JP2000088547A - Shape measuring apparatus - Google Patents

Shape measuring apparatus

Info

Publication number
JP2000088547A
JP2000088547A JP10260699A JP26069998A JP2000088547A JP 2000088547 A JP2000088547 A JP 2000088547A JP 10260699 A JP10260699 A JP 10260699A JP 26069998 A JP26069998 A JP 26069998A JP 2000088547 A JP2000088547 A JP 2000088547A
Authority
JP
Japan
Prior art keywords
measured
light source
measuring
shape
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10260699A
Other languages
Japanese (ja)
Inventor
Koji Fukutomi
康志 福冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10260699A priority Critical patent/JP2000088547A/en
Publication of JP2000088547A publication Critical patent/JP2000088547A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the shape of an aspherical surface in a desired region at a high accuracy by analyzing a plurality of interference fringes obtd. by changing the positional relation between a spot light source disposed on a first reflective surface and a test surface and the change quantity of the positional relation. SOLUTION: A light from a laser light source 1 is condensed by a lens 2 to irradiate a pin hole mirror 3, irradiated as a measuring flux on a aspherical test surface 4, reflected by the aspherical test surface 4, and condensed again by the mirror 3. The measuring flux is reflected further by the mirror 3 to form an image on a light receiving face of a CCD 7 through a lens 6. On the CCD 7 light receiving face, a reference flux interferes with the measuring flux from the test surface to form an interference fringe which is then taken from the CCD 7 in a computer to analyze it and compute the shape of the aspherical test surface 4 from the condition of the interference fringe. A stage 5 moves the test surface 4 in the optical axis direction to change the spacing from the mirror 3 to move a part coincident with the radius of curvature along the asphyerical surface and the measurement in made once again. Results in different measuring regions are combined.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は非球面の面形状を高精度
に測定するための形状測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shape measuring device for measuring an aspheric surface shape with high accuracy.

【0002】[0002]

【従来の技術】従来、球面形状の計測には、フィゾー干
渉計やトワイマン・グリーン干渉計が用いられてきた。
これらの干渉計は基準面を必要とし、その基準面との比
較により、球面形状を計測するため、測定精度は基準面
の面精度を超えることが出来ない。一方、基準面を必要
としない干渉計として、ピンホールによる回折波面を基
準とするPoint-Diffraction-Interferometer(以下PD
Iと称す)が知られている。(特開平2-228505) この
干渉計では、ピンホールの回折により生じた理想的な球
面波を基準波面として、球面形状の高精度な計測を実現
している。ここで、ピンホールの直径φが、 λ/2<φ<λr/2a の関係を満足している時には、ピンホールで回折された
波面は理想的な球面波と見なすことができるため、この
波面の一部を被測定面に入射させ被測定面から反射して
きた光をピンホール近傍に設けられた反射面で反射させ
ると共に、前記球面波の一部と干渉させることで基準面
を使わずに高精度な計測を実現している。ここで、λは
使用波長、rは被測定面の近似曲率半径、aはピンホー
ルの口径である。
2. Description of the Related Art Conventionally, a Fizeau interferometer or a Twyman-Green interferometer has been used for measuring a spherical shape.
These interferometers require a reference surface, and measure the spherical shape by comparison with the reference surface. Therefore, the measurement accuracy cannot exceed the surface accuracy of the reference surface. On the other hand, as an interferometer that does not require a reference plane, a Point-Diffraction-Interferometer (hereinafter referred to as PD) based on a wavefront diffracted by a pinhole is used.
I) are known. (Japanese Unexamined Patent Application Publication No. 2-228505) This interferometer realizes highly accurate measurement of a spherical shape using an ideal spherical wave generated by diffraction of a pinhole as a reference wavefront. Here, when the diameter φ of the pinhole satisfies the relationship of λ / 2 <φ <λr / 2a, the wavefront diffracted by the pinhole can be regarded as an ideal spherical wave. A part of the light is incident on the surface to be measured and the light reflected from the surface to be measured is reflected by the reflection surface provided near the pinhole, and interferes with a part of the spherical wave without using the reference surface. High precision measurement is realized. Here, λ is the used wavelength, r is the approximate radius of curvature of the surface to be measured, and a is the diameter of the pinhole.

