JPH07288134A - Operation method for solid polymer electrolyte fuel cell - Google Patents

Operation method for solid polymer electrolyte fuel cell

Info

Publication number
JPH07288134A
JPH07288134A JP6080025A JP8002594A JPH07288134A JP H07288134 A JPH07288134 A JP H07288134A JP 6080025 A JP6080025 A JP 6080025A JP 8002594 A JP8002594 A JP 8002594A JP H07288134 A JPH07288134 A JP H07288134A
Authority
JP
Japan
Prior art keywords
temperature
fuel cell
polymer electrolyte
solid polymer
electrolyte fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6080025A
Other languages
Japanese (ja)
Inventor
Hiroshi Kusunoki
啓 楠
Saneji Otsuki
実治 大槻
Shinichi Maruyama
晋一 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Fuji Electric Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP6080025A priority Critical patent/JPH07288134A/en
Publication of JPH07288134A publication Critical patent/JPH07288134A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To easily, stably start operation by maintaining the temperature of a humidifier in specified temperature difference based on the operation temperature of a solid polymer electrolyte fuel cell. CONSTITUTION:Temperature T1 of a fuel gas humidifier 12 is maintained in specified temperature difference to temperature T3 of a gas separator 17 of a cell through a temperature controller 11. Temperature T2 of an air humidifier 12A is maintained in specified temperature difference to temperature T4 of the gas separator 17 of the cell through the temperature controller 11. Vapor pressure for preventing drying of moisture from a solid polymer electrolyte is maintained, and excess drying or wetting of the solid polymer electrolyte is prevented, and movement from starting to steady-state operation is smoothly progressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は固体高分子電解質型燃
料電池の運転方法に係り、特に加湿器の温度制御方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a solid polymer electrolyte fuel cell, and more particularly to a method for controlling the temperature of a humidifier.

【0002】[0002]

【従来の技術】固体高分子電解質型燃料電池は固体高分
子電解質膜の二つの主面にそれぞれ電極であるアノード
とカソードを配して形成される。アノードまたはカソー
ドの各電極は電極基材上に電極触媒を配している。固体
高分子電解質膜はスルホン酸基を持つポリスチレン系の
陽イオン交換膜をカチオン導電性膜として使用したも
の、フロロカーボンスルホン酸とポリビニリデンフロラ
イドの混合膜、あるいはフロロカーボンマトリックスに
トリフロロエチレンをグラフト化したものなどが知られ
ているが最近ではパーフロロカーボンスルホン酸膜を用
いて燃料電池の長寿命化を図ったものが知られるに至っ
た。
2. Description of the Related Art A solid polymer electrolyte fuel cell is formed by disposing an anode and a cathode, which are electrodes, on two main surfaces of a solid polymer electrolyte membrane. Each electrode of the anode or the cathode has an electrode catalyst arranged on an electrode substrate. The solid polymer electrolyte membrane uses polystyrene type cation exchange membrane with sulfonic acid group as cation conductive membrane, mixed membrane of fluorocarbon sulfonic acid and polyvinylidene fluoride, or trifluoroethylene grafted on fluorocarbon matrix. However, recently, a perfluorocarbon sulfonic acid membrane has been used to extend the life of the fuel cell.

【0003】固体高分子電解質膜は分子中にプロトン
(水素イオン)交換基を有し、飽和に含水させることに
より常温で20Ω・cm以下の比抵抗を示しプロトン導
電性電解質として機能する。飽和含水量は温度によって
可逆的に変化する。電極基材は多孔質体で燃料電池の反
応ガス供給手段または反応ガス排出手段および集電体と
して機能する。アノード(燃料極)またはカソード(空
気極)の電極においては三相界面が形成され電気化学反
応が起こる。
The solid polymer electrolyte membrane has a proton (hydrogen ion) exchange group in the molecule, and when it is saturated with water, it exhibits a specific resistance of 20 Ω · cm or less at room temperature and functions as a proton conductive electrolyte. The saturated water content changes reversibly with temperature. The electrode base material is a porous body and functions as a reaction gas supply means or a reaction gas discharge means and a current collector of the fuel cell. At the anode (fuel electrode) or cathode (air electrode) electrode, a three-phase interface is formed and an electrochemical reaction occurs.

