JPH07286958A - Reflectance measuring device and reflectance measuring method - Google Patents

Reflectance measuring device and reflectance measuring method

Info

Publication number
JPH07286958A
JPH07286958A JP10151994A JP10151994A JPH07286958A JP H07286958 A JPH07286958 A JP H07286958A JP 10151994 A JP10151994 A JP 10151994A JP 10151994 A JP10151994 A JP 10151994A JP H07286958 A JPH07286958 A JP H07286958A
Authority
JP
Japan
Prior art keywords
light
measured
measuring
reflectance
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10151994A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kameda
洋幸 亀田
Osamu Mizuno
修 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP10151994A priority Critical patent/JPH07286958A/en
Publication of JPH07286958A publication Critical patent/JPH07286958A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure at a high accuracy even though the measuring surface forms of a work to measure and a standard sample are different, by regulating the sample measuring position and the measuring surface of the work to measure coincide constantly. CONSTITUTION:The light radiated on a sample measuring position 3 by a fiber 2 for projection is reflected by a work to measure at the position 3, and the quantity of light of the received light by a fiber 4 for receiving is measured by a spectroscope or the like. In this case a movable attachment 7 maintains the fibers 2 and 4 at a constant angle in a holder 11, and the parts contacting with the work to measure are expanded and contracted. By regulating the expansion distance L by a regulating handle 8 through the combination of gears, for example, the distance between the fibers 2 and 4 maintained at a constant angle, and the measuring surface of the work to measure is regulated. Consequently, even when the form of the measuring surface of a work to measure is different from the form of the measuring surface of a standard sample, the absolute reflectance of the measured surface can be measured at a high accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、反射率測定装置およ
び反射率測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflectance measuring device and a reflectance measuring method.

【0002】[0002]

【従来の技術】一般に、ブラウン管、レンズ等の曲面の
絶対反射率を測定する場合には、絶対反射率既知の標準
サンプルの反射率と、反射率未知の被測定物の反射率を
比較して求められる。
2. Description of the Related Art Generally, when measuring the absolute reflectance of a curved surface such as a cathode ray tube or a lens, the reflectance of a standard sample whose absolute reflectance is known is compared with the reflectance of an object to be measured whose reflectance is unknown. Desired.

【0003】図5は従来の曲面反射率測定装置の構成例
を示す。1は例えばキセノンランプである光源である。
光源1から放射される光は、投光用ファイバ2を介して
一定の入射角θでサンプル測定位置3にある被測定物の
測定面に照射される。測定面からの反射光は、受光角θ
の位置に設置された受光用ファイバ4を介して分光器5
に取り込まれる。尚、入射角および受光角はいずれもサ
ンプル測定位置3における法線となす角度を示す。
FIG. 5 shows a configuration example of a conventional curved surface reflectance measuring device. A light source 1 is, for example, a xenon lamp.
The light emitted from the light source 1 is applied to the measurement surface of the DUT at the sample measurement position 3 at a constant incident angle θ via the light projecting fiber 2. The reflected light from the measurement surface has an acceptance angle θ
Through the light-receiving fiber 4 installed at the position
Is taken into. Incidentally, both the incident angle and the light receiving angle are angles formed with the normal line at the sample measurement position 3.

【0004】反射率測定は以下の手順で行われる。ま
ず、サンプル測定位置3に絶対反射率Ra既知の、例え
ばアルミニウム平面ミラーのような標準サンプルを設置
する。そして投光用ファイバ2から照射された光が標準
サンプルの測定面によって反射された反射光を受光用フ
ァイバ4で受光し、分光器5でその光量を測定する。こ
の値を参照値I0 とする。次にサンプル測定位置3より
標準サンプルを取り除いて被測定物を設置し、同様の手
順で光量を測定する。この値をImとする。標準サンプ
ルを基準とした被測定物の相対反射率Rr=Im/I0
と、標準サンプルの絶対反射率Raを比較することによ
り、被測定物の絶対反射率Rm=Rr・Ra(=(Im
/I0 )・Ra)が求められる。
The reflectance is measured by the following procedure. First, a standard sample such as an aluminum flat mirror having a known absolute reflectance Ra is set at the sample measuring position 3. Then, the light emitted from the light projecting fiber 2 is reflected by the measuring surface of the standard sample and is received by the light receiving fiber 4, and the spectroscope 5 measures the amount of light. This value is set as a reference value I 0 . Next, the standard sample is removed from the sample measurement position 3, the object to be measured is installed, and the light amount is measured by the same procedure. This value is Im. Relative reflectance of the measured object based on the standard sample Rr = Im / I 0
And the absolute reflectance Ra of the standard sample are compared to obtain the absolute reflectance Rm = Rr · Ra (= (Im
/ I 0 ) · Ra) is required.