【0003】[0003]

【発明が解決しようとしている課題】一般に干渉計で被
測定面の計測を高精度に行う場合、受光素子であるCC
Dの画素間隔より十分に粗い間隔の干渉縞をつくる必要
がある。前述のPDIを用いて、非球面を計測する場
合、ピンホールで回折した球面波の曲率半径と被測定面
の曲率半径が一致していれば間隔が粗い干渉縞を生じる
が、被測定面が非球面の場合は場所によって曲率半径が
異なるため、干渉縞間隔が粗で計測可能となる領域は一
部であり、残りの領域では干渉縞間隔が非常に密になり
計測不能となってしまう。従って、前述した従来の方法
では、球面の形状全体を高精度に測定することは可能で
あったが、非球面の形状全体を測定することはできなか
った。
In general, when measuring a surface to be measured with an interferometer with high accuracy, the light receiving element CC
It is necessary to form interference fringes at intervals sufficiently coarser than the pixel interval of D. When the aspheric surface is measured using the above-described PDI, interference fringes with coarse intervals are generated if the radius of curvature of the spherical wave diffracted by the pinhole matches the radius of curvature of the surface to be measured. In the case of an aspherical surface, the radius of curvature varies depending on the location, so that only a part of the region where the interference fringe interval is coarse and can be measured is used, and in the remaining region, the interference fringe interval is extremely dense and measurement becomes impossible. Therefore, in the above-described conventional method, it was possible to measure the entire spherical shape with high accuracy, but it was not possible to measure the entire aspherical shape.

【0004】本発明は前述の課題に鑑みてなされたもの
で、非球面の所望の領域における形状を高精度に計測す
ることを可能とする形状測定装置を提供することを目的
とする。
The present invention has been made in view of the above-mentioned problems, and has as its object to provide a shape measuring apparatus capable of measuring a shape in a desired area of an aspheric surface with high accuracy.

【0005】[0005]

【課題を解決するための手段】本発明の請求項1では、
光源から出射された光束の一部を測定用光束として被測
定面に照射するとともに、前記被測定面で反射された前
記測定用光束と、前記光源から出射された光束の一部で
あって所定の波面を有する参照用光束とを互いに干渉さ
せ、干渉により生じる干渉縞の状態を検知することによ
り、前記被測定面の非球面形状を計測する干渉計におい
て、前記測定用光束と前記参照用光束が、前記光源と前
記被測定面との間に配置された第1の反射面上に配置さ
れた所定の大きさを有する点光源から出射された光束で
あり、前記点光源と前記被測定面との位置関係を変化さ
せるためのステージ装置と該位置関係の変化量を計測す
るための位置計測手段を有し、前記点光源と前記被測定
面との位置関係を変化させたことにより得られた被測定
面の異なった部分領域の形状を表す複数の干渉縞と前記
点光源と前記被測定面との位置関係の変化量とを解析す
ることにより、前記被測定面の所望の領域における形状
を計測することを特徴とする形状測定装置を提供する。
According to claim 1 of the present invention,
While irradiating a part of the light beam emitted from the light source to the surface to be measured as a measurement light beam, the measurement light beam reflected on the surface to be measured and a part of the light beam emitted from the light source, and In the interferometer for measuring the aspherical shape of the surface to be measured by causing the reference light beam having the wavefront to interfere with each other and detecting the state of interference fringes generated by the interference, the measurement light beam and the reference light beam Is a light beam emitted from a point light source having a predetermined size disposed on a first reflection surface disposed between the light source and the surface to be measured, and the point light source and the surface to be measured. And a position measuring means for measuring a change amount of the positional relationship between the point light source and the surface to be measured. Different parts of the measured surface By analyzing a plurality of interference fringes representing the shape of a region and the amount of change in the positional relationship between the point light source and the surface to be measured, the shape of the surface to be measured in a desired region is measured. Provided is a shape measuring device.