【0004】アノードでは(1)式の反応が起こる。 H2 =2H+ +2e (1) カソードでは(2)式の反応が起こる。 1/2O2 +2H+ +2e=H2 O (2) つまりアノードにおいては系の外部より供給された水素
がプロトンと電子を生成する。生成したプロトンはイオ
ン交換膜中をカソードに向かって移動し電子は外部回路
を通ってカソードに移動する。一方カソードにおいては
系の外部より供給された酸素とイオン交換膜中をアノー
ドより移動してきたプロトンと外部回路より移動してき
た電子が反応し、水を生成する。
At the anode, the reaction of the formula (1) occurs. H 2 = 2H + + 2e (1) At the cathode, the reaction of the formula (2) occurs. 1 / 2O 2 + 2H + + 2e = H 2 O (2) That is, at the anode, hydrogen supplied from the outside of the system produces protons and electrons. The generated protons move toward the cathode in the ion exchange membrane, and the electrons move to the cathode through an external circuit. On the other hand, in the cathode, oxygen supplied from the outside of the system reacts with protons moving from the anode in the ion exchange membrane and electrons moving from the external circuit to generate water.

【0005】図5は固体高分子電解質型燃料電池を示す
断面図である。電極基材の上に電極触媒層が積層されて
電極2または3が構成される。電極2または3は固体高
分子電解質膜(固体高分子膜,高分子膜ともいう)1の
両主面にホットプレスにより密着して配置される。電極
の配置された固体高分子電解質膜1は集電子4,5を介
してガスセパレータ8,9により挟持される。集電子
4,5を介してガスセパレータ8,9は図示しないが冷
却水を通流させるための冷却水通路が設けられる。集電
子4の内部には燃料ガスがまた集電子5の内部には酸化
剤ガスである空気が流される。ガスセパレータ8,9は
酸化剤ガスと燃料ガスを相互に分離する。
FIG. 5 is a sectional view showing a solid polymer electrolyte fuel cell. The electrode 2 or 3 is constructed by laminating the electrode catalyst layer on the electrode base material. The electrodes 2 or 3 are arranged in close contact with both main surfaces of a solid polymer electrolyte membrane (also referred to as a solid polymer membrane or polymer membrane) 1 by hot pressing. The solid polymer electrolyte membrane 1 on which the electrodes are arranged is sandwiched by the gas separators 8 and 9 via the current collectors 4 and 5. Although not shown, the gas separators 8 and 9 are provided with cooling water passages for passing cooling water through the current collectors 4 and 5. Fuel gas is flown inside the current collector 4, and air that is an oxidant gas is flowed inside the current collector 5. The gas separators 8 and 9 separate the oxidant gas and the fuel gas from each other.

【0006】このような固体高分子電解質型燃料電池は
固体高分子電解質のイオン伝導性が高いために従来のリ
ン酸型の燃料電池に比し高い出力密度の電池となる。ま
たこの燃料電池はその定常運転温度が一般的に60ない
し100℃であるために室温付近におけるイオン伝導率
が他の燃料電池程低くなく室温からも負荷運転できる特
徴を持っている。
Such a solid polymer electrolyte fuel cell has a higher power density than a conventional phosphoric acid fuel cell because the solid polymer electrolyte has a high ionic conductivity. Further, since the steady operating temperature of this fuel cell is generally 60 to 100 ° C., the ionic conductivity near room temperature is not so low as that of other fuel cells, and the fuel cell can be operated under load from room temperature.