【0005】[0005]

【課題を解決するための課題】この従来の反射率測定器
においては、標準サンプルの測定面と被測定物の測定面
の測定位置が同等であることが求められる。そこで設置
位置のずれがどの程度被測定物の絶対反射率の算出値に
影響を及ぼすかを調査した。
In this conventional reflectance measuring instrument, it is required that the measurement surface of the standard sample and the measurement surface of the object to be measured be at the same measurement position. Therefore, we investigated how the displacement of the installation position affects the calculated absolute reflectance of the DUT.

【0006】図6はその実験系を示す。光源としてはキ
セノンランプを用いた。投光用ファイバ2のファイバー
部の直径は1.3mm、受光用ファイバ4の直径は1.
05mmである。標準サンプルとしてはアルミニウム平
面ミラー(シグマ光機社製)を、被測定物としては、裏
面に黒塗装を施した直径30mmのBK7ガラス(塚田
光学社製)を使用した。そして図6に示すように標準サ
ンプルの設置位置を原点として、BK7ガラスをZ軸方
向に移動させ、Z軸上の数点においてBK7ガラスの絶
対反射率を算出した。ここでZ軸とは標準サンプルの測
定面の法線方向であり、それとBK7ガラスの測定面の
法線方向と等しくなるように、BK7ガラスを移動させ
た。
FIG. 6 shows the experimental system. A xenon lamp was used as the light source. The diameter of the fiber portion of the light projecting fiber 2 is 1.3 mm, and the diameter of the light receiving fiber 4 is 1.
It is 05 mm. An aluminum plane mirror (manufactured by Sigma Koki Co., Ltd.) was used as a standard sample, and BK7 glass (manufactured by Tsukada Optical Co., Ltd.) having a diameter of 30 mm with a black coating on the back surface was used as an object to be measured. Then, as shown in FIG. 6, the BK7 glass was moved in the Z-axis direction with the installation position of the standard sample as the origin, and the absolute reflectance of the BK7 glass was calculated at several points on the Z-axis. Here, the Z axis is the direction normal to the measurement surface of the standard sample, and the BK7 glass was moved so as to be equal to the direction normal to the measurement surface of the BK7 glass.

【0007】結果を図7に示す。尚、分光器では波長4
00nmの光について測定した。図中縦軸はBK7ガラ
スの算出した絶対反射率、横軸は図6に示すZ軸上のB
K7ガラスの位置を示す。原点である標準サンプルの測
定面の位置から、被測定物であるBK7の測定面が投光
用ファイバ2や受光用ファイバ4に接近すると、算出さ
れる被測定物の絶対反射率は増加し、一定の距離以上接
近すると逆に減少している。標準サンプルの測定面の位
置から、被測定物の測定面がファイバーのある方向と逆
方向に遠ざかっていくと、算出される被測定物の絶対反
射率は減少している。このように標準サンプルの測定面
の位置と被測定物の測定面の位置が変化すると、算出さ
れる被測定物の絶対反射率の値に誤差が発生してしま
う。
The results are shown in FIG. In addition, the wavelength of 4
It was measured for light of 00 nm. In the figure, the vertical axis represents the calculated absolute reflectance of BK7 glass, and the horizontal axis represents B on the Z axis shown in FIG.
The position of K7 glass is shown. From the position of the measurement surface of the standard sample, which is the origin, when the measurement surface of BK7, which is the object to be measured, approaches the light projecting fiber 2 and the light receiving fiber 4, the calculated absolute reflectance of the object to be measured increases, On the contrary, it decreases when approaching a certain distance or more. The calculated absolute reflectance of the measured object decreases as the measured surface of the measured object moves away from the position of the measured surface of the standard sample in the direction opposite to the direction in which the fiber exists. When the position of the measurement surface of the standard sample and the position of the measurement surface of the measured object change in this way, an error occurs in the calculated absolute reflectance value of the measured object.