【0006】また、請求項2では、前記位置計測手段が
測長干渉計であり、第1の反射面近傍に設置され、第1
の反射面と一体とな見なされる1つ以上の第2の反射面
と、前記被測定面近傍に設置され、該被測定面と一体と
見なされる1つ以上の第3の反射面との間で干渉測長を
行うことを特徴とする請求項1に記載の形状測定装置を
提供する。
According to a second aspect of the present invention, the position measuring means is a length measuring interferometer, which is installed near the first reflecting surface, and
Between one or more second reflecting surfaces considered to be integral with the reflecting surface and one or more third reflecting surfaces installed near the measured surface and considered to be integral with the measured surface 2. The shape measuring apparatus according to claim 1, wherein the length measurement is performed by using the method.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を用いて説明する。図1は本発明の第一の実施
形態を示す光路図である。本実施形態の干渉計において
は、レーザ光源1と被測定面4の間に第1の反射鏡3
(以下、ピンホール・ミラーと称す)が設置されてい
る。本実施形態におけるピンホール・ミラー3は図2に
示すように、ガラス基板3bの表面に金属膜を蒸着して
おり、金属膜3aの略中央部にピンホール3cをエッチ
ングによって設けている。レーザ光源1から出た光はレ
ンズ2で集光され、ピンホール・ミラー3に照射され、
ピンホール3cで回折されて理想的な球面波として広が
って行く。この球面波の一部が測定用光束として非球面
形状の被測定面4に照射され、被測定面4で反射されて
ピンホール・ミラー3に再び集光される。測定用光束は
さらにピンホール・ミラー3で反射され、レンズ6で平
行光束となり、CCD7の受光面に到達する。レンズ6
は被測定面4の像をCCD7の受光面に結像する役目も
しており、被測定面4の形状を正確に知るために、ディ
ストーションを抑えた設計にしている。ディストーショ
ンの設計値や実測値を用いて、干渉縞の横座標を補正す
ることによって、被測定面4上の座標とCCD7上での
座標を正確に関係付けることができる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an optical path diagram showing a first embodiment of the present invention. In the interferometer of the present embodiment, the first reflecting mirror 3 is provided between the laser light source 1 and the surface 4 to be measured.
(Hereinafter referred to as a pinhole mirror). As shown in FIG. 2, the pinhole mirror 3 according to the present embodiment has a metal film deposited on the surface of a glass substrate 3b, and a pinhole 3c is provided in a substantially central portion of the metal film 3a by etching. The light emitted from the laser light source 1 is condensed by a lens 2 and is irradiated on a pinhole mirror 3.
The light is diffracted by the pinhole 3c and spreads as an ideal spherical wave. A part of the spherical wave is irradiated as a measuring light beam on the aspherical surface 4 to be measured, reflected on the surface 4 to be measured, and collected again on the pinhole mirror 3. The measurement light beam is further reflected by the pinhole mirror 3, becomes a parallel light beam by the lens 6, and reaches the light receiving surface of the CCD 7. Lens 6
Also serves to form an image of the surface 4 to be measured on the light receiving surface of the CCD 7, and is designed to suppress distortion in order to accurately know the shape of the surface 4 to be measured. By correcting the abscissa of the interference fringes using the designed or measured distortion values, the coordinates on the measured surface 4 and the coordinates on the CCD 7 can be accurately related.

【0008】被測定面4は一方向に移動可能なステージ
装置5上に設置されている。被測定面4の光軸はステー
ジ5の移動方向と平行であり、なおかつ前記ピンホール
3cの中心を通るように調整されている。また、ステー
ジ5は移動方向に微動と粗動の動作が可能であり、本実
施形態では微動操作に図示しないピエゾ素子を用いてい
る。ピンホール3cで回折された理想的な球面波の一部
は参照用光束として、レンズ6で平行光束となり、CC
D7に達する。
The surface 4 to be measured is placed on a stage device 5 which can move in one direction. The optical axis of the surface 4 to be measured is adjusted to be parallel to the moving direction of the stage 5 and to pass through the center of the pinhole 3c. The stage 5 can perform fine movement and coarse movement in the movement direction. In this embodiment, a piezo element (not shown) is used for the fine movement operation. A part of the ideal spherical wave diffracted by the pinhole 3c is converted into a parallel light beam by the lens 6 as a reference light beam.
Reach D7.

