JP2534699B2 - Optical axis direction position correction method in mask / reticle processing apparatus - Google Patents

Optical axis direction position correction method in mask / reticle processing apparatus

Info

Publication number
JP2534699B2
JP2534699B2 JP62071637A JP7163787A JP2534699B2 JP 2534699 B2 JP2534699 B2 JP 2534699B2 JP 62071637 A JP62071637 A JP 62071637A JP 7163787 A JP7163787 A JP 7163787A JP 2534699 B2 JP2534699 B2 JP 2534699B2
Authority
JP
Japan
Prior art keywords
objective lens
mask
optical axis
light
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62071637A
Other languages
Japanese (ja)
Other versions
JPS63240180A (en
Inventor
徹 東条
昭 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Shibaura Machine Co Ltd
Original Assignee
Toshiba Corp
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Machine Co Ltd filed Critical Toshiba Corp
Priority to JP62071637A priority Critical patent/JP2534699B2/en
Publication of JPS63240180A publication Critical patent/JPS63240180A/en
Application granted granted Critical
Publication of JP2534699B2 publication Critical patent/JP2534699B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、光を使用してマスクまたはレチクルの寸法
を測定したり欠陥を検出するマスク/レチクル処理装置
に適用され、対物レンズと被処理物の位置関係を正確に
制御するための基準となるセンサの位置ドリフト補正お
よび気圧,温度,湿度等の変化にともなう空気の屈折率
変化ならびに光源の波長変動による対物レンズの集面面
ドリフト補正を行なうようにしたマスク/レチクル処理
装置における光軸方向位置補正方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention is applied to a mask / reticle processing apparatus that uses light to measure the size of a mask or reticle and detects defects. Correcting the positional drift of the sensor, which serves as a reference for accurately controlling the positional relationship between the objective lens and the object to be processed, and changing the refractive index of air with changes in atmospheric pressure, temperature, humidity, etc. The present invention relates to an optical axis direction position correction method in a mask / reticle processing apparatus which is adapted to correct surface drift.

(従来の技術) 通常、マスク/レチクル欠陥検査装置は、第6図に示
すようにXYステージaに載置されたマスクまたはレチ
クル等の被処理物bにランプcの光を照明レンズdにて
集光して被処理物bの下面にあるパターン部(欠陥検査
すべきLSIのパターン)に結ばせ、その下方にある対物
レンズeにて拡大し、イメージセンサfへ結像させ撮像
データとする。そして、この撮像データと設計データと
を比較しその差である欠陥を見付けるようになってい
る。このとき、被処理物bと対物レンズeの距離をZセ
ンサ、すなわち対物レンズeに固定した発光素子(LD)
gと受光素子(PSD)iによって検出し、ピエゾ素子j
によって前記距離を一定に保つようになっている。
(Prior Art) Normally, in a mask / reticle defect inspection apparatus, as shown in FIG. 6, an object to be processed b such as a mask or a reticle mounted on an XY stage a is irradiated with light from a lamp c by an illumination lens d. The light is condensed and connected to a pattern portion (a pattern of an LSI to be inspected for defects) on the lower surface of the object to be processed b, enlarged by an objective lens e below the image part, and imaged on an image sensor f to obtain imaging data. . Then, the image pickup data and the design data are compared with each other to find a defect which is a difference between them. At this time, the distance between the object b to be processed and the objective lens e is a Z sensor, that is, a light emitting element (LD) fixed to the objective lens e.
g and the light receiving element (PSD) i to detect the piezo element j
The above distance is kept constant.

ところで、従来装置の検出精度に対する被処理物bと
対物レンズeの焦点面位置関係に要求される位置精度は
±0.5〜±0.7μm程度であり、これに比べてZセンサの
位置ドリフト量及び対物レンズの焦点面ドリフトとも充
分小さく、この精度に対して特別に補正を必要とせず、
このため、従来の装置においては前記位置ドリフト補正
および前記焦点面ドリフト補正をする方法は全くとられ
ていないのが現状であった。
By the way, the positional accuracy required for the positional relationship of the focal planes of the object b and the objective lens e with respect to the detection accuracy of the conventional device is about ± 0.5 to ± 0.7 μm. The focal plane drift of the lens is sufficiently small, and no special correction is required for this accuracy,
For this reason, in the conventional apparatus, the method of performing the position drift correction and the focal plane drift correction is not taken at all.