【0007】固体高分子電解質膜1はその内部に水を包
含しており、電解質として機能するばかりでなく燃料ガ
スと酸化剤ガスが相互に混合するクロスリークを防止す
る。しかしながら上述のような従来の固体高分子電解質
型燃料電池にあっては固体高分子電解質膜の伝導性は膜
の湿潤性に大きく左右されるために乾燥空気にさらされ
ると膜が乾燥して導電性が悪くなる。即ちこの燃料電池
では乾燥した反応ガスが供給されると、高分子膜の乾燥
により、イオン導電率の低下による内部抵抗の増大によ
り、燃料電池の特性が低下する。
Since the solid polymer electrolyte membrane 1 contains water inside, it not only functions as an electrolyte, but also prevents cross-leakage in which fuel gas and oxidant gas are mixed with each other. However, in the conventional solid polymer electrolyte fuel cell as described above, the conductivity of the solid polymer electrolyte membrane is greatly influenced by the wettability of the membrane, and therefore the membrane will dry and become conductive when exposed to dry air. The sex becomes worse. That is, in this fuel cell, when a dry reaction gas is supplied, the characteristics of the fuel cell deteriorate due to the drying of the polymer film and the increase in internal resistance due to the decrease in ionic conductivity.

【0008】この乾燥状態が継続されると、高分子膜の
体積減少により、高分子膜と電極,電極と集電子間の電
気的接触がわるくなり、燃料電池の特性が低下する。従
って固体高分子電解質型燃料電池においては反応ガスを
加湿して供給するシステムを採用している。図6は従来
の加湿器を含む固体高分子電解質型燃料電池を示す配置
図である。この加湿器は水中に反応ガスを通過して加湿
するものである。加湿器の温度は一定の温度に制御され
ており所定の飽和蒸気圧の反応ガスが燃料電池のセルに
供給される。
If the dry state is continued, the volume of the polymer film is reduced, so that the electrical contact between the polymer film and the electrode and between the electrode and the current collector becomes poor, and the characteristics of the fuel cell deteriorate. Therefore, the solid polymer electrolyte fuel cell employs a system for humidifying and supplying the reaction gas. FIG. 6 is a layout view showing a solid polymer electrolyte fuel cell including a conventional humidifier. This humidifier humidifies by passing a reaction gas into water. The temperature of the humidifier is controlled to a constant temperature, and the reaction gas having a predetermined saturated vapor pressure is supplied to the cells of the fuel cell.

【0009】図7は従来の散水型の加湿器を示す配置図
である。加温タンク14に収納された補給水はポンプ1
5により汲み上げられて加湿器16の上部から散水され
る。反応ガスは所定の水蒸気圧に加湿されて燃料電池に
供給される。加湿量の制御には従来加湿器の温度を所定
の温度に設定することが行われた。
FIG. 7 is a layout showing a conventional water spray type humidifier. Make-up water stored in the heating tank 14 is pump 1
5 is pumped up and sprinkled with water from the upper part of the humidifier 16. The reaction gas is humidified to a predetermined water vapor pressure and supplied to the fuel cell. For controlling the amount of humidification, conventionally, the temperature of the humidifier has been set to a predetermined temperature.

【0010】[0010]

【発明が解決しようとする課題】しかしながらこのよう
な従来の加湿方法では例えば水温を70℃に制御した場
合は運転を室温から上昇させると加湿量が高すぎるため
にセル内部で水蒸気が凝縮し、電極中の触媒が水で濡れ
て電極反応が円滑に進行しなくなる。また室温からの運
転に備えて、加湿器の設定温度を低く設定すると室温付
近では問題はないがセルの温度が高くなると反応ガスの
加湿量が低く結果として乾燥したガスをセルに供給する
こととなり、燃料電池の良好な始動ができないという問
題があった。加湿器の設定温度をセル温度に対応して変
化させる方法を採用したがセル運転が大変煩雑であっ
た。
However, in such a conventional humidifying method, for example, when the water temperature is controlled at 70 ° C., when the operation is raised from room temperature, the humidification amount is too high, so that the water vapor is condensed inside the cell, The catalyst in the electrode gets wet with water and the electrode reaction does not proceed smoothly. In addition, if the set temperature of the humidifier is set low to prepare for operation from room temperature, there will be no problem near room temperature, but if the temperature of the cell rises, the humidification amount of the reaction gas will be low and as a result dry gas will be supplied to the cell. However, there is a problem that the fuel cell cannot be started properly. The method of changing the set temperature of the humidifier according to the cell temperature was adopted, but the cell operation was very complicated.