【0009】被測定面4が非球面の場合には、被測定面
で反射された光は1点には集光せず、ピンホール・ミラー
3上で広がりを持つ。被測定面4に照射された球面波と
被測定面の差をW(h)とすると、ピンホール・ミラー3
上での広がりの半径はr×dW(h)/dhになる。干渉縞を解
析して面形状を求める範囲内でのdW(h)/dhの最大値をdW
maxとすると、ピンホール・ミラー3の形状は半径r× dW
maxの範囲内では高精度平面と見なせるだけの精度を有
していればよい。
When the surface 4 to be measured is aspherical, the light reflected on the surface to be measured does not converge at one point but spreads on the pinhole mirror 3. Assuming that the difference between the spherical wave applied to the measured surface 4 and the measured surface is W (h), the pinhole mirror 3
The radius of the spread above is r × dW (h) / dh. The maximum value of dW (h) / dh within the range to determine the surface shape by analyzing the interference fringes is dW
If max, the shape of the pinhole mirror 3 is radius r × dW
Within the range of max, it suffices to have accuracy enough to be regarded as a high-precision plane.

【0010】CCD7の受光面では参照用光束と被測定
面からの反射光(測定用光束)との干渉によって干渉縞
が生じる。CCD7からの出力は図示しないコンピュー
タに取り込まれて解析され、干渉縞の状態から被測定面
4の形状が算出される。前述の通り、被測定面が非球面
の場合、干渉縞の間隔は非球面の曲率半径と照射された
球面波の曲率半径が一致した部位では粗くなるが、その
部位から離れると密になる。干渉縞が観察される範囲は
CCDカメラ7の画素間隔で制限され、干渉縞の周期が
CCDカメラの2画素よりも短くなると、エリアジング
と呼ばれる現象が発生し、正確な計測は行えない。高精
度な計測を行うには、干渉縞の周期はCCDカメラの画
素間隔の少なくとも4倍以上であることが望ましい。被
測定面形状の球面からの乖離が大きい場合には、上記の
条件を満足する領域は被測定面の一部分のみとなる。
On the light receiving surface of the CCD 7, interference fringes occur due to interference between the reference light beam and the reflected light (measurement light beam) from the surface to be measured. The output from the CCD 7 is taken into a computer (not shown) and analyzed, and the shape of the measured surface 4 is calculated from the state of the interference fringes. As described above, when the surface to be measured is an aspherical surface, the interval between the interference fringes becomes coarse at a portion where the radius of curvature of the aspherical surface and the radius of curvature of the irradiated spherical wave match, but becomes denser away from that portion. The range in which the interference fringes are observed is limited by the pixel interval of the CCD camera 7. If the period of the interference fringes is shorter than the two pixels of the CCD camera, a phenomenon called aliasing occurs, and accurate measurement cannot be performed. In order to perform highly accurate measurement, it is desirable that the period of the interference fringes is at least four times or more the pixel interval of the CCD camera. When the shape of the surface to be measured has a large deviation from the spherical surface, only a part of the surface to be measured satisfies the above condition.

【0011】次にステージ5により被測定面4を光軸方
向に移動し、ピンホール・ミラー3との間隔を変化させ
て、曲率半径の一致する部位を非球面にそって移動させ
た後、もう一度計測を行う。この時、計測可能な領域は
前回の計測領域とは異なっている。これら2回の計測結
果を図示しないコンピュータにより合成することで、一
回の計測では計測しきれない広い領域の被測定面形状を
計測することが可能になる。さらに測定領域の面積が不
足している場合にはこれらの操作を繰り返せば良い。測
定結果を高い精度で合成するためには、前後2回の計測
で共通に計測されている部分の面積をある程度広くして
おくと良い。また、測定結果の合成を高精度に行うに
は、前記点光源に対する被測定面の移動量、姿勢の変化
を正確に知る必要があるが、本実施形態では、ピンホー
ルミラー3上に一体に取り付けられた第2の反射面8と
被測定面外周部に一体に形成された第3の反射面9との
間隔の変化を3個の測長干渉計10で計測することで移
動量および移動に伴って生じる被測定面の傾きが高精度
に計測される。被測定面の姿勢は、更にアライメント誤
差補正ソフトウエアによって計算され、補正することも
できる。測長干渉計10は、2つの反射面間の間隔変化
が計測できるものであれば良く、本実施形態では、市販
の測長干渉計測システムをそのまま利用している。
Next, the surface to be measured 4 is moved in the direction of the optical axis by the stage 5 to change the distance between the pinhole mirror 3 and the portion having the same radius of curvature along the aspherical surface. Take another measurement. At this time, the measurable area is different from the previous measurement area. By combining the results of these two measurements with a computer (not shown), it is possible to measure the shape of the surface to be measured in a wide area that cannot be measured by one measurement. Further, when the area of the measurement region is insufficient, these operations may be repeated. In order to combine the measurement results with high accuracy, it is preferable to increase the area of the part commonly measured in the two measurements before and after the measurement to some extent. Further, in order to synthesize the measurement results with high accuracy, it is necessary to accurately know the amount of movement of the surface to be measured with respect to the point light source and a change in the posture. The amount of movement and the movement are measured by measuring the change in the distance between the attached second reflecting surface 8 and the third reflecting surface 9 integrally formed on the outer periphery of the measured surface with three length measuring interferometers 10. , The inclination of the surface to be measured is measured with high accuracy. The orientation of the measured surface can be further calculated and corrected by alignment error correction software. The length measuring interferometer 10 only needs to be able to measure a change in the interval between two reflecting surfaces, and in the present embodiment, a commercially available length measuring interferometer system is used as it is.

