JPH07288094A - X-ray analyzing method - Google Patents

X-ray analyzing method

Info

Publication number
JPH07288094A
JPH07288094A JP6081539A JP8153994A JPH07288094A JP H07288094 A JPH07288094 A JP H07288094A JP 6081539 A JP6081539 A JP 6081539A JP 8153994 A JP8153994 A JP 8153994A JP H07288094 A JPH07288094 A JP H07288094A
Authority
JP
Japan
Prior art keywords
sample
electron beam
characteristic
ray
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6081539A
Other languages
Japanese (ja)
Inventor
Toshishige Yanagihara
利成 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP6081539A priority Critical patent/JPH07288094A/en
Publication of JPH07288094A publication Critical patent/JPH07288094A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide an X-ray analyzing method by which an unknown sample can be accurately analyzed without preparing a standard sample having a large diameter. CONSTITUTION:An electron beam is radiated to an electric current correcting sample 6c having a large diameter in a comparatively high degree of vacuum, and a signal IH obtained from the sample is obtained, and an electron beam is radiated to the electric current correcting sample 6c in a comparatively high degree of vacuum, and a signal IL obtained from the sample is obtained, and an electric current correcting factor K1 (=IL/IH) is found from the obtained two kinds of signals. The concentration of an unknown sample is analyzed from this electric current correcting factor K1, characteristic X-ray intensity I1 obtained by radiating an electron beam to a standard sample 6b in a comparatively high degree of vacuum and characteristic X-ray intensity I2 obtained by radiating an electron beam to an unknown sample 6a in a comparatively low degree of vacuum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、試料上に電子ビームを
照射して、試料からの特性X線を検出し、試料の分析を
行うようにしたX線分析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray analysis method in which a sample is analyzed by irradiating a sample with an electron beam to detect characteristic X-rays from the sample.

【0002】[0002]

【従来の技術】走査電子顕微鏡や電子プローブマイクロ
アナライザなどでは、試料に電子ビームを集束して照射
し、試料から発生した特性X線をエネルギ分散型X線分
光器や、波長分散型のX線分光器によって試料の定性や
定量の分析を行うようにしている。また、通常この種分
析装置では、試料から発生する特性X線量から試料の元
素濃度を求めるようにしている。
2. Description of the Related Art In a scanning electron microscope or an electron probe microanalyzer, a sample is irradiated with a focused electron beam, and characteristic X-rays generated from the sample are measured by an energy dispersive X-ray spectrometer or a wavelength dispersive X-ray. A spectroscope is used for qualitative and quantitative analysis of the sample. Further, in this kind of analyzer, the elemental concentration of the sample is usually obtained from the characteristic X-ray dose generated from the sample.

【0003】例えば、未知試料の元素濃度は、既知濃度
の試料(標準試料)から発生する特性X線量と未知試料
の特性X線量との相対強度Kから計算される。この時、
標準試料と未知試料とからの特性X線を測定する際に
は、標準試料および未知試料に照射される電子ビームの
照射量は同一でなければならない。そのため、標準試料
の測定と未知試料の測定時に、電流補正試料を用意して
おき、この電流補正試料に電子ビームを照射した際に得
られる特性X線量の変化から、電子ビームの照射量の補
正を行う手法が取られている。
For example, the elemental concentration of an unknown sample is calculated from the relative intensity K between the characteristic X-ray dose generated from a sample (standard sample) of known concentration and the characteristic X-ray dose of an unknown sample. At this time,
When measuring the characteristic X-rays from the standard sample and the unknown sample, the irradiation amount of the electron beam with which the standard sample and the unknown sample are irradiated must be the same. Therefore, a current correction sample is prepared at the time of measuring the standard sample and the unknown sample, and the electron beam irradiation amount is corrected from the change in the characteristic X-ray dose obtained when the current correction sample is irradiated with the electron beam. The method of doing is taken.