【0008】一般に、標準サンプルとしてはアルミニウ
ム平面ミラーが採用される。また投光用ファイバ2と受
光用ファイバ4は、入射角θ並びに受光角θが変化しな
いように図8に示すようにアタッチメント6に固定さ
れ、アタッチメント6ごと被測定物と所定の位置関係に
なるように設置される。ところが図9と図10に示すよ
うに、被測定物の測定面が凸面であったり、凹面であっ
たりすると、例えばアルミニウム平面ミラーである標準
サンプルの測定面3sの位置と一致しているサンプル測
定位置3と、被測定物の測定面3mの位置とが不一致と
なる。したがって、先に述べたように算出される絶対反
射率に誤差が含まれてしまう。
Generally, an aluminum plane mirror is used as a standard sample. The light projecting fiber 2 and the light receiving fiber 4 are fixed to the attachment 6 as shown in FIG. 8 so that the incident angle θ and the light receiving angle θ do not change, and the attachment 6 and the attachment 6 have a predetermined positional relationship with the object to be measured. Is installed. However, as shown in FIG. 9 and FIG. 10, if the measurement surface of the object to be measured is a convex surface or a concave surface, a sample measurement that coincides with the position of the measurement surface 3s of the standard sample which is, for example, an aluminum plane mirror. The position 3 and the position of the measurement surface 3m of the measured object do not match. Therefore, the absolute reflectance calculated as described above includes an error.

【0009】本発明は、かかる課題を鑑みてなされたも
のであり、その目的は、被測定物の測定面形状が標準サ
ンプルの測定面形状と異なっている場合においても、精
度よく被測定物の絶対反射率が測定可能である反射率測
定装置および方法を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to accurately measure an object to be measured even when the shape of the surface to be measured is different from that of a standard sample. An object of the present invention is to provide a reflectance measuring device and method capable of measuring absolute reflectance.

【0010】[0010]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明の反射率測定装置は、光源と、光源からの
光を被測定物の測定面に照射する投光手段と、前記測定
面からの反射光を受光する受光手段と、前記受光手段で
受光した光の光量を測定する光量測定手段からなる反射
率測定装置において、サンプル測定位置と被測定物の測
定面が常に一致するように調整する測定位置調整機構を
具備する。
In order to achieve such an object, the reflectance measuring apparatus of the present invention comprises a light source, a light projecting means for irradiating the measuring surface of the object to be measured with light from the light source, and the measurement. In a reflectance measuring device comprising a light receiving means for receiving the reflected light from the surface and a light quantity measuring means for measuring the light quantity of the light received by the light receiving means, the sample measurement position and the measurement surface of the object to be measured always match. The measuring position adjusting mechanism for adjusting

【0011】また本発明の反射率測定方法は、光源から
の光を投光手段により被測定物の測定面に照射し、前記
測定面からの反射光を受光手段により受光し、前記反射
光の光量を測定して被測定物の反射率を求める反射率測
定方法において、サンプル測定位置と被測定物の測定面
が常に一致するように調整する。
In the reflectance measuring method of the present invention, the light from the light source is applied to the measuring surface of the object to be measured by the light projecting means, the reflected light from the measuring surface is received by the light receiving means, and the reflected light In the reflectance measuring method of measuring the light quantity to obtain the reflectance of the object to be measured, adjustment is performed so that the sample measurement position and the measurement surface of the object to be measured always match.

【0012】[0012]

【作用】サンプル測定位置と被測定物の測定面が一致す
るように調整する測定位置調整機構により、被測定物の
測定面形状が標準サンプルの測定面形状と異なっている
場合においても、標準サンプルの測定面と被測定物の測
定面の不一致に起因する誤差が抑制され、精度のよい被
測定物の絶対反射率の測定が可能となる。
Function: Even if the measurement surface shape of the measured object is different from that of the standard sample, the standard sample is adjusted by the measurement position adjustment mechanism that adjusts the measurement position of the sample so that the measurement surface of the measured object matches. The error caused by the inconsistency between the measurement surface and the measurement surface of the measured object is suppressed, and the absolute reflectance of the measured object can be measured with high accuracy.