【0012】1回の測定において、干渉縞から被測定面
の形状を計算するために、本実施形態の干渉計ではステ
ージ5の微動機構を利用し、被測定面4を光軸方向に微
小に移動することにより高精度に被測定面の面精度を測
定している(従来の位相シフト法)。本実施形態ではピ
ンホールミラー3を固定とし、被測定面側をステージに
より可動とする構成を取っているが、逆に被測定面4を
固定とし、ピンホールミラー3、レンズ6、CCD7を
一体として可動にする構成であっても良い。
In one measurement, in order to calculate the shape of the surface to be measured from the interference fringes, the interferometer of the present embodiment uses the fine movement mechanism of the stage 5 to move the surface to be measured 4 minutely in the optical axis direction. The surface accuracy of the surface to be measured is measured with high accuracy by moving (the conventional phase shift method). In this embodiment, the pinhole mirror 3 is fixed and the surface to be measured is movable by the stage. However, the surface 4 to be measured is fixed, and the pinhole mirror 3, the lens 6, and the CCD 7 are integrated. It may be configured to be movable.

【0013】次に本発明の第二の実施形態を図3に示
す。第一の実施形態におけるピンホール・ミラーの代わ
り光ファイバーを用いたものである。光ファイバー11
の端面11aがピンホール・ミラーの反射面3aに、光
伝送部11cがピンホール3cに相当している。ファイ
バー端面の反射面は、前述した、半径r× dWmaxよりも
大きくて十分に高精度な平面と見なせるように加工して
ある。ファイバーを保持する部材12には第2の反射面
8が一体に取り付けてある。ステージ5上には第3の反
射面9が一体に取り付けられた保持部材13を介して被
測定物4が設置されており、3個の測長干渉計10によ
り反射面8と反射面9の間隔変化が高精度に計測され
る。被測定面(非球面)の測定方法は第一の実施形態と
同様である。
Next, a second embodiment of the present invention is shown in FIG. An optical fiber is used in place of the pinhole mirror in the first embodiment. Optical fiber 11
The end face 11a corresponds to the reflection surface 3a of the pinhole mirror, and the optical transmission section 11c corresponds to the pinhole 3c. The reflection surface of the fiber end face is processed so that it can be regarded as a plane with a radius larger than the radius r × dWmax and sufficiently high precision. The second reflection surface 8 is integrally attached to the member 12 holding the fiber. The DUT 4 is mounted on the stage 5 via a holding member 13 having a third reflecting surface 9 integrally attached thereto. The three length measuring interferometers 10 are used to control the reflecting surface 8 and the reflecting surface 9. Interval changes are measured with high accuracy. The method of measuring the surface to be measured (aspheric surface) is the same as in the first embodiment.

【0014】さらに、光ファイバーの代わりに光導波路
を用いることも可能であり、その場合には、光動波路の
光伝送部がピンホール3cに相当し、光動波路の端面が
ピンホールミラーの反射面3aに相当する。
Further, it is also possible to use an optical waveguide instead of the optical fiber. In this case, the optical transmission part of the optical waveguide corresponds to the pinhole 3c, and the end face of the optical waveguide is reflected by the pinhole mirror. This corresponds to the surface 3a.

