本実施例によれば、水質改善ユニット40
が軟質の多孔質膜41または中空糸膜45から成る一本
の長尺形状となるため、汚濁水域底面の起伏や障害物の
状況に合せて自在にこれを配設することができる。また
水質改善程度に合せて、水質改善ユニット40の長さを
調整することができ、さらに引き上げ保守時にロープを
たぐるように容易に水質改善ユニットを引き上げること
ができる。第6の実施例 本発明の第6の実施例は、上記各実施例における水質改
善ユニット1,10,20,22,32,34,40あ
るいは送気本管7,49の端末部に設けた封止材8,4
4の代わりに、キャピラリィあるいは微量流量弁を取付
けたものであり、他は上記各実施例と同様である。
According to this embodiment, the water quality improvement unit 40
Has a single elongated shape composed of the soft porous membrane 41 or the hollow fiber membrane 45, so that it can be freely arranged according to the undulations of the bottom surface of the polluted water area and the conditions of obstacles. Further, the length of the water quality improvement unit 40 can be adjusted according to the degree of water quality improvement, and the water quality improvement unit can be easily pulled up so that the rope can be strung during the pulling up maintenance. Sixth Embodiment A sixth embodiment of the present invention is provided in the water quality improvement unit 1, 10, 20, 22, 32, 34, 40 or the terminal portion of the air supply main 7, 49 in each of the above embodiments. Sealing material 8, 4
In place of 4, a capillary or a minute flow rate valve is attached, and the other parts are the same as those in the above-mentioned respective embodiments.

【0032】本実施例において、酸素含有気体圧力は上
記各実施例同様に、水質改善ユニット1,10,20,
22,32,34,40内においてバブルボイント以下
の圧力を維持する。封止材8,44の代わりに取付られ
たキャピラリィあるいは微量流量弁は、この圧力を維持
した状態で酸素含有気体を設定微少流量で水中に発泡
(バブル)放出する。
In this embodiment, the pressure of oxygen-containing gas is the same as that of the above-mentioned embodiments in that the water quality improving units 1, 10, 20,
The pressure below the bubble point is maintained in 22, 32, 34 and 40. Capillaries or minute flow valves attached instead of the sealing materials 8 and 44 discharge bubbles of oxygen-containing gas into water at a set minute flow rate while maintaining this pressure.

【0033】封止材8,44が取付けられた上記各実施
例では、送気本管7,49から供給される酸素含有気体
は水質改善ユニット1,10,20,22,32,3
4,40のガス透過孔からのみバブルレスで水中に溶解
する。ところで酸素含有気体中の酸素の溶解量は、一般
に他の共存気体の溶解量より多くなるため、送気本管
7,49あるいはこれに配管接続される一連の水質改善
ユニット1,10,20,22,32,34,40の送
気距離が長くなると、酸素含有気体全体の移動をともな
う酸素の気相中拡散補給が不十分となり、送気装置から
離れた遠方部での酸素含有気体中の酸素濃度が低下し、
DO補給能力が低下することがある。このような場合、
キャピラリィや微量流量弁を取付けることにより、送気
距離の遠方部まで酸素含有気体全体が十分に移動できる
ようになり、DO補給能力の低下を防ぐことができる。
キャピラリィなどの取付け位置は送気距離の最遠部のみ
に限定されず、必要に応じて送気距離の途中に設けても
よい。
In the above-mentioned respective embodiments in which the sealing materials 8 and 44 are attached, the oxygen-containing gas supplied from the air supply mains 7 and 49 is the water quality improving unit 1, 10, 20, 22, 32, 3.
It dissolves in water without bubbles only from 4,40 gas permeation holes. By the way, since the dissolved amount of oxygen in the oxygen-containing gas is generally larger than the dissolved amount of other coexisting gases, the main air supply pipes 7, 49 or a series of water quality improvement units 1, 10, 20, When the air feeding distance of 22, 32, 34, 40 becomes long, the diffusion and replenishment of oxygen in the gas phase accompanied by the movement of the entire oxygen containing gas becomes insufficient, and the oxygen containing gas in the far portion away from the air feeding device becomes Oxygen concentration decreases,
The DO supply capacity may decrease. In such cases,
By attaching a capillary or a minute flow rate valve, the entire oxygen-containing gas can be sufficiently moved to a distant part of the air feeding distance, and the DO replenishing ability can be prevented from being lowered.
The mounting position of the capillary or the like is not limited to the farthest portion of the air supply distance, and may be provided in the middle of the air supply distance as necessary.