【0013】[0013]

【実施例】図1と図2に本発明の第1の実施例である反
射率測定装置の測定部の概略図を示す。2は不図示の光
源から放射される光を、サンプル測定位置3に照射する
ための投光用ファイバである。また4はサンプル測定位
置3にある被測定物からの反射光を受光するための受光
用ファイバである。受光された光は例えば分光器である
ような不図示の光量測定手段によって、光量が測定され
る。7は可動式アタッチメントであり、投光用ファイバ
2および受光用ファイバ4を一定の角度で保持部11に
おいて保持する。可動式アタッチメント7の被測定物と
接触する部分は伸縮し、一定の角度で保持された投光用
ファイバ2および受光用ファイバ4と、被測定物の測定
面との距離を調整する。8は調節つまみであり、例えば
歯車の組合せ等により可動式アタッチメント7の伸縮距
離Lを調整する。
1 and 2 are schematic views of a measuring section of a reflectance measuring apparatus according to a first embodiment of the present invention. Reference numeral 2 denotes a light projecting fiber for irradiating the sample measurement position 3 with light emitted from a light source (not shown). Further, 4 is a light receiving fiber for receiving the reflected light from the object to be measured at the sample measuring position 3. The quantity of the received light is measured by a quantity-of-light measuring means (not shown) such as a spectroscope. Reference numeral 7 denotes a movable attachment, which holds the light projecting fiber 2 and the light receiving fiber 4 in the holding section 11 at a constant angle. The portion of the movable attachment 7 that contacts the object to be measured expands and contracts, and the distance between the light projecting fiber 2 and the light receiving fiber 4 held at a constant angle and the measurement surface of the object to be measured is adjusted. Reference numeral 8 denotes an adjusting knob, which adjusts the expansion / contraction distance L of the movable attachment 7 by, for example, combining gears.

【0014】図3と図4は第2の実施例である反射率測
定装置の測定部の概略図を示す。図中の符号と図1、図
2に示す符号が同一なものは、同一の構成要素を示す。
12は可動式保持機構であり、投光用ファイバ2と受光
用ファイバ4を一定の角度で保持する。可動式保持機構
12はアタッチメント6と接続されており、被測定物の
測定面の法線方向に移動可能な構造となっており、一定
の角度で保持された投光用ファイバ2および受光用ファ
イバ4各ファイバと、被測定物の測定面との距離を調整
する。81は調節つまみであり、例えば歯車の組合せ等
により可動式保持機構12の高さL’を調整する。
3 and 4 are schematic views of the measuring section of the reflectance measuring apparatus according to the second embodiment. The same reference numerals in FIGS. 1 and 2 denote the same components.
A movable holding mechanism 12 holds the light projecting fiber 2 and the light receiving fiber 4 at a constant angle. The movable holding mechanism 12 is connected to the attachment 6 and has a structure that is movable in the direction normal to the measurement surface of the object to be measured. The light projecting fiber 2 and the light receiving fiber are held at a constant angle. 4 Adjust the distance between each fiber and the measurement surface of the DUT. Reference numeral 81 denotes an adjusting knob, which adjusts the height L'of the movable holding mechanism 12 by, for example, combining gears.