(発明が解決しようとする問題点) しかしながら、昨今においては、被処理物bのパター
ンが微細化し微細欠陥(0.3〜0.5μm程度)を検出する
となると対物レンズeの倍率を50〜80倍と大きくしてイ
メージセンサfへ結像させる必要が出てくる。
(Problems to be Solved by the Invention) However, in recent years, when the pattern of the object to be processed b becomes fine and fine defects (about 0.3 to 0.5 μm) are detected, the magnification of the objective lens e is increased to 50 to 80 times. Then, it becomes necessary to form an image on the image sensor f.

倍率の大きな対物レンズeは極端に焦点深度が浅くな
り、たとえば焦点深度が±0.25μm程度となったりする
と従来の如く対物レンズeに固定された発光素子(LD)
gからの光をZセンサ光軸hの如く被処理物bのパター
ン面に当て反射させXYステージaの移動時のZ方向変
位による受光素子(PSD)iへの入射位置の変化に対し
ていつも最適値の所に入射するようピエゾ素子jによる
対物レンズeの上下調整(これをZ軸補正という)では
長期的に±0.25μmの焦点深度内に調整するのは困難で
ある。
The objective lens e having a large magnification has an extremely shallow depth of focus. For example, if the depth of focus is about ± 0.25 μm, the light emitting element (LD) fixed to the objective lens e as in the conventional case.
The light from g is applied to the pattern surface of the object b to be processed like the optical axis h of the Z sensor and is reflected, and the incident position on the light receiving element (PSD) i is always changed by the displacement in the Z direction when the XY stage a is moved. It is difficult to adjust within a focal depth of ± 0.25 μm in the long term by vertically adjusting the objective lens e by the piezo element j so as to enter the optimum value (this is called Z-axis correction).

それは、対物レンズe,発光素子g,受光素子iおよびそ
れらを固定している部材の温度変化に基づく熱変形があ
るためであり、たとえば装置の置かれている室温を±0.
1℃等に制御しても前記のような焦点深度内に留めるこ
とは非常に困難であった。
This is because the objective lens e, the light emitting element g, the light receiving element i, and the members fixing them are thermally deformed due to the temperature change. For example, the room temperature where the apparatus is placed is ± 0.
Even if the temperature was controlled to 1 ° C, it was very difficult to keep the depth of focus within the above range.

また、空気の屈折率変化による焦点面ドリフトとして
は大気圧変動による影響が大きく気圧変動としては通常
±25mb程度は考えられ大きな問題である。
Also, the focal plane drift due to the change in the refractive index of air is greatly affected by the atmospheric pressure fluctuation, and the atmospheric pressure fluctuation is usually about ± 25 mb, which is a serious problem.

もちろん、焦点深度を外れると欠陥検査ミスをする要
因となる。つまり、欠陥が無いのに欠陥が有ると判断す
る(疑似欠陥と呼ぶ)ことになり装置の信頼性が低下す
ることになる。
Of course, if the depth of focus is deviated, it may cause a defect inspection error. That is, it is determined that there is a defect even if there is no defect (called a pseudo defect), and the reliability of the device is reduced.

本発明は、上記事情に基づきなされたもので、その目
的とするところは、装置の要求する対物レンズの焦点面
位置と被処理物のパターン面との位置関係を常に焦点深
度以内(±0.25μm以内)に維持することができ、より
高い精度の処理を可能としたマスク/レチクル処理装置
における光軸方向位置補正方法を提供しようとするもの
である。
The present invention has been made based on the above circumstances, and an object thereof is to keep the positional relationship between the focal plane position of the objective lens required by the apparatus and the pattern surface of the object to be processed within the depth of focus (± 0.25 μm). It is intended to provide a method of correcting the position in the optical axis direction in the mask / reticle processing apparatus, which can maintain the temperature of the mask / reticle processing device with higher accuracy.