【0004】また、高真空の状態で試料の分析を行う場
合には、電子ビームの散乱の影響を考慮する必要がない
ので、試料に照射される電子ビーム量は電流に比例する
ため、未知試料と標準試料への電子ビームの照射の際、
ファラデーケージなどを用いて電子ビームの電流量を測
定し、その測定結果から電子ビームの電流の変化を補正
することもできる。
Further, when the sample is analyzed in a high vacuum state, it is not necessary to consider the influence of electron beam scattering, and therefore the amount of electron beam irradiated on the sample is proportional to the current, so that the unknown sample And when irradiating the standard sample with an electron beam,
It is also possible to measure the amount of electron beam current using a Faraday cage and correct the change in electron beam current from the measurement result.

【0005】[0005]

【発明が解決しようとする課題】試料が絶縁物や半導体
の場合、試料の帯電を防止するために、試料室の真空度
を、例えば、数Pa〜数百Pa程度に比較的低く設定す
ることが行われている。このような場合に、上記した標
準試料に電子ビームを照射し、特性X線を検出しようと
すると、試料に到達する電子ビーム量が減少したり、散
乱電子ビームや散乱X線があるため標準試料は散乱領域
より大きい必要がある。通常、この散乱領域は数mmと
なり、このような大きな標準試料を得ることは難しく、
また、得られたとしても高価である。なお、電子ビーム
の散乱や減衰は、試料室内の圧力により変化するので、
標準試料は圧力が変わる度に測定が必要となる。
When the sample is an insulator or a semiconductor, the degree of vacuum in the sample chamber is set relatively low, for example, to several Pa to several hundreds Pa in order to prevent the sample from being charged. Is being done. In such a case, if the above-mentioned standard sample is irradiated with an electron beam and characteristic X-rays are to be detected, the amount of the electron beam reaching the sample is reduced, or there is a scattered electron beam or scattered X-rays. Must be larger than the scattering area. Usually, this scattering area is several mm, and it is difficult to obtain such a large standard sample.
Moreover, even if obtained, it is expensive. Since the scattering and attenuation of the electron beam changes depending on the pressure inside the sample chamber,
The standard sample needs to be measured each time the pressure changes.

【0006】本発明は、このような点に鑑みてなされた
もので、その目的は、大きな径の標準試料を用意するこ
となく正確な未知試料の分析を行うことができるX線分
析方法を実現するにある。
The present invention has been made in view of the above points, and an object thereof is to realize an X-ray analysis method capable of accurately analyzing an unknown sample without preparing a standard sample having a large diameter. There is.

【0007】[0007]

【課題を解決するための手段】本発明に基づくX線分析
方法は、試料に電子ビームを照射し、試料から得られた
特性X線を検出することによって試料の分析を行う方法
において、標準試料と比較的径の大きな電流補正試料と
を用意し、比較的高い真空度において電流補正試料に電
子ビームを照射して試料から得られる信号IHを得、同
じく比較的高い真空度において標準試料に電子ビームを
照射して特性X線強度I1を得、比較的低い真空度にお
いて電流補正試料に電子ビームを照射して試料から得ら
れる信号ILを得、同じく比較的低い真空度において未
知試料に電子ビームを照射して特性X線強度I2を得、
上記ステップにより得られた信号から、(IL/IH)・
(I2/I1)を求めるようにしたことを特徴としてい
る。
The X-ray analysis method according to the present invention is a method for analyzing a sample by irradiating the sample with an electron beam and detecting the characteristic X-rays obtained from the sample. And a current correction sample having a relatively large diameter are prepared, the current correction sample is irradiated with an electron beam at a relatively high degree of vacuum to obtain a signal I H obtained from the sample, and a standard sample is also obtained at a relatively high degree of vacuum. The characteristic X-ray intensity I 1 is obtained by irradiating an electron beam, the signal I L obtained from the sample is obtained by irradiating the current-corrected sample with an electron beam at a relatively low vacuum degree, and the unknown sample is also obtained at a relatively low vacuum degree. To obtain a characteristic X-ray intensity I 2 by irradiating an electron beam on the
From the signal obtained by the above steps, (I L / I H ).
It is characterized in that (I 2 / I 1 ) is obtained.