【0015】反射率測定を行うためのサンプル測定位置
3と被測定物の測定面を一致させる調整は以下のように
行われる。まず標準サンプル9を設置して、可動式アタ
ッチメント7の伸縮距離Lを調整してサンプル測定位置
3と標準サンプル9の測定面3sを一致させる。そして
反射率測定を行ったあと、標準サンプル9と被測定物1
0を交換する。図2、図4のように被測定物10の測定
面が凸のとき、図1および図2に示す第1の実施例の場
合は、投光用ファイバ2および受光用ファイバ4が被測
定物10の測定面3mから高くなるように可動式アタッ
チメント7が伸縮距離Lを調整する。そうして一定の角
度で保持部11において保持された各ファイバと測定面
3mを所定の距離に保つ。すなわち、標準サンプル9の
測定面3sと各ファイバとの距離と同じになるように、
被測定物10の測定面3mと各ファイバとの距離を調整
する。この調整により、サンプル測定位置3と被測定物
10の測定面3mとが一致する。図3、図4に示す第2
の実施例の場合は、可動式保持機構12の高さL’が高
くなるように調整して、第1の実施例の場合と同様に一
定の角度で保持された各ファイバと測定面3mを所定の
距離に保つ。尚、被測定物10の測定面が凹のときは、
これらの動作と逆の動作を実行すればよい。
The adjustment for aligning the sample measurement position 3 for measuring the reflectance with the measurement surface of the object to be measured is performed as follows. First, the standard sample 9 is installed, and the expansion / contraction distance L of the movable attachment 7 is adjusted so that the sample measurement position 3 and the measurement surface 3s of the standard sample 9 coincide with each other. After performing the reflectance measurement, the standard sample 9 and the DUT 1 are measured.
Exchange 0. When the measurement surface of the DUT 10 is convex as shown in FIGS. 2 and 4, in the case of the first embodiment shown in FIGS. 1 and 2, the light projecting fiber 2 and the light receiving fiber 4 are the DUT. The movable attachment 7 adjusts the expansion / contraction distance L so as to be higher than the measurement surface 3 m of 10. Then, each fiber held in the holding unit 11 and the measuring surface 3m are kept at a predetermined distance at a constant angle. That is, so that the distance between the measurement surface 3s of the standard sample 9 and each fiber is the same,
The distance between the measurement surface 3 m of the DUT 10 and each fiber is adjusted. By this adjustment, the sample measurement position 3 and the measurement surface 3m of the DUT 10 coincide with each other. Second shown in FIGS. 3 and 4
In the case of the embodiment, the height L'of the movable holding mechanism 12 is adjusted to be high, and each fiber held at a constant angle and the measurement surface 3m are adjusted as in the case of the first embodiment. Keep at a certain distance. When the measurement surface of the DUT 10 is concave,
It suffices to execute an operation reverse to these operations.

【0016】図1、図2に示す第1の実施例の可動アタ
ッチメント7および図3、4に示す第2の実施例の可動
式保持機構12の調整は手動に限るものではなく、例え
ば駆動機構にサーボモータを組み込んだ自動制御可能な
構造であってもよい。この場合、予め被測定物の曲率等
の表面形状が既知の場合には、そのデータを自動制御部
に記憶させ、演算処理により自動調整可能となるシステ
ムを構築してもよい。
The adjustment of the movable attachment 7 of the first embodiment shown in FIGS. 1 and 2 and the movable holding mechanism 12 of the second embodiment shown in FIGS. 3 and 4 is not limited to manual adjustment. The structure may be such that a servomotor is incorporated in the controllable automatic control. In this case, when the surface shape such as the curvature of the object to be measured is known in advance, the data may be stored in the automatic control unit and a system capable of automatic adjustment by arithmetic processing may be constructed.

【0017】また本発明の反射率測定装置に、被測定物
の表面形状認識機構を追加することもできる。標準サン
プルおよび被測定物の表面形状を表面形状認識機構によ
って記憶し、そのデータに応じて可動アタッチメント7
や可動式保持機構12の自動調整を行えば、任意の形状
の被測定物の絶対反射率を測定することも可能となる。
Further, a surface shape recognizing mechanism of the object to be measured can be added to the reflectance measuring apparatus of the present invention. The surface shape recognition mechanism stores the surface shapes of the standard sample and the object to be measured, and the movable attachment 7 is responsive to the data.
If the movable holding mechanism 12 is automatically adjusted, it is possible to measure the absolute reflectance of the object to be measured having an arbitrary shape.

【0018】[0018]

【発明の効果】以上説明したように、本発明の反射率測
定装置においては、サンプル測定位置と被測定物の測定
面が常に一致するように調整する測定位置調整機構を具
備しているので、被測定物の測定面形状が標準サンプル
の測定面形状と異なっている場合においても、精度のよ
い被測定物の絶対反射率の測定を行うことができる。
As described above, since the reflectance measuring device of the present invention is equipped with the measuring position adjusting mechanism for adjusting so that the sample measuring position and the measuring surface of the object to be measured always coincide with each other, Even if the measurement surface shape of the measured object is different from that of the standard sample, the absolute reflectance of the measured object can be measured with high accuracy.

【0019】また前記移動機構が自動制御が可能である
場合、表面形状認識手段を付加すれば、前記表面形状認
識手段により記憶したデータを処理することにより、投
光手段および受光手段と被測定物の測定面との距離を、
投光手段および受光手段と標準サンプルとの距離と等し
くなるように自動設定することが可能となる。すなわ
ち、サンプル測定位置と被測定物の測定面とが常に一致
するように自動調整でき、任意の形状の被測定物の絶対
反射率を測定することも可能となる。
When the moving mechanism is automatically controllable, if surface shape recognition means is added, the data stored by the surface shape recognition means is processed to project the light emitting means, the light receiving means and the object to be measured. The distance from the measurement surface of
It is possible to automatically set the distances between the light projecting means and the light receiving means to be equal to the standard sample. That is, the sample measurement position and the measurement surface of the measured object can be automatically adjusted so that the absolute reflectance of the measured object having an arbitrary shape can be measured.