[発明の構成] (問題点を解決するための手段) 本発明は、上記問題点を解決するために、ステージ上
に載置されたマスクまたはレチクル等の被処理物に光を
照射し透過光を対物レンズで拡大してイメージセンサ上
に結像させ、この撮像データよりパターンの寸法や欠陥
を検出するとともに、ステージの移動により発生する対
物レンズと被処理物のパターン面との光軸方向距離変動
をZセンサにて測定し対物レンズと被処理物の相対位置
関係を補正しながら処理するマスク/レチクル処理装置
において、測定または検査する被処理物に描画された像
の一部であって透過率に差のある境界部分に光を投射し
かつ被処理物と対物レンズを光軸方向に微小範囲相対移
動させた時にイメージセンサにより得られた電気信号の
変化を見てパターン画と対物レンズの焦点面位置が一致
した点を知り、このとき得られたZセンサの出力を基準
として以後の対物レンズと被処理物の光軸方向の位置関
係補正を行なうようにしたものである。
[Structure of the Invention] (Means for Solving Problems) In order to solve the above problems, the present invention irradiates an object to be processed such as a mask or a reticle mounted on a stage with light and transmits the transmitted light. Is enlarged by an objective lens to form an image on an image sensor, and the dimension and defect of the pattern are detected from the imaged data, and the distance between the objective lens generated by the movement of the stage and the pattern surface of the object to be processed is measured in the optical axis direction. In a mask / reticle processing apparatus that measures changes with a Z sensor and corrects the relative positional relationship between the objective lens and the object to be processed, it is a part of the image drawn on the object to be measured or inspected and transmitted. A pattern image is obtained by observing the change in the electric signal obtained by the image sensor when light is projected on the boundary portion with a different rate and the object to be processed and the objective lens are relatively moved in the optical axis direction. Know that the focal plane position of the object lens are matched, in which to perform the positional relationship correction of the optical axis direction at this time resulting Z subsequent objective lens and the object to be treated based on the output of the sensor.

(作用) すなわち、本発明はイメージセンサに結像されるパタ
ーンのガラスとクロム等の境界部のアウトフォーカス状
態に応じてイメージセンサの出力が変化することを利用
して被処理物と対物レンズの関係を積極的に±0.2〜0.4
μm程度変化させ、ガラスとクロムの境界部に相当する
部分のイメージセンサ出力の立上り又は立下がりが最も
急峻となる点をジャストフォーカス点として記憶し、こ
の点におけるZセンサの出力を維持すべく補正するよう
にしたから、従来のようにレンズ保持体に固定された発
光素子,受光素子および光軸上の各ミラーの位置と対物
レンズの焦点位置の関係が一定としてシステムを組み込
むことにより生じる焦点面位置ずれが防止でき、より高
い精度の処理が可能となる。
(Operation) That is, the present invention utilizes the fact that the output of the image sensor changes in accordance with the out-focus state of the boundary between glass and chrome, etc., of the pattern imaged on the image sensor, and thus the object to be processed and the objective lens are Positive relationship ± 0.2 ~ 0.4
Change by about μm, and store the point where the rise or fall of the image sensor output at the portion corresponding to the boundary between glass and chrome is the sharpest as the just focus point, and correct it to maintain the output of the Z sensor at this point. Therefore, as in the conventional case, the focal plane generated by incorporating the system in which the relationship between the positions of the light-emitting element, the light-receiving element and the mirrors on the optical axis fixed to the lens holder and the focal point of the objective lens is fixed is fixed. Positional deviation can be prevented, and higher precision processing can be performed.

(実施例) 以下、本発明の一実施例を第1図ないし第5図を参照
して説明する。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 to 5.

第1図は全体構成を示し、図中1は定盤であり、この
定盤1は基台2上に緩衝装置3…を介して弾性的に支承
された状態となっている。
FIG. 1 shows the entire structure, in which 1 is a surface plate, and the surface plate 1 is elastically supported on a base 2 via shock absorbers 3.

この定盤1の上面中央部には、マスクまたはレチクル
などの被処理物4を保持するXYステージ5が搭載され
ているとともにXYステージ5の上方にはランプ6およ
び照明レンズ7を有する照明系8が支持ブラケット9を
介して取り付けられている。
An XY stage 5 for holding an object to be processed 4 such as a mask or a reticle is mounted in the center of the upper surface of the surface plate 1, and an illumination system 8 having a lamp 6 and an illumination lens 7 is provided above the XY stage 5. Are attached via a support bracket 9.