【0008】[0008]

【作用】本発明に基づくX線分析方法は、比較的高い真
空度において径の大きな電流補正試料に電子ビームを照
射して試料から得られる信号IHを得、比較的低い真空
度において電流補正試料に電子ビームを照射して試料か
ら得られる信号ILを得、得られた2種の信号から電流
補正係数K1(=IL/IH)を求め、この電流補正係数
1と、比較的高い真空度において標準試料に電子ビー
ムを照射して得られた特性X線強度I1と、比較的低い
真空度において未知試料に電子ビームを照射して得られ
た特性X線強度I2とから、未知試料の濃度を分析す
る。
According to the X-ray analysis method of the present invention, a current-corrected sample having a large diameter is irradiated with an electron beam at a relatively high vacuum to obtain a signal I H obtained from the sample, and the current-corrected sample is corrected at a relatively low vacuum. A sample is irradiated with an electron beam to obtain a signal I L obtained from the sample, a current correction coefficient K 1 (= I L / I H ) is obtained from the obtained two types of signals, and this current correction coefficient K 1 Characteristic X-ray intensity I 1 obtained by irradiating a standard sample with an electron beam at a relatively high degree of vacuum, and characteristic X-ray intensity I 2 obtained by irradiating an unknown sample with an electron beam at a relatively low degree of vacuum. From this, analyze the concentration of the unknown sample.

【0009】[0009]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図1は本発明に基づく方法を実施するため
の走査電子顕微鏡の一例を示しており、1は電子ビーム
カラム、2は試料室である。電子ビームカラム1の上部
には電子銃3が設けられており、電子銃3から発生し加
速された電子ビームは集束レンズ4、対物レンズ5によ
って試料室2内の試料6上に細く集束される。試料6に
照射される電子ビームは、偏向コイル7によって2次元
的に走査されたり、試料6の特定位置に照射される。偏
向コイル7には、走査回路8からの偏向信号が供給され
る。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 shows an example of a scanning electron microscope for carrying out the method according to the invention, where 1 is an electron beam column and 2 is a sample chamber. An electron gun 3 is provided above the electron beam column 1, and the electron beam generated and accelerated by the electron gun 3 is finely focused on a sample 6 in a sample chamber 2 by a focusing lens 4 and an objective lens 5. . The electron beam with which the sample 6 is irradiated is two-dimensionally scanned by the deflection coil 7 or is irradiated onto a specific position of the sample 6. A deflection signal from the scanning circuit 8 is supplied to the deflection coil 7.

【0010】試料室2内部は図示していないが適宜な真
空ポンプによって排気されている。また、試料室2内部
には、窒素ガス源9からニードル弁10を介して窒素ガ
スが供給されるように構成されている。その結果、試料
室2内部の圧力は、ニードル弁を駆動機構11によって
操作し、試料室2内部に供給する窒素ガスの量を制御す
ることによって調整が可能となる。試料室2内部の圧力
は、真空計12によって測定される。
Although not shown, the inside of the sample chamber 2 is evacuated by an appropriate vacuum pump. Further, nitrogen gas is supplied from the nitrogen gas source 9 through the needle valve 10 into the sample chamber 2. As a result, the pressure inside the sample chamber 2 can be adjusted by operating the needle valve by the drive mechanism 11 and controlling the amount of nitrogen gas supplied into the sample chamber 2. The pressure inside the sample chamber 2 is measured by the vacuum gauge 12.

【0011】試料6への電子ビームの照射によって発生
した特性X線は、X線検出器13によって検出される。
検出器13からの検出信号は、エネルギ分散型X線分析
器14に供給される。また、試料6への電子ビームの照
射によって発生した反射電子は、反射電子検出器15に
よって検出される。検出器15からの検出信号は、増幅
器16によって増幅された後、陰極線管17に供給され
る。18はコンピュータのごとき制御装置であり、制御
装置18はX線分析器14からの信号に基づいてその処
理を行ったり、ニードル弁10の駆動機構11などを制
御する。
The characteristic X-ray generated by irradiating the sample 6 with the electron beam is detected by the X-ray detector 13.
The detection signal from the detector 13 is supplied to the energy dispersive X-ray analyzer 14. The backscattered electrons generated by the irradiation of the sample 6 with the electron beam are detected by the backscattered electron detector 15. The detection signal from the detector 15 is amplified by the amplifier 16 and then supplied to the cathode ray tube 17. Reference numeral 18 is a control device such as a computer, and the control device 18 performs its processing based on a signal from the X-ray analyzer 14 and controls the drive mechanism 11 of the needle valve 10 and the like.