【0034】キャピラリィなどによる酸素含有気体の発
泡により、酸素含有気体の消費量は少し増大するが、従
来の散気板などの消費量より格段に小さくすることがで
きる。
Although the consumption of the oxygen-containing gas slightly increases due to the bubbling of the oxygen-containing gas by the capillaries or the like, it can be made much smaller than that of the conventional diffuser plate.

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば、
汚濁水域の根源となっている水中底部に酸素含有気体中
の酸素をむだなく溶解させることができるので、底部の
DO不足をバブルレスを基本とする水質改善装置によっ
て省エネルギー的に解消することができる。また、この
水質改善装置を基地とする底層棲息生物による自然浄化
能力により、汚濁水域の水質改善がなされる。さらに水
質改善装置は汚濁水域の底部に設置されるので、通常の
水処理装置のように、新たに大きな陸地上の設置スペー
スを必要としない。
As described above, according to the present invention,
Since oxygen in the oxygen-containing gas can be dissolved without difficulty in the bottom of the underwater, which is the source of the polluted water area, the DO deficiency at the bottom can be eliminated in an energy-saving manner by the bubbleless water quality improvement device. Further, the water quality of the polluted water area is improved by the natural purification ability of the bottom-dwelling organisms based on this water quality improvement device. Further, since the water quality improvement device is installed at the bottom of the polluted water area, it does not require a new large installation space on land unlike a normal water treatment device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による水質改善装置の第1の実施例を示
す構成図。
FIG. 1 is a configuration diagram showing a first embodiment of a water quality improving device according to the present invention.

【図2】本発明による水質改善装置の第1の実施例の平
面構成図。
FIG. 2 is a plan configuration diagram of a first embodiment of a water quality improving device according to the present invention.

【図3】本発明による水質改善装置の第2の実施例を示
す構成図。
FIG. 3 is a configuration diagram showing a second embodiment of the water quality improving device according to the present invention.

【図4】図3に示す水質改善装置の変形例を示す図。FIG. 4 is a diagram showing a modification of the water quality improving device shown in FIG.

【図5】本発明による水質改善装置の第3の実施例を示
す集積形水質改善装置の概念図。
FIG. 5 is a conceptual diagram of an integrated water quality improving device showing a third embodiment of the water quality improving device according to the present invention.

【図6】本発明による水質改善装置の第4の実施例を示
す構成図。
FIG. 6 is a configuration diagram showing a fourth embodiment of the water quality improving device according to the present invention.

【図7】本発明による水質改善装置の第5の実施例を示
す構成図。
FIG. 7 is a configuration diagram showing a fifth embodiment of the water quality improving device according to the present invention.

【図8】図7に示す水質改善装置の配置図。FIG. 8 is a layout view of the water quality improvement device shown in FIG. 7.

【符号の説明】[Explanation of symbols]

1,10,32,34,40 水質改善ユニット 2,11,45 水質改善素子 3,12,42,46 基材 4,13,31 送気管 5,14 継手 30,33 多孔質体 41 多孔質膜 1,10,32,34,40 Water quality improvement unit 2,11,45 Water quality improvement element 3,12,42,46 Base material 4,13,31 Air supply pipe 5,14 Joint 30,33 Porous body 41 Porous membrane