【0011】この発明は上述の点に鑑みてなされ、その
目的は固体高分子電解質型燃料電池の運転における加湿
器の温度制御方法を改良して容易且つ安定した始動が可
能な固体高分子電解質型燃料電池の運転方法を提供する
ことにある。
The present invention has been made in view of the above points, and an object thereof is to improve the temperature control method of the humidifier in the operation of the solid polymer electrolyte fuel cell, thereby making it possible to start easily and stably. It is to provide a method of operating a fuel cell.

【0012】[0012]

【課題を解決するための手段】上述の目的はこの発明に
よれば固体高分子電解質体と、電極と、ガスセパレータ
を有する固体高分子電解質型燃料電池に加湿器を介して
加湿された燃料ガスと酸化剤ガスをそれぞれ供給する固
体高分子電解質型燃料電池の運転方法において、加湿器
の温度を固体高分子電解質型燃料電池の運転温度を基準
として所定の温度差に維持するとすることにより達成さ
れる。
According to the present invention, the above object is to provide a solid polymer electrolyte fuel cell having a solid polymer electrolyte body, an electrode and a gas separator, the fuel gas being humidified through a humidifier. In the method of operating a solid polymer electrolyte fuel cell, which supplies an oxidizer gas and an oxidant gas, respectively, it is achieved by maintaining the temperature of the humidifier at a predetermined temperature difference based on the operating temperature of the solid polymer electrolyte fuel cell. It

【0013】この際に固体高分子電解質型燃料電池の運
転温度は固体高分子電解質型燃料電池の運転温度は固体
高分子電解質型燃料電池のセル温度であるとすること,
固体高分子電解質型燃料電池の燃料排ガスの温度である
とすること,固体高分子電解質型燃料電池の酸化剤排ガ
スの温度であるとすることまたは固体高分子電解質型燃
料電池の冷却水出口温度であるとすることが有効であ
る。
At this time, the operating temperature of the solid polymer electrolyte fuel cell is assumed to be the cell temperature of the solid polymer electrolyte fuel cell,
It shall be the temperature of the fuel exhaust gas of the solid polymer electrolyte fuel cell, the temperature of the oxidant exhaust gas of the solid polymer electrolyte fuel cell, or the cooling water outlet temperature of the solid polymer electrolyte fuel cell. It is effective to have it.

【0014】[0014]

【作用】加湿器の温度を固体高分子電解質型燃料電池の
運転温度を基準として所定の温度差に維持すると固体高
分子電解質からの水分の乾燥を防止するに必要な蒸気圧
が常時維持され固体高分子電解質膜の過度の乾燥や濡れ
が防止され燃料電池の始動から定常運転への移行が滑ら
かに進行する。
[Operation] When the temperature of the humidifier is maintained at a predetermined temperature difference based on the operating temperature of the solid polymer electrolyte fuel cell, the vapor pressure required to prevent the water from drying out from the solid polymer electrolyte is constantly maintained. Excessive drying and wetting of the polymer electrolyte membrane is prevented, and the transition from the start of the fuel cell to the steady operation proceeds smoothly.

【0015】[0015]

【実施例】次にこの発明の実施例を図面に基いて説明す
る。 実施例1 図1はこの発明の実施例に係る固体高分子電解質型燃料
電池システムを示す構成図である。
Embodiments of the present invention will now be described with reference to the drawings. Example 1 FIG. 1 is a configuration diagram showing a solid polymer electrolyte fuel cell system according to an example of the present invention.