また、定盤1および基台2の上ベース部2aを貫通する
状態に対物レンズ10およびイメージセンサ11を組み込ん
だ対物本体12が設けられている。この対物本体12はピエ
ゾ素子13により上下方向に移動調整可能な構成となって
いる。
Further, an objective body 12 incorporating an objective lens 10 and an image sensor 11 is provided in a state of penetrating the surface plate 1 and the upper base portion 2a of the base 2. The objective body 12 is configured to be vertically movable by a piezo element 13.

また、上記対物本体12の上部には、上記対物レンズ10
およびイメージセンサ11からなる光学系14の他に第2図
に詳図するように発光素子(LD)15,ミラー16,ミラー1
7,ミラー18,ミラー19,および受光素子(PSD)20からな
る光学系(Zセンサ)21が組み込まれている。この光学
系21は対物レンズ10と対向する部分に開口部22aを有す
るケーシング22で囲繞された状態となっている。
Further, the objective lens 10 is provided above the objective body 12.
In addition to the optical system 14 including the image sensor 11, the light emitting element (LD) 15, the mirror 16, the mirror 1 as shown in FIG.
An optical system (Z sensor) 21 including a mirror 18, a mirror 19, and a light receiving element (PSD) 20 is incorporated. The optical system 21 is in a state of being surrounded by a casing 22 having an opening 22a in a portion facing the objective lens 10.

しかして、発光素子15より発せられた光はミラー16,1
7を介して被処理物4に導かれ、さらに、被処理物4か
らの反射光ミラー18,19を介して受光素子20のa点に入
射する。この状態が対物レンズ10の焦点面位置と被処理
物4のパターン面と一致した状態となっている。
Then, the light emitted from the light emitting element 15 is reflected by the mirrors 16, 1
The light is guided to the object to be processed 4 via 7 and is incident on the point a of the light receiving element 20 via the reflected light mirrors 18 and 19 from the object to be processed 4. This state corresponds to the focal plane position of the objective lens 10 and the pattern surface of the object to be processed 4.

次に、ステージ5上に固定している被処理物4が移動
するとステージ5の上下動または被処理物4の平面度等
により対物レンズ10と被処理物4の位置関係が変化す
る。それは、受光素子20への入射光の位置変化によって
検出される。
Next, when the workpiece 4 fixed on the stage 5 moves, the positional relationship between the objective lens 10 and the workpiece 4 changes due to the vertical movement of the stage 5 or the flatness of the workpiece 4. It is detected by the position change of the incident light on the light receiving element 20.

そこで、常に同じ位置、つまりaの位置へ入射するよ
うにピエゾ素子13への給電電圧を変化させ調整してい
る。しかし、ここで実際は被処理物4と対物レンズ10の
位置関係が変化しなくても第2図の如くミラー19が二点
鎖線で示す19′の位置に熱変形し受光素子20への入射位
置がa′の位置となると対物レンズ10をピエゾ素子13に
て駆動してa点に入射するように調整してしまい、する
と焦点位置からずれてしまうことになる。
Therefore, the feed voltage to the piezo element 13 is changed and adjusted so that the light always enters the same position, that is, the position a. However, in reality, even if the positional relationship between the object to be processed 4 and the objective lens 10 does not change, the mirror 19 is thermally deformed to the position 19 'shown by the chain double-dashed line as shown in FIG. When the position becomes a ', the objective lens 10 is driven by the piezo element 13 and adjusted so as to be incident on the point a, and then the focus position is deviated.

また、前記構成物の相対的位置関係が変化しなくても
大気圧の変化や光源の波長変動があると対物レンズの焦
点面位置がずれることになる。
Further, even if the relative positional relationship of the constituents does not change, if the atmospheric pressure changes or the wavelength of the light source changes, the focal plane position of the objective lens shifts.

これが対物レンズ10の焦点深度内であれば実用上問題
がないが、対物レンズ10の倍率が高いとその焦点深度は
極端に浅くなり問題となってくる。
If this is within the depth of focus of the objective lens 10, there is no practical problem, but if the magnification of the objective lens 10 is high, the depth of focus becomes extremely shallow, which becomes a problem.