【0020】本発明の反射率測定方法においては、サン
プル測定位置と被測定物の測定面が常に一致するように
調整するので、被測定物の測定面形状が標準サンプルの
測定面形状と異なっている場合においても、精度のよい
被測定物の絶対反射率の測定を行うことができる。
In the reflectance measuring method of the present invention, since the measurement position of the sample and the measuring surface of the measured object are adjusted so as to always coincide with each other, the measuring surface shape of the measuring object is different from that of the standard sample. Even in the case where it is present, it is possible to accurately measure the absolute reflectance of the measured object.

【0021】また、一定の角度で保持された投光手段お
よび受光手段と被測定物の測定面との距離が、前記投光
手段および受光手段と標準サンプルの測定面との距離と
一致させることでも、精度のよい被測定物の絶対反射率
の測定を行うことができる。
Further, the distance between the light projecting means and the light receiving means held at a constant angle and the measuring surface of the object to be measured should be the same as the distance between the light projecting means and the light receiving means and the measuring surface of the standard sample. However, it is possible to accurately measure the absolute reflectance of the measured object.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例である反射率測定器によ
る標準サンプル測定時の測定部の概略図を示す。
FIG. 1 is a schematic view of a measuring unit when a standard sample is measured by a reflectance measuring instrument according to a first embodiment of the present invention.

【図2】本発明の第1の実施例である反射率測定器によ
る被測定物測定時の測定部の概略図を示す。
FIG. 2 is a schematic diagram of a measurement unit when measuring an object to be measured by the reflectance measuring instrument according to the first embodiment of the present invention.

【図3】本発明の第2の実施例である反射率測定器によ
る標準サンプル測定時の測定部の概略図を示す。
FIG. 3 is a schematic view of a measuring unit at the time of measuring a standard sample by a reflectance measuring instrument according to a second embodiment of the present invention.

【図4】本発明の第2の実施例である反射率測定器によ
る被測定物測定時の測定部の概略図を示す。
FIG. 4 is a schematic diagram of a measuring unit when measuring an object to be measured by a reflectance measuring instrument according to a second embodiment of the present invention.

【図5】従来の曲面反射率測定装置の構成例を示す。FIG. 5 shows a configuration example of a conventional curved surface reflectance measuring device.

【図6】ファイバと測定面の距離の可変実験の実験系を
示す図である。
FIG. 6 is a diagram showing an experimental system of an experiment for varying the distance between the fiber and the measurement surface.

【図7】実験結果を示す図である。FIG. 7 is a diagram showing experimental results.

【図8】従来の反射率測定器による標準サンプル測定時
の測定部の概略図を示す。
FIG. 8 is a schematic view of a measuring unit when a standard sample is measured by a conventional reflectometer.

【図9】従来の反射率測定器による凸面表面を有する被
測定物測定時の測定部の概略図を示す。
FIG. 9 is a schematic view of a measurement unit when measuring an object to be measured having a convex surface by a conventional reflectometer.

【図10】従来の反射率測定器による凹面表面を有する
被測定物測定時の測定部の概略図を示す。
FIG. 10 is a schematic view of a measurement unit when measuring an object to be measured having a concave surface by a conventional reflectometer.

【符号の簡単な説明】[Simple explanation of symbols]

1 光源 2 投光用ファイバ 3 サンプル測定位置 3s 標準サンプルの測定面 3m 被測定物の測定面 4 受光用ファイバ 5 分光器 6 アタッチメント 7 可動式アタッチメント 8 調節つまみ 81 調節つまみ 9 標準サンプル 10 被測定物 11 固定部 12 可動式保持機構 θ 入射角、受光角 Ra 標準基板の絶対反射率 Rr 被測定物の相対反射率 Rm 被測定物の絶対反射率 I0 参照値 Im 被測定物の反射光量 L 伸縮距離 L’ 可動式保持機構の高さ1 light source 2 light projecting fiber 3 sample measuring position 3s measuring surface of standard sample 3m measuring surface of object to be measured 4 light receiving fiber 5 spectroscope 6 attachment 7 movable attachment 8 adjusting knob 81 adjusting knob 9 standard sample 10 object to be measured 11 Fixed part 12 Movable holding mechanism θ Incident angle, light receiving angle Ra Absolute reflectance of standard substrate Rr Relative reflectance of measured object Rm Absolute reflectance of measured object I 0 Reference value Im Reflected light quantity of measured object L Expansion and contraction Distance L'Height of movable holding mechanism