【0015】[0015]

【発明の効果】以上説明したように本発明によれば従来
の方法では困難であった非球面の形状を高精度に測定す
ることが可能となる。
As described above, according to the present invention, it is possible to measure the shape of an aspherical surface with high accuracy, which is difficult with the conventional method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は本発明の第一の実施形態を示す光路図であ
る。
FIG. 1 is an optical path diagram showing a first embodiment of the present invention.

【図2】はピンホールミラーの構成を示す概略図であ
る。
FIG. 2 is a schematic diagram showing a configuration of a pinhole mirror.

【図3】は本発明の第二の実施形態を示す光路図であ
る。
FIG. 3 is an optical path diagram showing a second embodiment of the present invention.

【図4】は光ファイバーの先端部を示す拡大図である。FIG. 4 is an enlarged view showing a tip portion of an optical fiber.

【符号の説明】[Explanation of symbols]

1・・・面形状測定用レーザ光源 2・・・集光レンズ 3・・・ピンホールミラー 3a・・・金属膜 3b・・・ガラス基板 3c・・・ピンホール 4・・・被測定面 5・・・移動ステージ 6・・・レンズ 7・・・CCD 8・・・反射面 9・・・反射面 10・・・測長干渉計 11・・・光ファイバー 11a・・・光ファイバー端面 11c・・・光ファイバー伝送部 12・・・光ファイバー保持部材 13・・・被測定面保持部材 DESCRIPTION OF SYMBOLS 1 ... Laser light source for surface shape measurement 2 ... Condensing lens 3 ... Pinhole mirror 3a ... Metal film 3b ... Glass substrate 3c ... Pinhole 4 ... Surface to be measured 5 ··· Moving stage 6 ··· Lens 7 ··· CCD 8 ··· Reflecting surface 9 ··· Reflecting surface 10 ··· Length measuring interferometer 11 ··· Optical fiber 11a ··· Optical fiber end surface 11c ··· Optical fiber transmission unit 12 ・ ・ ・ Optical fiber holding member 13 ・ ・ ・ Measurement surface holding member

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光源から出射された光束の一部を測定用
光束として被測定面に照射するとともに、前記被測定面
で反射された前記測定用光束と、前記光源から出射され
た光束の一部であって所定の波面を有する参照用光束と
を互いに干渉させ、干渉により生じる干渉縞の状態を検
知することにより、被測定面の形状を計測する干渉計に
おいて、前記測定用光束と前記参照用光束が、前記光源
と前記被測定面との間に配置された第1の反射面上に配
置された所定の大きさを有する点光源から出射された光
束であり、前記点光源と前記被測定面との位置関係を変
化させるためのステージ装置と、該位置関係の変化量を
計測するための位置計測手段を有し、前記点光源と前記
被測定面との位置関係を変化させたことにより得られた
被測定面の異なった部分領域の形状を表す複数の干渉縞
と前記点光源と前記被測定面との位置関係の変化量とを
解析することにより、前記被測定面における所望の範囲
の形状を計測することを特徴とする形状測定装置。
1. A part of a light beam emitted from a light source is radiated to a surface to be measured as a light beam for measurement, and one of the light beam for measurement reflected by the surface to be measured and the light beam emitted from the light source. In the interferometer for measuring the shape of the surface to be measured by causing a reference light beam having a predetermined wavefront to interfere with each other and detecting a state of an interference fringe generated by the interference, the measurement light beam and the reference The luminous flux for use is a luminous flux emitted from a point light source having a predetermined size disposed on a first reflecting surface disposed between the light source and the surface to be measured, and A stage device for changing the positional relationship with the measurement surface, and position measuring means for measuring the amount of change in the positional relationship, wherein the positional relationship between the point light source and the surface to be measured is changed. Measured surface obtained by different By analyzing a plurality of interference fringes representing the shape of the partial region and the amount of change in the positional relationship between the point light source and the surface to be measured, a shape of a desired range on the surface to be measured is measured. Measuring device.
【請求項2】 前記位置計測手段が測長干渉計であり、
第1の反射面近傍に設置され、第1の反射面と一体とな
見なされる1つ以上の第2の反射面と、前記被測定面近
傍に設置され、該被測定面と一体と見なされる1つ以上
の第3の反射面との間で干渉測長を行うことを特徴とす
る請求項1に記載の形状測定装置。
2. The position measuring means is a length measuring interferometer,
One or more second reflective surfaces installed near the first reflective surface and considered integral with the first reflective surface, and installed near the measured surface and considered integral with the measured surface The shape measuring apparatus according to claim 1, wherein an interferometric length is measured with one or more third reflecting surfaces.
JP10260699A 1998-09-14 1998-09-14 Shape measuring apparatus Pending JP2000088547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10260699A JP2000088547A (en) 1998-09-14 1998-09-14 Shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10260699A JP2000088547A (en) 1998-09-14 1998-09-14 Shape measuring apparatus