【0016】燃料ガスの加湿器12の温度T1 は温度調
節器11を介してセルのガスセパレータ17の温度T3
に対して所定の温度差に維持される。所定の温度差を△
TとするとT1 =T3 +△T1 の関係にある。ここで△
1 は0ないし+10℃の範囲内に設定される。セル温
度としては上記のガスセパレータの他、集電子を用いる
ことができる。
The temperature T 1 of the humidifier 12 for the fuel gas is adjusted to the temperature T 3 of the gas separator 17 of the cell via the temperature controller 11.
Is maintained at a predetermined temperature difference. The specified temperature difference is △
Letting T be T 1 = T 3 + ΔT 1 . Where △
T 1 is set within the range of 0 to + 10 ° C. As the cell temperature, in addition to the above gas separator, a current collector can be used.

【0017】アノード(燃料極)ではセル温度により電
解質内の水が蒸発するほか前記(1)式で発生したプロ
トンH+ がカソード(空気極)に向かって拡散する際に
水分子を伴って移動するためにアノード近傍では水分が
不足するから加湿器の温度T 1 はセルのガスセパレータ
温度T3 よりも高くする。温度調節器はヒータをオンオ
フする。ヒータをオフする場合は燃料ガスが加湿器内で
蒸発する際に蒸発潜熱を奪い加湿器の温度を下げる。冷
却水を導入すればさらに敏速な温度制御ができる。通常
のセルは温度変化は緩やかであるからヒータだけの制御
で充分である。
At the anode (fuel electrode), depending on the cell temperature, electricity is generated.
In addition to evaporating water in the denaturation, the pro generated in the above formula (1)
Ton H+Is diffused toward the cathode (air electrode)
Since water moves with water molecules, water near the anode
Humidifier temperature T 1Is the cell gas separator
Temperature T3Higher than. The temperature controller turns on the heater.
I will When turning off the heater, fuel gas is
When evaporating, the latent heat of evaporation is removed to lower the temperature of the humidifier. cold
Introducing effluent allows more rapid temperature control. Normal
In this cell, the temperature change is gradual, so only the heater controls
Is enough.

【0018】空気の加湿器12Aの温度T2 は温度調節
器11を介してセルのガスセパレータ17の温度T4
対して所定の温度差に維持される。所定の温度差を△T
とするとT2 =T4 +△T2 の関係にある。ここで△T
2 は0ないし−10℃の範囲内に設定される。カソード
ではセル温度により電解質の水分が蒸発するがアノード
より水分子を伴ったプロトンH+ が拡散してくるので蒸
発に伴う水分の不足が補償される。従ってカソードにお
ける水供給はアノードの場合よりも緩やかでよい。加湿
器の温度T2 がセルのガスセパレータ温度T4 よりも低
温度に設定される所以である。
The temperature T 2 of the humidifier 12A for air is maintained at a predetermined temperature difference from the temperature T 4 of the gas separator 17 of the cell via the temperature controller 11. The predetermined temperature difference is ΔT
Then, there is a relation of T 2 = T 4 + ΔT 2 . Where ΔT
2 is set within the range of 0 to -10 ° C. At the cathode, the water content of the electrolyte evaporates depending on the cell temperature, but since the protons H + accompanied by water molecules diffuse from the anode, the water content shortage due to the evaporation is compensated. Therefore, the water supply at the cathode may be slower than at the anode. This is the reason why the humidifier temperature T 2 is set lower than the cell gas separator temperature T 4 .