【0012】なお、試料6は、試料ステージ19上に載
せられた試料ホルダ20,21,22に保持されてい
る。図2は試料ホルダ20,21,22の平面図を示し
ており、試料ホルダ20は未知試料6aを保持し、試料
ホルダ21は多数の標準試料6bを保持し、試料ホルダ
22は電流補正試料6cを保持する。この電流補正試料
6cの大きさは、低真空下での電子ビームの散乱を考慮
し、電子ビームの散乱範囲(通常は数mm)より大きく
されている。また、標準試料6bは各元素ごとに設けら
れており、夫々は従来の径の小さなものが用いられる。
なお、この標準試料6bや電流補正試料6cとして絶縁
物を用いるときは、カーボンコーティングなどを施し、
導電性を持たせるようにする。このような構成の動作を
以下説明する。
The sample 6 is held by sample holders 20, 21, 22 mounted on the sample stage 19. FIG. 2 is a plan view of the sample holders 20, 21, 22. The sample holder 20 holds an unknown sample 6a, the sample holder 21 holds a large number of standard samples 6b, and the sample holder 22 holds a current correction sample 6c. Hold. The size of the current correction sample 6c is set to be larger than the electron beam scattering range (usually several mm) in consideration of electron beam scattering in a low vacuum. Further, the standard sample 6b is provided for each element, and each has a conventional small diameter.
When an insulator is used as the standard sample 6b or the current correction sample 6c, a carbon coating is applied,
Make it electrically conductive. The operation of such a configuration will be described below.

【0013】まず、通常の未知試料6aの走査電子顕微
鏡像の観察について説明する。電子銃3からの電子ビー
ムを集束レンズ4、対物レンズ5によって試料6a上に
細く集束し、更に、走査回路8からの垂直走査信号と水
平走査信号を偏向コイル7に供給し、試料6上で電子ビ
ームを2次元的に走査する。試料6への電子ビームの照
射によって発生した反射電子は、反射電子検出器15に
よって検出される。検出器15の検出信号は増幅器16
によって増幅された後、走査回路8からの走査信号に同
期した陰極線管17に供給されることから、陰極線管1
7には試料の電子ビームの走査領域の反射電子像が得ら
れる。なお、この走査電子顕微鏡像の観察は、分析点の
確認などに用いられる。
First, the observation of a normal scanning electron microscope image of an unknown sample 6a will be described. The electron beam from the electron gun 3 is finely focused on the sample 6a by the focusing lens 4 and the objective lens 5, and further, the vertical scanning signal and the horizontal scanning signal from the scanning circuit 8 are supplied to the deflection coil 7 and then on the sample 6. The electron beam is scanned two-dimensionally. The backscattered electrons generated by irradiating the sample 6 with the electron beam are detected by the backscattered electron detector 15. The detection signal of the detector 15 is the amplifier 16
After being amplified by the cathode ray tube 1 synchronized with the scanning signal from the scanning circuit 8, it is supplied to the cathode ray tube 1.
At 7, a backscattered electron image of the electron beam scanning region of the sample is obtained. The observation of the scanning electron microscope image is used for confirmation of analysis points and the like.