Publications (1)

Publication Number Publication Date
JP2000088547A true JP2000088547A (en) 2000-03-31

Family

ID=17351555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10260699A Pending JP2000088547A (en) 1998-09-14 1998-09-14 Shape measuring apparatus

Country Status (1)

Country Link
JP (1) JP2000088547A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145185A (en) * 2008-12-17 2010-07-01 Canon Inc Measuring method and measuring device
CN111397634A (en) * 2020-03-27 2020-07-10 中科院南京天文仪器有限公司 High-resolution interference detection device and method for thermal deformation of fixed end face of star sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145185A (en) * 2008-12-17 2010-07-01 Canon Inc Measuring method and measuring device
CN111397634A (en) * 2020-03-27 2020-07-10 中科院南京天文仪器有限公司 High-resolution interference detection device and method for thermal deformation of fixed end face of star sensor

Similar Documents

Publication Publication Date Title
US6344898B1 (en) Interferometric apparatus and methods for measuring surface topography of a test surface
JP4312602B2 (en) Aspheric and wavefront scanning interferometers
JP3193724B2 (en) Wavefront measurement system using integrated geometric reference (IGR)
JP4302512B2 (en) Interferometric scanning for aspheric surfaces and wavefronts
EP1875162B1 (en) Determining positional error of an optical component using structured light patterns
US6456382B2 (en) Interferometer that measures aspherical surfaces
US6771375B2 (en) Apparatus and method for measuring aspherical optical surfaces and wavefronts
JP2000097666A (en) Interferometer for measuring shape of surface, wavefront aberration measuring machine, manufacture of projection optical system using this interferometer and machine, and method for calibrating this interferometer
JP2679221B2 (en) Interferometer
US20050179911A1 (en) Aspheric diffractive reference for interferometric lens metrology
US7538890B2 (en) Wavefront-measuring interferometer apparatus, and light beam measurement apparatus and method thereof
US7106455B2 (en) Interferometer and interferance measurement method
JP2002296005A (en) Aligning method, point diffraction interference measuring instrument, and high-accuracy projection lens manufacturing method using the same instrument
US6972850B2 (en) Method and apparatus for measuring the shape of an optical surface using an interferometer
JP2000088547A (en) Shape measuring apparatus
JP2000088546A (en) Apparatus and method of measuring shape
JP2000097622A (en) Interferometer
JPH116784A (en) Device and method for measuring shape of aspherical surface
EP1890105A1 (en) Interferometer apparatus and interferometric method
US20240230311A1 (en) Reflective interferometer systems and methods thereof
JP2001021327A (en) Surface form measuring apparatus
JPH10221029A (en) Apparatus for measuring aspherical shape
JP2000097650A (en) Device for measuring shape of aspheric surface
JPH0814854A (en) Flat plate with computer hologram and measurement using the plate
JP2000275005A (en) Method for measuring wavefront shape

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050630

A131 Notification of reasons for refusal

Effective date: 20051129

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060127

A02 Decision of refusal

Effective date: 20060214

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20060414

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060512

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060630

RD01 Notification of change of attorney

Effective date: 20060923

Free format text: JAPANESE INTERMEDIATE CODE: A7421

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060929

RD04 Notification of resignation of power of attorney

Effective date: 20061013

Free format text: JAPANESE INTERMEDIATE CODE: A7424