【0019】図4はこの発明の実施例に係る固体高分子
電解質型燃料電池システムにつき温度差検出方法を示す
接続図である。温度センサに熱電対を使用している。加
湿器とガスセパレータの二つの熱電対につき同一極性の
一方の端子を結合し同一極性の他の端子を温度差調節器
に入力する。この方式では温度差が直接的に検出される
ために安価な温度検出器を用いて加湿器の温度調節を行
うことが可能である。 実施例2 図2はこの発明の異なる実施例に係る固体高分子電解質
型燃料電池システムを示す構成図である。
FIG. 4 is a connection diagram showing a temperature difference detecting method for the solid polymer electrolyte fuel cell system according to the embodiment of the present invention. A thermocouple is used for the temperature sensor. One terminal of the same polarity is connected to the two thermocouples of the humidifier and the gas separator, and the other terminal of the same polarity is input to the temperature difference controller. In this method, since the temperature difference is directly detected, it is possible to adjust the temperature of the humidifier by using an inexpensive temperature detector. Example 2 FIG. 2 is a configuration diagram showing a solid polymer electrolyte fuel cell system according to another example of the present invention.

【0020】燃料ガスの加湿器12の温度T1 と空気の
加湿器12Aの温度T2 はそれぞれ燃料排ガスの温度T
5 と空気排ガスの温度T6 を用いて制御される。アノー
ドとカソードでは温度差があり排ガスの温度はそれぞれ
の電極の温度を反映しているから排ガス温度を用いるこ
とによりガスセパレータの温度を用いる場合よりもより
精密な加湿器温度の制御ができる。 実施例3 図3はこの発明のさらに異なる実施例に係る固体高分子
電解質型燃料電池システムを示す構成図である。
[0020] The humidifier 12 of the fuel gas temperatures T 1 and temperature T 2 is the temperature T of each fuel exhaust air humidifier 12A
5 and the temperature T 6 of the air exhaust gas. Since there is a temperature difference between the anode and the cathode and the temperature of the exhaust gas reflects the temperature of each electrode, the humidifier temperature can be controlled more precisely by using the exhaust gas temperature than when using the temperature of the gas separator. Embodiment 3 FIG. 3 is a constitutional view showing a solid polymer electrolyte fuel cell system according to still another embodiment of the present invention.

【0021】燃料ガスの加湿器温度T1 と空気の加湿器
の温度T2 はそれぞれ冷却水の温度T7 とT8 を用いて
制御される。冷却水は固体高分子電解質型燃料電池の運
転中に発熱を冷却するためのものであり、セル内の温度
分布を良好にする。従ってセル内の平均温度を正確に表
示する。
The fuel gas humidifier temperature T 1 and the air humidifier temperature T 2 are controlled using cooling water temperatures T 7 and T 8 , respectively. The cooling water is for cooling the heat generation during the operation of the solid polymer electrolyte fuel cell, and improves the temperature distribution in the cell. Therefore, the average temperature in the cell is displayed accurately.

【0022】[0022]

【発明の効果】この発明によれば加湿器の温度を固体高
分子電解質型燃料電池の運転温度を基準として所定の温
度差に維持するとともに運転温度として固体高分子電解
質型燃料電池のセル温度,排ガス温度または冷却水温度
を用いるので、固体高分子電解質からの水分の乾燥を防
止するに必要な水蒸気圧が常時維持され固体高分子電解
質膜の過度の乾燥や濡れが防止され燃料電池の始動から
定常運転への移行が滑らかに進行し始動容易な固体高分
子電解質型燃料電池が得られる。
According to the present invention, the temperature of the humidifier is maintained at a predetermined temperature difference with respect to the operating temperature of the solid polymer electrolyte fuel cell, and the operating temperature is set to the cell temperature of the solid polymer electrolyte fuel cell. Since the exhaust gas temperature or the cooling water temperature is used, the water vapor pressure necessary to prevent the drying of the water from the solid polymer electrolyte is constantly maintained, and the excessive drying and wetting of the solid polymer electrolyte membrane is prevented, and the starting of the fuel cell is prevented. It is possible to obtain a solid polymer electrolyte fuel cell in which the transition to steady operation proceeds smoothly and starting is easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例に係る固体高分子電解質型燃
料電池システムを示す構成図
FIG. 1 is a configuration diagram showing a solid polymer electrolyte fuel cell system according to an embodiment of the present invention.