【0014】さて、次に低真空下でのX線分析について
説明する。この低真空下での分析に先だって、試料室2
内部は図示していない真空ポンプにより高真空に排気さ
れる。この時、制御装置18によって駆動機構11は制
御され、ニードル弁10は閉じられている。試料室2が
所定の高真空に排気された後、電子ビームは試料ホルダ
22に保持された電流補正試料6cに照射される。試料
6cへの電子ビームの照射に基づいて発生した特性X線
は、検出器13によって検出され、その検出信号はエネ
ルギ分散型X線分析器14に供給される。この過程で、
特性X線の強度が測定され、その値IHは制御装置18
に供給される。次に試料ホルダ21に保持された複数の
標準試料6bに順々に電子ビームが照射され、各標準試
料からの特性X線の検出,分析を行う。特定の標準試料
に注目すると、各元素(a,b,c,……)に対応した
その試料特有の特性X線I1a,I1b,I1c,……が得ら
れる。この各標準試料ごとの特性X線強度は制御装置1
8に供給される。
Now, X-ray analysis under low vacuum will be described. Prior to this analysis under low vacuum, the sample chamber 2
The inside is evacuated to a high vacuum by a vacuum pump (not shown). At this time, the drive mechanism 11 is controlled by the controller 18 and the needle valve 10 is closed. After the sample chamber 2 is evacuated to a predetermined high vacuum, the electron beam is applied to the current correction sample 6c held in the sample holder 22. The characteristic X-ray generated based on the irradiation of the sample 6c with the electron beam is detected by the detector 13, and the detection signal is supplied to the energy dispersive X-ray analyzer 14. In the process,
The intensity of the characteristic X-ray is measured and its value I H is determined by the controller 18
Is supplied to. Next, the plurality of standard samples 6b held by the sample holder 21 are sequentially irradiated with the electron beam, and the characteristic X-rays from each standard sample are detected and analyzed. Focusing on a specific standard sample, characteristic X-rays I 1a , I 1b , I 1c , ... Unique to the sample corresponding to each element (a, b, c, ...) Are obtained. The characteristic X-ray intensity for each standard sample is controlled by the controller 1.
8 are supplied.

【0015】次に、試料室2内部の圧力が高められる。
この場合、制御装置18が駆動機構11を制御し、ニー
ドル弁10を徐々に開放する。この結果、試料室2内部
の圧力は高められる。試料室2内部の圧力は、真空計1
2によって測定され、その値は制御装置18に供給され
る。試料室2内の圧力が所定値となった段階で制御装置
18は駆動機構11を制御し、ニードル弁10を閉じ
る。試料室2が所定の低い真空度となった後、電子ビー
ムはまず電流補正試料6cに照射される。
Next, the pressure inside the sample chamber 2 is increased.
In this case, the control device 18 controls the drive mechanism 11 to gradually open the needle valve 10. As a result, the pressure inside the sample chamber 2 is increased. The pressure inside the sample chamber 2 is measured by the vacuum gauge 1
2 and the value is supplied to the controller 18. When the pressure in the sample chamber 2 reaches a predetermined value, the controller 18 controls the drive mechanism 11 to close the needle valve 10. After the sample chamber 2 has a predetermined low degree of vacuum, the electron beam is first applied to the current correction sample 6c.

【0016】この時、電子ビームは散乱され、試料6c
に到達する電子ビームの径は大きくなるが、前記したよ
うに、試料6cの径は大きくされているので、電子ビー
ムの全てが試料6c上に照射される。試料6cへの電子
ビームの照射に基づいて発生した特性X線は、検出器1
3によって検出され、その検出信号はエネルギ分散型X
線分析器14に供給される。この過程で、特性X線の強
度が測定され、その値ILは制御装置18に供給され
る。なお、この値ILは、試料6cに到達した全電子ビ
ーム照射量に対応したものである。
At this time, the electron beam is scattered and the sample 6c
Although the diameter of the electron beam that reaches the position is increased, the diameter of the sample 6c is increased as described above, so that the entire electron beam is irradiated onto the sample 6c. The characteristic X-ray generated based on the irradiation of the sample 6c with the electron beam is detected by the detector 1
3 and the detection signal is an energy dispersive X
It is supplied to the line analyzer 14. In this process, the intensity of the characteristic X-ray is measured and its value I L is supplied to the controller 18. The value I L corresponds to the total electron beam irradiation amount that has reached the sample 6c.

【0017】次に、試料ホルダ20内の未知試料6aに
電子ビームが照射される。この未知試料6aへの電子ビ
ームの照射により特性X線が発生するが、この特性X線
は検出器13によって検出され、エネルギ分散型X線分
析器14によって分析される。この結果、各元素(a,
b,c,……)に対応した未知試料6a特有の特性X線
2a,I2b,I2c,……が得られる。この未知試料の特
性X線強度は制御装置18に供給される。
Next, the unknown sample 6a in the sample holder 20 is irradiated with an electron beam. Irradiation of the unknown sample 6a with the electron beam generates characteristic X-rays, which are detected by the detector 13 and analyzed by the energy dispersive X-ray analyzer 14. As a result, each element (a,
..) characteristic X-rays I.sub.2a , I.sub.2b , I.sub.2c , .. The characteristic X-ray intensity of this unknown sample is supplied to the controller 18.

【0018】上記した過程により、制御装置18には、
電流補正試料6cからの特性X線強度信号IH,ILと、
標準試料6bからの特性X線強度I1a,I1b,I1c,…
…と、未知試料6cからの特性X線強度I2a,I2b,I
2c,……が記憶される。制御装置18はこれらの信号か
ら、電流補正係数K1=IL/IHを求める。そして、こ
の電流補正係数K1と標準試料と未知試料の特性X線強
度とから、未知試料の見掛けの濃度Ka(元素a),K
b(元素b),Kc(元素c)……を求める。この見掛
けの濃度は次式によって求められる。
Through the above process, the controller 18 is
Characteristic X-ray intensity signals I H and I L from the current correction sample 6c,
Characteristic X-ray intensities I 1a , I 1b , I 1c from the standard sample 6b, ...
... and characteristic X-ray intensities I 2a , I 2b , I from the unknown sample 6c
2c , ... is stored. The controller 18 obtains the current correction coefficient K 1 = I L / I H from these signals. Then, from the current correction coefficient K 1 and the characteristic X-ray intensities of the standard sample and the unknown sample, the apparent concentrations Ka (element a) and K of the unknown sample are calculated.
Find b (element b), Kc (element c) .... This apparent density is calculated by the following equation.

【0019】Ka=K1・(I2a/I1a) Kb=K1・(I2b/I1b) Kc=K1・(I2c/I1c) この見掛けの濃度が求められた後、重量濃度が計算され
る。重量濃度の計算は、良く知られたZAF法などによ
って行う。すなわち、見掛けの濃度に対して、原子番号
補正、吸収補正、蛍光励起補正処理が行われる。
Ka = K 1 · (I 2a / I 1a ) Kb = K 1 · (I 2b / I 1b ) Kc = K 1 · (I 2c / I 1c ). The concentration is calculated. The weight concentration is calculated by the well-known ZAF method or the like. That is, atomic number correction, absorption correction, and fluorescence excitation correction processing are performed on the apparent concentration.

【0020】以上本発明の一実施例を詳述したが、本発
明はこの実施例に限定されない。例えば、電流補正係数
を求めるため、電流補正試料からのX線を検出したが、
その場合、特定のエネルギの特性X線強度に注目して電
流補正係数を求めても良く、また、全特性X線強度に基
づいて電流補正係数を求めても良い。また、電流補正試
料からの特性X線量に基づいて電流補正係数を求めた
が、電子ビームの照射によって電流補正試料に流れる吸
収電流を測定することによって電流の補正を行うように
しても良い。
Although one embodiment of the present invention has been described in detail above, the present invention is not limited to this embodiment. For example, in order to obtain the current correction coefficient, the X-ray from the current correction sample was detected.
In that case, the current correction coefficient may be obtained by paying attention to the characteristic X-ray intensity of specific energy, or the current correction coefficient may be obtained based on the total characteristic X-ray intensity. Although the current correction coefficient is obtained based on the characteristic X-ray dose from the current-corrected sample, the current may be corrected by measuring the absorption current flowing in the current-corrected sample by irradiation with the electron beam.

【0021】更に、電流補正係数K1は、試料室2内の
圧力以外に変化した要素がなければ、低真空状態の試料
室での電子ビームの減衰率と同等となる。そのため、予
め、試料室内の各圧力で電子ビームの減衰率を求めてお
き、実際の未知試料の分析を行う時の試料室圧力を測定
し、その圧力に対応した減衰率から電流補正係数を求め
るようにしても良い。更にまた、上記した実施例では最
初高真空状態での処理を行い、その後低真空状態でX線
の分析を行ったが、逆に、最初に低真空状態での処理を
行い、その後、高真空状態での処理を行うようにしても
良い。
Further, the current correction coefficient K 1 becomes equal to the attenuation rate of the electron beam in the sample chamber in the low vacuum state unless there is a changed element other than the pressure in the sample chamber 2. Therefore, the attenuation rate of the electron beam is obtained in advance at each pressure in the sample chamber, the sample chamber pressure when actually analyzing an unknown sample is measured, and the current correction coefficient is obtained from the attenuation rate corresponding to that pressure. You may do it. Furthermore, in the above-described embodiment, the treatment was first performed in the high vacuum state, and then the X-ray analysis was performed in the low vacuum state. On the contrary, the treatment was first performed in the low vacuum state and then the high vacuum state. You may make it process in a state.

【0022】[0022]

【発明の効果】以上説明したように、本発明に基づくX
線分析方法は、比較的高い真空度において径の大きな電
流補正試料に電子ビームを照射して試料から得られる信
号IHを得、比較的低い真空度において電流補正試料に
電子ビームを照射して試料から得られる信号ILを得、
得られた2種の信号から電流補正係数K1(=IL
H)を求め、この電流補正係数K1と、比較的高い真空
度において標準試料に電子ビームを照射して得られた特
性X線強度I1と、比較的低い真空度において未知試料
に電子ビームを照射して得られた特性X線強度I2とか
ら、未知試料の濃度を分析するようにした。その結果、
標準試料に対しては高真空中でのみ電子ビームを照射し
て特性X線を検出し、低真空中で電子ビームを照射して
特性X線を検出する必要がない。すなわち、高真空中で
は電子ビームの散乱を考慮せずに電子ビームを細く集束
することができるので、標準試料は従来と同様に小さな
径のものを用いることができる。
As described above, the X according to the present invention
In the line analysis method, a current correction sample having a large diameter is irradiated with an electron beam at a relatively high degree of vacuum to obtain a signal I H obtained from the sample, and a current correction sample is irradiated with an electron beam at a relatively low degree of vacuum. Obtain the signal I L obtained from the sample,
The current correction coefficient K 1 (= I L /
I H ), the current correction coefficient K 1 , the characteristic X-ray intensity I 1 obtained by irradiating the standard sample with an electron beam at a relatively high vacuum degree, and the unknown sample electron at a relatively low vacuum degree. The concentration of the unknown sample was analyzed from the characteristic X-ray intensity I 2 obtained by irradiating the beam. as a result,
It is not necessary to irradiate the standard sample with the electron beam only in the high vacuum to detect the characteristic X-ray, and to irradiate the electron beam in the low vacuum to detect the characteristic X-ray. That is, in a high vacuum, the electron beam can be finely focused without considering the scattering of the electron beam, so that the standard sample having a small diameter can be used as in the conventional case.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に基づく方法を実施する走査電子顕微鏡
の一例を示す図である。
FIG. 1 shows an example of a scanning electron microscope for implementing the method according to the invention.

【図2】図1の走査電子顕微鏡で用いられる試料ホルダ
と試料を示す図である。
FIG. 2 is a diagram showing a sample holder and a sample used in the scanning electron microscope of FIG.

【符号の説明】[Explanation of symbols]

1 電子光学カラム 2 試料室 3 電子銃 4 集束レンズ 5 対物レンズ 6 試料 7 偏向コイル 8 走査回路 9 ガス源 10 ニードル弁 11 駆動機構 12 真空計 13 X線検出器 14 エネルギ分散型X線分析器 15 反射電子検出器 16 増幅器 17 陰極線管 18 制御装置 19 試料ステージ 20,21,22 試料ホルダ 1 Electron Optical Column 2 Sample Chamber 3 Electron Gun 4 Focusing Lens 5 Objective Lens 6 Sample 7 Deflection Coil 8 Scanning Circuit 9 Gas Source 10 Needle Valve 11 Drive Mechanism 12 Vacuum Gauge 13 X-ray Detector 14 Energy Dispersive X-ray Analyzer 15 Backscattered electron detector 16 Amplifier 17 Cathode ray tube 18 Controller 19 Sample stage 20, 21, 22 Sample holder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料に電子ビームを照射し、試料から得
られた特性X線を検出することによって試料の分析を行
う方法において、標準試料と比較的径の大きな電流補正
試料とを用意し、比較的高い真空度において電流補正試
料に電子ビームを照射して試料から得られる信号IH
得、同じく比較的高い真空度において標準試料に電子ビ
ームを照射して特性X線強度I1を得、比較的低い真空
度において電流補正試料に電子ビームを照射して試料か
ら得られる信号ILを得、同じく比較的低い真空度にお
いて未知試料に電子ビームを照射して特性X線強度I2
を得、上記ステップにより得られた信号から、(IL
H)・(I2/I1)を求めるようにしたX線分析方
法。
1. In a method of analyzing a sample by irradiating the sample with an electron beam and detecting a characteristic X-ray obtained from the sample, a standard sample and a current correction sample having a relatively large diameter are prepared, A current correction sample is irradiated with an electron beam at a relatively high vacuum degree to obtain a signal I H obtained from the sample, and a standard sample is also irradiated with an electron beam at a relatively high vacuum degree to obtain a characteristic X-ray intensity I 1 . , A signal I L obtained from the sample by irradiating the current-corrected sample with an electron beam at a relatively low vacuum degree, and irradiating the unknown sample with an electron beam at a relatively low vacuum degree and characteristic X-ray intensity I 2
From the signal obtained by the above step, (I L /
I H ) · (I 2 / I 1 ) X-ray analysis method.
JP6081539A 1994-04-20 1994-04-20 X-ray analyzing method Withdrawn JPH07288094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6081539A JPH07288094A (en) 1994-04-20 1994-04-20 X-ray analyzing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6081539A JPH07288094A (en) 1994-04-20 1994-04-20 X-ray analyzing method

Publications (1)

Publication Number Publication Date
JPH07288094A true JPH07288094A (en) 1995-10-31

Family

ID=13749110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6081539A Withdrawn JPH07288094A (en) 1994-04-20 1994-04-20 X-ray analyzing method

Country Status (1)

Country Link
JP (1) JPH07288094A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019219103A1 (en) * 2018-05-18 2019-11-21 Forschungszentrum Jülich GmbH Mev-based ion beam analysis apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019219103A1 (en) * 2018-05-18 2019-11-21 Forschungszentrum Jülich GmbH Mev-based ion beam analysis apparatus
CN112243495A (en) * 2018-05-18 2021-01-19 于利奇研究中心有限公司 MeV-based ion beam analysis apparatus
US11255803B2 (en) 2018-05-18 2022-02-22 Forschungszentrum Juelich Gmbh MeV-based ion beam analysis apparatus

Similar Documents

Publication Publication Date Title
US20030080292A1 (en) System and method for depth profiling
US7449682B2 (en) System and method for depth profiling and characterization of thin films
JP2002310959A (en) Electron beam analyzer
JPH07288094A (en) X-ray analyzing method
JP2006504090A (en) Method and apparatus for in situ deposition of neutral cesium under ultra-high vacuum for analytical purposes
US6476389B1 (en) X-ray analyzer having an absorption current calculating section
JP3520165B2 (en) Electron beam equipment
JPH07253472A (en) Helium-3 cryostat for radiation detector and analyzer
JP2674010B2 (en) Electron beam irradiation device
JP2000329716A (en) Auger electron spectral apparatus and analytical method for depth direction
CN115038959B (en) Fluorescent X-ray analysis device, determination method, and determination program
JP2003187738A (en) Electron-spectroscope device, electron spectroscope and sample analysis method
JP2000097889A (en) Sample analyzing method and sample analyzer
Van Kan et al. An optimized set-up for total reflection particle induced X-ray emission
JP2996210B2 (en) Sample absorption current spectroscopy
WO2007037013A1 (en) Semiconductor analyzer
JP2005292085A (en) Method and apparatus for analyzing sample
JPH06265491A (en) Secondary electron spectroscope
JPH06242031A (en) Secondary electron spectroscopy
JPH11307031A (en) Analytic electron microscope
JPH07288096A (en) Electrification detecting method for sample and scanning electron microscope
JPH0361840A (en) Measuring apparatus for x-ray absorption spectrum
JPS5973761A (en) Energy dispersion type x-ray analytical apparatus
JP2003004676A (en) Electronic spectroscope and method for adjusting position lens axis in electronic spectroscope
JPH07294461A (en) X-ray microanalyzer and similar device thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010703