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】中空部を有し、この中空部と外方とを連通
する多数のガス透過孔が形成された多孔質膜からなる水
質改善素子と、この水質改善素子を保持するとともに、
水質改善素子の中空部と連通する連通路を有する基材
と、この基材に接続された送気管とを有し、水中底部に
設置される水質改善ユニットと、 前記送気管に接続され、前記水質改善素子の中空部内の
圧力がバブル点以下となるよう酸素含有気体を送気する
送気装置と、 を備えたことを特徴とする水質改善装置。
1. A water quality improving element comprising a porous membrane having a hollow portion and having a large number of gas permeation holes communicating with the outside and the hollow portion, and holding the water quality improving element,
A base material having a communication passage communicating with the hollow portion of the water quality improving element, and an air supply pipe connected to this base material, a water quality improving unit installed at the bottom of the water, and connected to the air supply pipe, A water quality improving device, comprising: an air supply device that supplies an oxygen-containing gas so that the pressure inside the hollow portion of the water quality improving element becomes equal to or lower than the bubble point.
【請求項2】多孔質膜は浮遊性の中空糸膜であることを
特徴とする請求項1記載の水質改善装置。
2. The water quality improving device according to claim 1, wherein the porous membrane is a floating hollow fiber membrane.
【請求項3】基材および送気管を平面的に組立てるとと
もに、水質改善素子を基材間に掛け渡し、水質改善ユニ
ットを平面的に組立てることを特徴とする請求項1記載
の水質改善装置。
3. The water quality improving apparatus according to claim 1, wherein the base material and the air supply pipe are assembled in a planar manner, and the water quality improving element is laid between the base materials to assemble the water quality improving unit in a planar manner.
【請求項4】水質改善素子は織物状に配設されているこ
とを特徴とする請求項3記載の水質改善装置。
4. The water quality improving device according to claim 3, wherein the water quality improving element is arranged in a woven shape.
【請求項5】水質改善ユニットを多段に設けたことを特
徴とする請求項3記載の水質改善装置。
5. The water quality improving device according to claim 3, wherein the water quality improving units are provided in multiple stages.
【請求項6】中空部を有する多孔質体と、この多孔質体
の内面または外面に設けられた多孔質膜と、前記中空部
に接続された送気管とを有し、水中底部に配置される水
質改善ユニットと、 前記送気管に接続され、前記多孔質体の中空部内の圧力
がバブル点以下となるよう酸素含有気体を送気する送気
装置と、 を備えたことを特徴とする水質改善装置。
6. A porous body having a hollow portion, a porous membrane provided on the inner surface or the outer surface of the porous body, and an air supply pipe connected to the hollow portion, and arranged at the bottom of the water. A water quality improving unit, and an air supply device that is connected to the air supply pipe and that supplies an oxygen-containing gas so that the pressure in the hollow portion of the porous body is equal to or lower than the bubble point. Improvement device.
【請求項7】中空部を有し、この中空部と外方とを連通
する多数のガス透過孔が形成された多孔質体からなる複
数の水質改善素子と、この水質改善素子をその両端部で
保持するとともに、水質改善素子の中空部と連通する連
通路を有する基材と、前記複数の水質改善素子の基材同
志を連結する継材と、前記基材に接続された送気管とを
有し、水中底部に配置される水質改善ユニットと、 前記送気管に接続され、前記水質改善素子の中空部内の
圧力がバブル点以下となるよう酸素含有気体を送気する
送気装置と、 を備えたことを特徴とする水質改善装置。
7. A plurality of water quality improving elements comprising a porous body having a hollow portion and having a large number of gas permeation holes communicating the hollow portion and the outside, and the water quality improving element having both end portions. While holding with, a base material having a communication path communicating with the hollow portion of the water quality improving element, a joint material connecting the base materials of the plurality of water quality improving elements, and an air supply pipe connected to the base material. A water quality improving unit that is disposed at the bottom of the water, and an air feeding device that is connected to the air feeding pipe and that feeds the oxygen-containing gas so that the pressure inside the hollow portion of the water quality improving element is below the bubble point. A water quality improvement device characterized by being provided.
JP09185094A 1994-04-28 1994-04-28 Water quality improvement device Expired - Fee Related JP3388017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09185094A JP3388017B2 (en) 1994-04-28 1994-04-28 Water quality improvement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09185094A JP3388017B2 (en) 1994-04-28 1994-04-28 Water quality improvement device

Publications (2)

Publication Number Publication Date
JPH07290084A true JPH07290084A (en) 1995-11-07
JP3388017B2 JP3388017B2 (en) 2003-03-17