【図2】この発明の異なる実施例に係る固体高分子電解
質型燃料電池システムを示す構成図
FIG. 2 is a configuration diagram showing a solid polymer electrolyte fuel cell system according to another embodiment of the present invention.

【図3】この発明のさらに異なる実施例に係る固体高分
子電解質型燃料電池システムを示す構成図
FIG. 3 is a configuration diagram showing a solid polymer electrolyte fuel cell system according to still another embodiment of the present invention.

【図4】この発明の実施例に係る固体高分子電解質型燃
料電池システムにつき温度差検出方法を示す接続図
FIG. 4 is a connection diagram showing a temperature difference detection method for a solid polymer electrolyte fuel cell system according to an embodiment of the present invention.

【図5】固体高分子電解質型燃料電池を示す断面図FIG. 5 is a sectional view showing a solid polymer electrolyte fuel cell.

【図6】従来の加湿器を含む固体高分子電解質型燃料電
池を示す配置図
FIG. 6 is a layout view showing a solid polymer electrolyte fuel cell including a conventional humidifier.

【図7】従来の散水型の加湿器を示す配置図FIG. 7 is a layout view showing a conventional sprinkler type humidifier.

【符号の説明】[Explanation of symbols]

1 高分子膜 2 電極 3 電極 4 集電子 5 集電子 6 燃料通路 7 空気通路 8 ガスセパレータ 9 ガスセパレータ 10 セル 11 温度調節器 12 加湿器 12A 加湿器 13 温度差調節器 14 加温タンク 15 ポンプ 16 加湿器 17 ガスセパレータ 1 polymer film 2 electrode 3 electrode 4 current collector 5 current collector 6 fuel passage 7 air passage 8 gas separator 9 gas separator 10 cell 11 temperature controller 12 humidifier 12A humidifier 13 temperature difference controller 14 heating tank 15 pump 16 Humidifier 17 Gas separator

フロントページの続き (72)発明者 丸山 晋一 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内Front page continuation (72) Inventor Shinichi Maruyama 1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】固体高分子電解質体と、電極と、ガスセパ
レータを有する固体高分子電解質型燃料電池に加湿器を
介して加湿された燃料ガスと酸化剤ガスをそれぞれ供給
する固体高分子電解質型燃料電池の運転方法において、
加湿器の温度を固体高分子電解質型燃料電池の運転温度
を基準として所定の温度差に維持することを特徴とする
固体高分子電解質型燃料電池の運転方法。
1. A solid polymer electrolyte type fuel cell having a solid polymer electrolyte body, an electrode, and a gas separator, which supply a humidified fuel gas and an oxidant gas through a humidifier, respectively. In operating the fuel cell,
A method for operating a solid polymer electrolyte fuel cell, characterized in that the temperature of the humidifier is maintained at a predetermined temperature difference based on the operating temperature of the solid polymer electrolyte fuel cell.
【請求項2】請求項1記載の燃料電池において、固体高
分子電解質型燃料電池の運転温度は固体高分子電解質型
燃料電池のセル温度であることを特徴とする固体高分子
電解質型燃料電池。
2. The fuel cell according to claim 1, wherein the operating temperature of the solid polymer electrolyte fuel cell is the cell temperature of the solid polymer electrolyte fuel cell.
【請求項3】請求項1記載の燃料電池において、固体高
分子電解質型燃料電池の運転温度は固体高分子電解質型
燃料電池の燃料排ガスの温度であることを特徴とする固
体高分子電解質型燃料電池。
3. The fuel cell according to claim 1, wherein the operating temperature of the solid polymer electrolyte fuel cell is the temperature of the fuel exhaust gas of the solid polymer electrolyte fuel cell. battery.
【請求項4】請求項1記載の燃料電池において、固体高
分子電解質型燃料電池の運転温度は固体高分子電解質型
燃料電池の酸化剤排ガスの温度であることを特徴とする
固体高分子電解質型燃料電池。
4. The fuel cell according to claim 1, wherein the operating temperature of the solid polymer electrolyte fuel cell is the temperature of the oxidant exhaust gas of the solid polymer electrolyte fuel cell. Fuel cell.
【請求項5】請求項1記載の燃料電池において、固体高
分子電解質型燃料電池の運転温度は固体高分子電解質型
燃料電池の冷却水出口温度であることを特徴とする固体
高分子電解質型燃料電池。
5. The solid polymer electrolyte fuel according to claim 1, wherein the operating temperature of the solid polymer electrolyte fuel cell is a cooling water outlet temperature of the solid polymer electrolyte fuel cell. battery.
JP6080025A 1994-04-19 1994-04-19 Operation method for solid polymer electrolyte fuel cell Pending JPH07288134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6080025A JPH07288134A (en) 1994-04-19 1994-04-19 Operation method for solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6080025A JPH07288134A (en) 1994-04-19 1994-04-19 Operation method for solid polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH07288134A true JPH07288134A (en) 1995-10-31