そこで、本発明においては、現在あるシステムを大幅
に変更することなく被処理物4のパターン面と対物レン
ズ10の焦点面位置が一致した点を自動的に検出する方法
を加えることによりこの問題を解決することができるよ
うにしている。
Therefore, in the present invention, this problem is solved by adding a method for automatically detecting a point where the pattern surface of the object to be processed 4 and the focal plane position of the objective lens 10 coincide with each other without significantly changing the existing system. I am trying to solve it.

この方法を具体的に説明すると、第3図の如く被処理
物4の上方より照明光23をクロム面24とガラス面25の境
界面に投射すると対物レンズ10で拡大された照明光23′
となりイメージセンサ11上に入射する。なお、第3図に
おいては拡大した図は示さず1対1のごとく示してい
る。
This method will be described in detail. When the illumination light 23 is projected onto the boundary surface between the chrome surface 24 and the glass surface 25 from above the object 4 to be processed as shown in FIG.
Then, it is incident on the image sensor 11. It should be noted that FIG. 3 does not show the enlarged view but shows it as one-to-one.

イメージセンサ11には、図の如く複数の素子11a,11b,
11c…11dがあり、それぞれ単独に入射光量に応じた電気
信号が得られるようになっている。
The image sensor 11 includes a plurality of elements 11a, 11b,
11c ... 11d, each of which can individually obtain an electric signal corresponding to the amount of incident light.

本実施例では、この電気信号をA/D変換して0〜64の
レベルでデジタル信号が得られるようになっている。こ
の得られたデータをプロットしたものが第4図および第
5図である。つまり、ガラス面25を通過した光のレベル
は64,クロム面24を通過した光のレベルは0となる。そ
して、その中間部分は0〜64の間のデータとなり、これ
が焦点位置に被処理物4のパターン面が来ると第4図の
ごとく立上りまたは立下がりカーブが急峻となり、ずれ
ると第5図の如くなだらかなカーブとなる。
In this embodiment, this electric signal is A / D converted to obtain a digital signal at a level of 0-64. The obtained data are plotted in FIGS. 4 and 5. That is, the level of light passing through the glass surface 25 is 64, and the level of light passing through the chrome surface 24 is 0. Then, the intermediate portion becomes data between 0 and 64, and when the pattern surface of the object to be processed 4 comes to the focus position, the rising or falling curve becomes steep as shown in FIG. 4, and when it deviates, as shown in FIG. It becomes a gentle curve.

そこで、被処理物4と対物レンズ10の位置関係を積極
的にピエゾ素子13を使用して微小範囲上下させ、第4図
または第5図の如く得られたデータ(a〜gの如く0〜
64レベルのもの)をCPU(図示しない)に取込みその傾
きを計算する。そして、微小範囲(たとえば0.1μm間
隔で±0.5μmの範囲)上下させ、その中で最も急峻に
なった時に受光素子20の20′の位置に入射し、その位置
に応じた出力が受光素子20から得られたとすると、以後
は前記a′の位置に反射光が入射するようにピエゾ素子
13への給電電圧をコントロールする。
Therefore, the positional relationship between the object to be processed 4 and the objective lens 10 is positively moved up and down in a minute range by using the piezo element 13, and the data obtained as shown in FIG. 4 or FIG.
64 level) is loaded into the CPU (not shown) and the slope is calculated. Then, it is moved up and down in a minute range (for example, a range of ± 0.5 μm at intervals of 0.1 μm), and when it becomes the steepest, it is incident on the position 20 ′ of the light receiving element 20, and the output corresponding to the position is received. From the piezo element so that the reflected light is incident on the position a ′.
Control the power supply voltage to 13.

この調整を一定周期(たとえば10分毎,30分毎,被処
理物交換毎,一定の気圧変動や光源の波長変動があった
時毎等)にて必要に応じて検出し対物レンズ10の光軸方
向位置を補正していけば常に対物レンズ10の焦点深度範
囲内に被処理物4のパターン面が保持可能となる。
This adjustment is detected at regular intervals (for example, every 10 minutes, every 30 minutes, every time the object to be processed is exchanged, when there is a constant atmospheric pressure change or a wavelength change of the light source, etc.), and the light of the objective lens 10 is detected. If the axial position is corrected, the pattern surface of the object to be processed 4 can always be held within the depth of focus range of the objective lens 10.