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】光源と、 光源からの光を被測定物の測定面に照射する投光手段
と、 前記測定面からの反射光を受光する受光手段と、 前記受光手段で受光した光の光量を測定する光量測定手
段からなる反射率測定装置において、 サンプル測定位置と被測定物の測定面が常に一致するよ
うに調整する測定位置調整機構を具備することを特徴と
する反射率測定装置。
1. A light source, a light projecting means for irradiating light from the light source onto a measurement surface of an object to be measured, a light receiving means for receiving reflected light from the measurement surface, and an amount of light received by the light receiving means. A reflectance measuring device comprising a light amount measuring means for measuring a reflectance measuring device, comprising: a measuring position adjusting mechanism for adjusting so that the sample measuring position and the measuring surface of the object to be measured always coincide with each other.
【請求項2】前記測定位置調整機構が、投光手段および
受光手段を一定の角度で保持し、被測定物と接触する部
分が被測定物の測定面の法線方向に伸縮することによ
り、投光手段および受光手段と被測定物の測定面との距
離を調整する可動アタッチメントであることを特徴とす
る請求項1に記載の反射率測定装置。
2. The measuring position adjusting mechanism holds the light projecting means and the light receiving means at a constant angle, and a portion in contact with the object to be measured expands and contracts in a direction normal to a measurement surface of the object to be measured. The reflectance measuring device according to claim 1, wherein the reflectance measuring device is a movable attachment that adjusts a distance between the light projecting unit and the light receiving unit and the measurement surface of the measured object.
【請求項3】前記測定面調整機構が、投光手段および受
光手段を一定の角度で保持する保持手段を被測定物の測
定面の法線方向にさせることにより、投光手段および受
光手段と被測定物の測定面との距離を調整する可動式保
持機構であることを特徴とする請求項1に記載の反射率
測定装置。
3. The measuring surface adjusting mechanism causes the holding means for holding the light projecting means and the light receiving means at a constant angle in the direction normal to the measuring surface of the object to be measured, thereby providing the light projecting means and the light receiving means. The reflectance measuring apparatus according to claim 1, wherein the reflectance measuring apparatus is a movable holding mechanism that adjusts a distance from a measurement surface of an object to be measured.
【請求項4】前記投光手段および受光手段が光ファイバ
であることを特徴とする請求項1から請求項3に記載の
反射率測定装置。
4. The reflectance measuring device according to claim 1, wherein the light projecting means and the light receiving means are optical fibers.
【請求項5】光源からの光を投光手段により被測定物の
測定面に照射し、 前記測定面からの反射光を受光手段により受光し、 前記反射光の光量を測定して被測定物の反射率を求める
反射率測定方法において、 サンプル測定位置と被測定物の測定面が常に一致するよ
うに調整することを特徴とする反射率測定方法。
5. An object to be measured by irradiating the measuring surface of the object to be measured with light from a light source, receiving light reflected from the measuring surface with light receiving means, and measuring the amount of the reflected light. In the reflectance measurement method for obtaining the reflectance of the sample, the reflectance measurement method is characterized in that the measurement position of the sample and the measurement surface of the object to be measured are always aligned.
【請求項6】光源からの光を投光手段により被測定物の
測定面に照射し、 前記測定面からの反射光を受光手段により受光し、 前記反射光の光量を測定して被測定物の反射率を求める
反射率測定方法において、 前記投光手段および受光手段を一定の角度で保持し、 投光手段および受光手段と被測定物の測定面との距離
が、投光手段および受光手段と標準サンプルの測定面と
の距離と一致するように調整することを特徴とする反射
率測定方法。
6. An object to be measured by projecting light from a light source onto a measurement surface of the object to be measured by light projecting means, receiving light reflected from the surface to be measured by light receiving means, and measuring the amount of the reflected light. In the reflectance measuring method for obtaining the reflectance of the light emitting means and the light receiving means, the light emitting means and the light receiving means are held at a constant angle, and the distance between the light emitting means and the light receiving means and the measurement surface of the measured object is equal to The reflectance measurement method is characterized in that adjustment is made so as to match the distance between the measurement surface and the measurement surface of the standard sample.
JP10151994A 1994-04-15 1994-04-15 Reflectance measuring device and reflectance measuring method Pending JPH07286958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10151994A JPH07286958A (en) 1994-04-15 1994-04-15 Reflectance measuring device and reflectance measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10151994A JPH07286958A (en) 1994-04-15 1994-04-15 Reflectance measuring device and reflectance measuring method