Family

ID=13706748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6080025A Pending JPH07288134A (en) 1994-04-19 1994-04-19 Operation method for solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH07288134A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037864A1 (en) 2007-09-21 2009-03-26 Panasonic Corporation Fuel cell system
US8129062B2 (en) 2002-04-15 2012-03-06 Panasonic Corporation Fuel cell system operation method
JP2019114485A (en) * 2017-12-26 2019-07-11 トヨタ自動車株式会社 Fuel cell system, mobile body, and method for controlling exhaust gas discharge

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8129062B2 (en) 2002-04-15 2012-03-06 Panasonic Corporation Fuel cell system operation method
WO2009037864A1 (en) 2007-09-21 2009-03-26 Panasonic Corporation Fuel cell system
JP2019114485A (en) * 2017-12-26 2019-07-11 トヨタ自動車株式会社 Fuel cell system, mobile body, and method for controlling exhaust gas discharge
US11075393B2 (en) 2017-12-26 2021-07-27 Toyota Jidosha Kabushiki Kaisha Fuel cell system, mobile object, and exhaust gas discharge control method

Similar Documents

Publication Publication Date Title
JP3601166B2 (en) Fuel cell system
JP3352716B2 (en) Solid polymer electrolyte fuel cell device
JP4978037B2 (en) Fuel cell system
US20030003336A1 (en) Method and apparatus for adjusting the temperature of a fuel cell by facilitating methanol crossover and combustion
JPH0547394A (en) Solid polymer electrolyte fuel cell and operating method thereof
JPH06132038A (en) Solid highpolymer electrolyte type fuel cell
JPH09180743A (en) Solid polymeric fuel cell
JP2008524813A (en) Operation of the fuel cell stack in summer and winter modes
JPH1131520A (en) Solid high molecular type fuel cell
JP2001006698A (en) Solid polymer electrolyte fuel cell and manufacture of its diffusion layer
JP3147518B2 (en) Cell structure of solid polymer electrolyte fuel cell
JP2002175821A (en) Fuel cell system
JPH11242962A (en) Fuel cell device
JPH0864218A (en) Operating method for solid high polymer electrolyte fuel cell
JPH08111231A (en) Solid high polymer electrolyte type fuel cell
JPH0696789A (en) Solid polymer electrolytic fuel cell system
JP2001176529A (en) Solid high molecular fuel cell body and solid high molecular fuel cell power generating system
JP2000164232A (en) Solid high molecular fuel cell system
JPH0594832A (en) Solid high molecular electrolyte type fuel cell
JP2001236977A (en) Solid high polymer fuel cell generator and method of operating solid high polymer fuel cell
JP2002015760A (en) Fuel cell device
JPH07288134A (en) Operation method for solid polymer electrolyte fuel cell
JPH0955218A (en) Fuel cell gas humidifying system and gas humidifying method
JPH08306375A (en) Solid polymer type fuel sell
JP2814716B2 (en) Cell structure of solid polymer electrolyte fuel cell and method of supplying water and gas