Family

ID=14038055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09185094A Expired - Fee Related JP3388017B2 (en) 1994-04-28 1994-04-28 Water quality improvement device

Country Status (1)

Country Link
JP (1) JP3388017B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085787A (en) * 1996-09-10 1998-04-07 Suido Kiko Kaisha Ltd Method and apparatus for nitrification-denitrification treatment.
JP2008043882A (en) * 2006-08-17 2008-02-28 Hiroshima Pref Gov Method and apparatus for improving poorly oxygenated water quality environment
JP2008253924A (en) * 2007-04-05 2008-10-23 Toshiba Corp Microbubble generation method and microbubble generation apparatus
WO2009014003A1 (en) * 2007-07-24 2009-01-29 Mitsubishi Heavy Industries, Ltd. Aeration apparatus
KR101026991B1 (en) * 2010-12-20 2011-04-11 한국기계연구원 Device for measuring water quality using hollow fiber and method using the same
JP2012166196A (en) * 2005-10-26 2012-09-06 Parkson Corp Flexible aeration panel and methods of use
JP2013522017A (en) * 2010-03-17 2013-06-13 インヴェント ウムヴェルト ウント フェアファーレンシュテッヒニク アーゲー Device that vents the suspension retained in the treatment tank

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085787A (en) * 1996-09-10 1998-04-07 Suido Kiko Kaisha Ltd Method and apparatus for nitrification-denitrification treatment.
JP2012166196A (en) * 2005-10-26 2012-09-06 Parkson Corp Flexible aeration panel and methods of use
JP2008043882A (en) * 2006-08-17 2008-02-28 Hiroshima Pref Gov Method and apparatus for improving poorly oxygenated water quality environment
JP2008253924A (en) * 2007-04-05 2008-10-23 Toshiba Corp Microbubble generation method and microbubble generation apparatus
WO2009014003A1 (en) * 2007-07-24 2009-01-29 Mitsubishi Heavy Industries, Ltd. Aeration apparatus
JP2013522017A (en) * 2010-03-17 2013-06-13 インヴェント ウムヴェルト ウント フェアファーレンシュテッヒニク アーゲー Device that vents the suspension retained in the treatment tank
KR101026991B1 (en) * 2010-12-20 2011-04-11 한국기계연구원 Device for measuring water quality using hollow fiber and method using the same

Also Published As

Publication number Publication date
JP3388017B2 (en) 2003-03-17

Similar Documents

Publication Publication Date Title
ES2827773T3 (en) Membrane-supported biofilm apparatus and procedure
WO2009141463A1 (en) Floating cell and island with a floating macrophyte filter
JP2011189254A (en) Water purifying method, and water purifier
CN1789177A (en) Stereo ecological floatation bed and water purification method thereof
JP3388017B2 (en) Water quality improvement device
CN100554182C (en) A kind of external membrane bioreactor system of sewage disposal and method of disposing of sewage thereof of being used for
CN111718004A (en) Multi-functional double-deck soft wall that encloses suitable for submerged plant plants
CN206580629U (en) A kind of river water body purifies gallery
CN209872517U (en) Water body in-situ remediation integrated device
JPH01130796A (en) Aeration device for deep layer of storage pond or the like
JP4817311B2 (en) Improvement treatment method and improvement treatment apparatus for anoxic water quality environment
JP2005270912A (en) Water cleaning apparatus
JP2000334488A (en) Device and method for water purification
JPH01104396A (en) Depth aeration device for water storage pond or the like
CN211005024U (en) Water body purifying equipment
CN104402112A (en) Material-filled cylinder for water in-situ purification and construction method thereof
CN209778459U (en) Oxygenation type bionic microorganism carrier
JP2003112191A (en) Water quality improving system
CN111847763A (en) Integrated purification ecological floating island
CN212559649U (en) Multi-functional double-deck soft wall that encloses suitable for submerged plant plants
CN219174322U (en) Sewage purification device and sewage treatment system
CN210736307U (en) MABR membrane module and MABR reactor
CN218951143U (en) Immersed composite purifying device for river treatment
CN219363398U (en) Floating wetland device
CN218202388U (en) Exhaust port in-situ composite technology purification system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees