JPS5973761A - Energy dispersion type x-ray analytical apparatus - Google Patents

Energy dispersion type x-ray analytical apparatus

Info

Publication number
JPS5973761A
JPS5973761A JP57184329A JP18432982A JPS5973761A JP S5973761 A JPS5973761 A JP S5973761A JP 57184329 A JP57184329 A JP 57184329A JP 18432982 A JP18432982 A JP 18432982A JP S5973761 A JPS5973761 A JP S5973761A
Authority
JP
Japan
Prior art keywords
calibration
ray
window
rays
ray source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57184329A
Other languages
Japanese (ja)
Other versions
JPH046902B2 (en
Inventor
Masayuki Taira
平 正之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP57184329A priority Critical patent/JPS5973761A/en
Publication of JPS5973761A publication Critical patent/JPS5973761A/en
Publication of JPH046902B2 publication Critical patent/JPH046902B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2209Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using wavelength dispersive spectroscopy [WDS]

Abstract

PURPOSE:To perform calibration with good accuracy within a short time while enhancing the accuracy of the qualitative and quantitative analysis of an element, by providing a selection mechanism for selectively performing permeation, shielding and attenuation actions with respect to X-rays from an X-ray source for calibration. CONSTITUTION:An aluminum material having a known attenuation factor with respect to X-rays is inlaid with a window 14A while anything is not inlaid with a window 14B. To the outside of the mechanism 14, an X-ray source 15 for calibration, for example, a cylindrical member 16 having Fe is arranged. X-rays from the X-ray source 15 for calibration are detected through the window 14B by an X-ray detector 10 and the detected value is compared with a theoretical value to know the calibration value DELTAE of energy. The actually detected X-ray intensity is set as 1B and the window 14A is subsequently positioned to measure intensity IA. The attenuation factor of X-rays due to the window 14A is preliminarily calculated while the calibration value of intensity is calculated from a formula DELTAI=IB.F-IA and the calibration of a measuring system can be accurately and easily performed by using the control knob of constitutional machinery.

Description

【発明の詳細な説明】 本発明は較正機構を設けた]−ネルギ分散’4X線分析
装置に開°りる。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to an energy-dispersive '4 X-ray analyzer provided with a calibration mechanism.

近年、試料表面に電子線を照射し・、その部分がら放口
・jされる特性X線をエネルギ分散型の半導体検出器に
よって検出してそのX線のエネルギと強度を測定し、試
料組成元素の定性及び定量分析を行うエネルギ分散型X
線装置が開発されている。
In recent years, the energy and intensity of the X-rays have been measured by irradiating the surface of a sample with an electron beam, detecting the characteristic X-rays emitted from the sample using an energy-dispersive semiconductor detector, and determining the compositional elements of the sample. Energy dispersive type X that performs qualitative and quantitative analysis of
line equipment has been developed.

第1図はこのエネルギ分散型X線装置の装置構成の概略
を示したもので、図中1は本図では図示しない電子源よ
り放射されきわめて細く絞った電子線束であり、該電子
線束は試料2の表面に照射される。この電子線束1が試
料2の表面に照射されると、その部分からは入射電子に
J、り試オ′ジ2中の電子転移に伴う特性X線3が放射
される。4はシリコン半導体からなるX線検出器であり
、該X線検出器4からの電気信号は増幅器5にJ:つく
“増幅される。6は多チャンネルの波高分析計であり、
該′a、高分析計6は増幅器5で増幅されたX線検出器
4よりの出力パルス信号の波高を弁別づるためのもので
あり、7は演算制御器、 E3は表示装置である。以上
の様に構成されたエネルギ分散型X線分析装置の特にX
線検出器4.増幅器5.波高分析訓6等で構成される測
定系Mが正確に調整されていないと、元素分析の精度に
直接影響を及は覆例えば測定系Mの調整が十分でなく、
測定誤鐙が生じ−Cいる場合は、元素の種類を決定する
定性分析や、元素の重量濃度を知る定量分析を精度良く
行うことができない。そのため、これらの分析装置を使
用する場合には頻繁に測定系Mの測定誤差を極力少くす
るための構成にすることが必要となる。ところで、これ
ら測定系Mの較正はその較正値の決定及び較正に要Jる
作業や安定状態に)ヱするまでに比較的時間がかかる。
Figure 1 shows an outline of the configuration of this energy dispersive X-ray device. In the figure, 1 is an extremely narrow beam of electron beam emitted from an electron source (not shown in the figure). The surface of 2 is irradiated. When the surface of the sample 2 is irradiated with this electron beam flux 1, characteristic X-rays 3 are emitted from that part due to electron transition in the specimen 2 due to the incident electrons. 4 is an X-ray detector made of a silicon semiconductor, and the electric signal from the X-ray detector 4 is amplified by an amplifier 5. 6 is a multi-channel pulse height analyzer;
The high spectrometer 6 is for discriminating the wave height of the output pulse signal from the X-ray detector 4 amplified by the amplifier 5, 7 is an arithmetic controller, and E3 is a display device. In particular, the energy dispersive X-ray analyzer configured as described above
Line detector4. Amplifier 5. If the measurement system M consisting of wave height analysis unit 6 etc. is not adjusted accurately, it will directly affect the accuracy of elemental analysis.For example, if the measurement system M is not adjusted sufficiently,
If a measurement error occurs, it is not possible to accurately perform qualitative analysis to determine the type of element or quantitative analysis to determine the weight concentration of the element. Therefore, when using these analyzers, it is frequently necessary to configure the measurement system M to minimize measurement errors. Incidentally, the calibration of these measuring systems M takes a relatively long time to determine the calibration values, perform the work required for the calibration, and reach a stable state.

又、これらの較正の必要性は各種の構成部品の交換時に
生ずるだ()でなく、分析途中に測定誤差が発見された
場合にも生ずる。そのため、これらの較正を簡単に短時
間で、しかも精度良く行うことができれば、元素の定性
、定量分析の精度を高めることができ、分析時間の短縮
を図ることができる。
Furthermore, the need for these calibrations occurs not only when various component parts are replaced, but also when measurement errors are discovered during analysis. Therefore, if these calibrations can be easily performed in a short time and with high precision, the precision of qualitative and quantitative analysis of elements can be improved, and the analysis time can be shortened.

本発明は以上の点に鑑みなされたもの【′、X線を検出
するエネルギ分散型X線検出器から得られる電気信号を
波高分析するようにしたX線分析装、 置において、該
X線検出器の近傍に較正用X線源を配置し、該X線検出
器と前記較正用X線源との間の光路上に該較正用X線源
からのX線に対して透過、遮蔽及び減衰作用をを選択的
に行うための選択機構を設けたことを特徴としている。
The present invention has been made in view of the above points. A calibration X-ray source is placed near the calibration X-ray source, and an optical path between the X-ray detector and the calibration X-ray source transmits, shields, and attenuates the X-rays from the calibration X-ray source. It is characterized by the provision of a selection mechanism for selectively performing the action.

以下本発明を図面を用いて詳細に説明りる。第2図は本
発明の7実施例装買にお()るX線検出器の近傍を示ず
断面図であり、第3図は第2図に示した一実施例装置の
x−x’断面図である。図において10は半導体X線検
出器で、該×1!il検出器10は本図では図示しない
液体窒素ににって冷711される冷し12g管11に当
1Bシて配置されている9゜12はX線検出器10及び
冷)Jl導管11を保護づる内筒であり、該内筒12の
一端にはX線入射窓13が形成されている。該X線入射
窓131J、低エネルキーのX線の減貞を少くりるため
にベリリュム膜が用いられており、内筒12の内部を真
空シールする役目を兼ねている。14は内筒12の一端
の外周に嵌合された円筒状の機構である。該機構14に
は2つの窓、14A、14Bが穿つ−Cあり、窓14A
、B以外の円筒部はXI!に対して遮蔽効果の高い例え
ば鉛によって構成されており、窓14AにはX線に対し
て既知の減衰率を右づる例えばアルミ材が嵌め込まれて
いるのに対しC1窓14BにはX線を何等の減衰もなく
透過させるだめに何も嵌め込まれていない。該機構14
の外側には較正用X線源151例えば t−e /!−
ぞ−の内面に有する円筒部材16が配置され1部月16
はX線に対し遮蔽効果の高い物質で構成されている。
The present invention will be explained in detail below using the drawings. FIG. 2 is a cross-sectional view, not showing the vicinity of the X-ray detector, in the seventh embodiment of the present invention, and FIG. FIG. In the figure, 10 is a semiconductor X-ray detector, and the x1! The il detector 10 is located at 9° 12 in a cold 12g tube 11 which is cooled by liquid nitrogen (not shown). The inner cylinder 12 is a protective inner cylinder, and an X-ray entrance window 13 is formed at one end of the inner cylinder 12 . A beryllium film is used in the X-ray entrance window 131J to reduce the attenuation of low-energy X-rays, and also serves to vacuum-seal the inside of the inner tube 12. 14 is a cylindrical mechanism fitted to the outer periphery of one end of the inner cylinder 12. The mechanism 14 has two windows, 14A, 14B, -C;
, Cylindrical parts other than B are XI! The C1 window 14B is made of, for example, lead, which has a high shielding effect against There is nothing fitted into the chamber that allows it to pass through without any attenuation. The mechanism 14
On the outside of the calibration X-ray source 151, for example, t-e/! −
A cylindrical member 16 is arranged on the inner surface of the cylindrical member 16.
is made of a material that has a high shielding effect against X-rays.

、該部材16は該機構14の外側に於て同心円状に回転
できる機構9例えば歯車16aが設けられでいる。該歯
車16aと噛み合う歯車17を軸18にて回転さ「るこ
とにより、円筒6++ +/116′はその中心軸のま
わりを回転づるように構成されている。従・ノて、回転
用φIll 18を回転させることにより、較正用X線
源15とX線検出jAi10との間の光路上には窓14
Δ、14Bのいずれかを位置させることができる。
, the member 16 is provided with a mechanism 9, for example a gear 16a, which can rotate concentrically outside the mechanism 14. By rotating the gear 17 that meshes with the gear 16a around the shaft 18, the cylinder 6++ +/116' is configured to rotate around its central axis. By rotating the window 14 on the optical path between the calibration X-ray source 15 and the
Either Δ or 14B can be located.

以、トの様に構成された装置におい−C先ず測定系Mの
エネルギ軸[の較正を行う場合には、h℃料よりのX線
発生を止めX線源15ど検出器1oの間に窓14Bを配
置し、較正用X線源15よりのX線を窓14[3を介し
てX線検出器1oで検出する。
Hereinafter, in an apparatus configured as shown in (G), first, when calibrating the energy axis of the measurement system M, stop the generation of X-rays from the h℃ source and calibrate the A window 14B is arranged, and X-rays from the calibration X-ray source 15 are detected by the X-ray detector 1o via the window 14[3.

イしてX線検出器1 ’Oよりの電気信号を増幅器5を
介して波高分析計6に入力しエネルギ(電気(gF3 
)を電圧値に変換−4−る。この結果は演算制御器7に
よって演算され、例えばCRTから成る表示装置8に表
示りる。ここで、較正用X線源である例えば [−eの
X線のエネルギ(電圧値)は理論的には既知であり、表
示装置8に表示されでいる実測値と理論値とを比較する
ことによりコニネルギの較正値△[を知ることができる
12次に強度Iの較正(J、先ず、窓1413を光路に
配置しく、較正fll X線源15J、りのX線を減衰
率なしでX線検出器10へ入射さゼた時の実測したX線
強辰を18とし、次にX線検出器1oと較正用X I!
il源15の間の光路上に窓14Bに代えて窓14.A
を位置さUlぞの時の検出X線の強度■Bを測定ザる。
The electric signal from the X-ray detector 1'O is input to the pulse height analyzer 6 via the amplifier 5, and the energy (electricity (gF3
) to a voltage value. This result is calculated by the calculation controller 7 and displayed on a display device 8 made of, for example, a CRT. Here, the energy (voltage value) of the X-ray of the calibration X-ray source, e.g. The calibration value of the conine energy △[ can be found by 12th Calibration of the intensity I (J) First, place the window 1413 in the optical path, calibrate the X-ray source 15J, The actually measured X-ray intensity when incident on the detector 10 is assumed to be 18, and then the X-ray detector 1o and the calibration X I!
On the optical path between the il sources 15, there is a window 14. instead of the window 14B. A
Measure the intensity of the detected X-rays at the position UL.

ここで、 「eのX線に対重る窓14[3による減衰率
F IJ予め求められており、での結果理想的な検′出
強11ulFは次式によって求められる。
Here, the attenuation rate FIJ due to the window 14 [3 that overlaps with the X-ray e is determined in advance, and the ideal detection strength 11ulF is determined by the following equation.

I B X r” = I F 従って強度の較正値Δ■は次式によって求めることがで
きる。
I B

ΔI=IF−IA=IB・F−IA この様に1ネルギの較正値ΔF9強度の較正値ΔIが求
められたところで、これらの較正(「IJ、り測定系M
の各174成1代器の調整ツマミ等を用いて較正すれば
測定系Mの較正を正確にしかも容易に行うことができる
。又、これらの較正が終了し試料を分析する場合は、窓
14A、[3以外の所を選択し較正用X線源15J、り
のX線をX線検出器10に入射しない様に遮蔽りれば、
該較正用X線源15が試料分析に影響を及ぼりことはな
い。
ΔI=IF-IA=IB・F-IA Once the calibration value ΔF9 for 1 energy and the calibration value ΔI for intensity have been obtained in this way, these calibrations (IJ, ri measurement system M
The measurement system M can be calibrated accurately and easily by calibrating using the adjustment knobs of each of the 174 generators. In addition, when these calibrations are completed and the sample is to be analyzed, select a location other than window 14A and If so,
The calibration X-ray source 15 does not affect sample analysis.

尚、本発明は以上の実施例装置に限定されるものではな
く、例えば−に記実施例にJ3ける較正用X線源をX線
検出器のまわりに回転さゼる代わりに、較正用X線源を
固定し、機構14を円筒12から離して円筒12の中心
軸のまわりに回転させるようにしてもよい。
It should be noted that the present invention is not limited to the apparatus of the above embodiments. For example, instead of rotating the calibration X-ray source in J3 around the X-ray detector in the embodiment described in -, The source may be fixed and the mechanism 14 may be moved away from the cylinder 12 and rotated about the central axis of the cylinder 12.

又、機構14に穿つ窓部を増してフィルタ部材を単一で
なく複数の異ったX線減衰率を右する部材が使用できる
ようにしてもよい。更に、本実施例の較正は測定系Mの
各構成機器の調整ツマミ等で較正するようにしたが、演
界制御器7のメモリ上で行っても良い。
Further, the number of windows formed in the mechanism 14 may be increased so that a plurality of filter members having different X-ray attenuation rates can be used instead of a single filter member. Furthermore, although the calibration in this embodiment is performed using the adjustment knobs of each component of the measurement system M, it may also be performed on the memory of the performance controller 7.

以上の様に本発明はエネルギ分散型X線分析装置のX線
検出器、増幅器、波高分析計等C′構成される測定系の
較正を正確、迅速に行うことができ、分析精度の高いエ
ネルギ分散型X線分析装置を提供ヅる。
As described above, the present invention makes it possible to accurately and quickly calibrate the measurement system consisting of C′ such as the X-ray detector, amplifier, and pulse height analyzer of an energy dispersive We provide distributed X-ray analysis equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はIネルギ分散型X線装置の(−11成略図、第
2図は本発明の一実施例を示1断面図、第3図は第2図
に示した一実施例装置のx−x’断面図である。 1:電工わ;1束、2:試料、3:特性X線、4:X線
検出器、5:増幅器、6:波高分析計、7:演算制御器
、8:表示装冒、io:X線検出器、11:冷却導管、
12:内筒、13:X線入射窓、14:円筒状機構、1
5:較正用X線源、16:外筒、17:歯車、18:回
転用軸。
Fig. 1 is a (-11 schematic diagram of an I energy dispersion type -x' cross-sectional view. 1: Electrician; 1 bundle; 2: Sample; 3: Characteristic X-ray; 4: X-ray detector; 5: Amplifier; 6: Pulse height analyzer; 7: Arithmetic controller; 8 : display equipment, io: X-ray detector, 11: cooling conduit,
12: Inner cylinder, 13: X-ray entrance window, 14: Cylindrical mechanism, 1
5: Calibration X-ray source, 16: Outer cylinder, 17: Gear, 18: Rotation shaft.

Claims (1)

【特許請求の範囲】[Claims] 試料からのX線を検出するエネルギ分散型X線検出器か
ら得られる電気信号を波高分析りるようにしたX線分析
装置において、該X線検出器の近傍に較正用X線源を配
置し、該X線検出器と前記較正用X線源どの間の光路上
に該較正用X線源からのX線に対して透過、遮蔽及び減
衰作用を選択的に行うための選択機構を設けたことを特
徴と1−るエネルギ分散型X線分析装置。
In an X-ray analyzer that analyzes the wave height of an electrical signal obtained from an energy dispersive X-ray detector that detects X-rays from a sample, a calibration X-ray source is placed near the X-ray detector. , a selection mechanism is provided on the optical path between the X-ray detector and the calibration X-ray source for selectively transmitting, shielding, and attenuating the X-rays from the calibration X-ray source. An energy dispersive X-ray analyzer characterized by:
JP57184329A 1982-10-20 1982-10-20 Energy dispersion type x-ray analytical apparatus Granted JPS5973761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57184329A JPS5973761A (en) 1982-10-20 1982-10-20 Energy dispersion type x-ray analytical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57184329A JPS5973761A (en) 1982-10-20 1982-10-20 Energy dispersion type x-ray analytical apparatus

Publications (2)

Publication Number Publication Date
JPS5973761A true JPS5973761A (en) 1984-04-26
JPH046902B2 JPH046902B2 (en) 1992-02-07

Family

ID=16151408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57184329A Granted JPS5973761A (en) 1982-10-20 1982-10-20 Energy dispersion type x-ray analytical apparatus

Country Status (1)

Country Link
JP (1) JPS5973761A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675527A (en) * 1984-05-17 1987-06-23 United Kingdom Atomic Energy Authority Corrosion monitoring probe
JP2007040945A (en) * 2005-08-01 2007-02-15 Chiyoda Technol Corp Device for calibration device for measuring dose such as radiation
JP2013186014A (en) * 2012-03-09 2013-09-19 Hitachi Ltd Calibration method of radiation detector and radiation monitoring device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794847U (en) * 1972-12-21 1982-06-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794847U (en) * 1972-12-21 1982-06-11

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675527A (en) * 1984-05-17 1987-06-23 United Kingdom Atomic Energy Authority Corrosion monitoring probe
JP2007040945A (en) * 2005-08-01 2007-02-15 Chiyoda Technol Corp Device for calibration device for measuring dose such as radiation
JP2013186014A (en) * 2012-03-09 2013-09-19 Hitachi Ltd Calibration method of radiation detector and radiation monitoring device

Also Published As

Publication number Publication date
JPH046902B2 (en) 1992-02-07

Similar Documents

Publication Publication Date Title
US10514346B2 (en) X-ray fluorescence spectrometer
JPS6154412B2 (en)
KR20150143339A (en) Fluorescent x-ray analyzer
JP2008309807A (en) Method of determining background corrected count of radiation quantum in x-ray energy spectrum
Johnston et al. Proton-proton scattering at 40 MeV
US6173037B1 (en) Method of and apparatus for X-ray fluorescent analysis of thin layers
US20060034418A1 (en) Tomography appliance, and method for a tomography appliance
US2908821A (en) Apparatus for spectrochemical analysis and structural analysis of solids, fluids andgases by means of x-rays
Tran et al. Quantitative determination of major systematics in synchrotron x‐ray experiments: seeing through harmonic components
JP2005513478A5 (en)
JPS5973761A (en) Energy dispersion type x-ray analytical apparatus
US3351755A (en) Method of and apparatus for spectroscopic analysis having compensating means for uncontrollable variables
JPH1048161A (en) X-ray analyzer
US6310937B1 (en) X-ray diffraction apparatus with an x-ray optical reference channel
JPS6411295B2 (en)
JPH08136479A (en) Total reflection-type fluorescent x-ray analyzing apparatus
US6477237B1 (en) X-ray shielding mechanism for off-axis X-rays
JP2001133420A (en) Method and apparatus for total reflection x-ray fluorescence analysis
JP3333940B2 (en) Apparatus and method for calibrating apparatus for measuring layer thickness using X-rays
Hahn et al. Measurements of emittance and absolute spectral flux of the PETRA undulator at DESY Hamburg
JPH07253472A (en) Helium-3 cryostat for radiation detector and analyzer
CN115038959B (en) Fluorescent X-ray analysis device, determination method, and determination program
JPH0949809A (en) Instrument and method for moessbauer spectroscopy
JPS6258183A (en) Relative sensitivity calibration device of multichannel detector
KR101769709B1 (en) Method for aligning for spectrum module of wavelength dispersive x-ray fluorescence analyzer