Publications (1)

Publication Number Publication Date
JPH07286958A true JPH07286958A (en) 1995-10-31

Family

ID=14302764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10151994A Pending JPH07286958A (en) 1994-04-15 1994-04-15 Reflectance measuring device and reflectance measuring method

Country Status (1)

Country Link
JP (1) JPH07286958A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187570A (en) * 2006-01-13 2007-07-26 Stanley Electric Co Ltd Reflection-type optical sensor and surface roughness detecting method of measuring surface
JP2008051662A (en) * 2006-08-24 2008-03-06 Tokyo Univ Of Agriculture & Technology Measuring method and measuring instrument for absolute reflection factor
JP2009014360A (en) * 2007-06-29 2009-01-22 Sunx Ltd Reflection type photoelectric sensor
WO2012050030A1 (en) * 2010-10-12 2012-04-19 シャープ株式会社 Detection device, detection method, control program and recording medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187570A (en) * 2006-01-13 2007-07-26 Stanley Electric Co Ltd Reflection-type optical sensor and surface roughness detecting method of measuring surface
JP2008051662A (en) * 2006-08-24 2008-03-06 Tokyo Univ Of Agriculture & Technology Measuring method and measuring instrument for absolute reflection factor
JP2009014360A (en) * 2007-06-29 2009-01-22 Sunx Ltd Reflection type photoelectric sensor
WO2012050030A1 (en) * 2010-10-12 2012-04-19 シャープ株式会社 Detection device, detection method, control program and recording medium
JP2012083191A (en) * 2010-10-12 2012-04-26 Sharp Corp Detection device, detection method, control program and recording medium
US9211067B2 (en) 2010-10-12 2015-12-15 Sharp Kabushiki Kaisha Detection device, detecting method, control program and recording medium

Similar Documents

Publication Publication Date Title
US7733501B2 (en) Optical system of a microlithographic projection exposure apparatus
JPH02140604A (en) Method and apparatus for measuring thickness of thin insulating film
CN115356022B (en) Film stress measuring device and method based on white light source
WO2000067065A1 (en) Optical metrology device for precision angular measurement of a pointing mirror
JP2003185410A (en) Method for calibrating and aligning multiple multi-axes operating stages in order to optically align in relation to planar type waveguide device and system
JPH0827444B2 (en) Method and apparatus for determining the optical axis of an off-set mirror
JPH07286958A (en) Reflectance measuring device and reflectance measuring method
CN109341587B (en) Splicing measuring device and method
US6934005B2 (en) Reticle focus measurement method using multiple interferometric beams
US7016051B2 (en) Reticle focus measurement system using multiple interferometric beams
KR20230112881A (en) A method of calibrating a laser scanner using coaxial vision
JP3259815B2 (en) Method and apparatus for measuring emissivity and temperature of an object, and rod-shaped radiation source
KR100492278B1 (en) Projection exposure equipment
JPH1058174A (en) Laser beam machine
JP2000088547A (en) Shape measuring apparatus
JP2000221017A (en) Method and device for measuring radius of curvature of optical component
JP2534699B2 (en) Optical axis direction position correction method in mask / reticle processing apparatus
JP2783252B2 (en) Angle difference measuring device between two surfaces
CN114894712A (en) Optical measurement equipment and correction method thereof
JPH1068602A (en) Shape measuring apparatus
JPH0353215A (en) Exit optical device
JPH05133838A (en) Method for measuring refractive index distribution
JPH0594810U (en) Lens optical axis tilt adjustment mechanism
JPH0245143B2 (en)
JPH11284432A (en) Main reflection mirror face adjusting device and method for satellite communication antenna