しかして、被処理物4と対物レンズ10の相対位置変動
を測定するZセンサ位置がドリフト或いは対物レンズの
焦点面位置が変化しても一定時間毎に最適値に自動補正
することにより常に対物レンズ10の焦点深度内にパター
ン面を保持できる。
Therefore, even if the Z sensor position for measuring the relative position variation between the object to be processed 4 and the objective lens 10 drifts or the focal plane position of the objective lens changes, the objective lens is always automatically corrected to the optimum value at regular intervals. The pattern surface can be held within the depth of focus of 10.

また、ハード的には機械,電気ともに従来からあるも
のを使用し、センサ信号のカーブの傾斜を求めるソフト
および微小範囲上下させたデータを比較するソフト等を
追加するだけでよい。
In terms of hardware, conventional ones may be used for both mechanical and electrical, and software for obtaining the inclination of the curve of the sensor signal and software for comparing the data up and down the minute range may be added.

なお、他の方法として予め求めたパターン面と対物レ
ンズ10の焦点面位置が一致した時のイメージセンサ11の
立上りまたは立下りカーブと、ピエゾ素子13を使用して
対物レンズ10を移動させて得られた該カーブとを比較し
てその差が一定以下となったときを基準(一致点)とし
てそれ以降補正していく方法がある。また、マスク/レ
チクル欠陥検査装置について説明したが計測装置に適用
できることは勿論である。
As another method, a rising or falling curve of the image sensor 11 when the pattern surface obtained in advance and the focal plane position of the objective lens 10 match, and the objective lens 10 can be obtained by moving the objective lens 10 using the piezo element 13. There is a method in which the obtained curve is compared, and when the difference becomes equal to or less than a certain value, the reference (coincidence point) is used for subsequent correction. Further, the mask / reticle defect inspection apparatus has been described, but it goes without saying that it can be applied to a measurement apparatus.

その他、本発明は、本発明の要旨を変えない範囲で種
々変形実施可能なことは勿論である。
In addition, it goes without saying that the present invention can be variously modified and implemented without departing from the spirit of the present invention.

[発明の効果] 以上説明したように、本発明によれば装置の要求する
対物レンズの焦点面位置と被処理物のパターン面との位
置関係を常に焦点深度以内に維持することとができるよ
うにしたマスク/レチクル処理装置における光軸方向位
置補正方法を提供できるといった効果を奏する。
As described above, according to the present invention, the positional relationship between the focal plane position of the objective lens required by the apparatus and the pattern surface of the object to be processed can be always maintained within the depth of focus. It is possible to provide an optical axis direction position correction method in the mask / reticle processing apparatus described above.

【図面の簡単な説明】[Brief description of drawings]

第1図ないし第5図は本発明の一実施例を示すもので、
第1図はマスク/レチクル欠陥検査装置の概略的構成
図、第2図は要部の拡大図、第3図は被処理物へ光を照
射し対物レンズを通しイメージセンサへ入射した状態を
説明する説明図、第4図および第5図は得られた電気信
号を0〜64のレベルにデジタル化しプロットした図、第
6図は従来装置の概略的構成図である。 4……被処理物(マスクまたはレチクル)、5……ステ
ージ、6……ランプ、10……対物レンズ、11……イメー
ジセンサ、11a〜11d……受光素子、13……ピエゾ素子、
15……発光素子(LD)、16〜19……ミラー、20……受光
素子(PSD)、21……光学系(Zセンサ)、24……クロ
ム面、25……ガラス面。
1 to 5 show an embodiment of the present invention.
FIG. 1 is a schematic configuration diagram of a mask / reticle defect inspection apparatus, FIG. 2 is an enlarged view of a main part, and FIG. 3 illustrates a state in which light is irradiated onto an object to be processed and is incident on an image sensor through an objective lens. FIGS. 4 and 5 are diagrams in which the obtained electric signals are digitized to levels of 0 to 64 and plotted, and FIG. 6 is a schematic configuration diagram of a conventional device. 4 ... Object to be processed (mask or reticle), 5 ... Stage, 6 ... Lamp, 10 ... Objective lens, 11 ... Image sensor, 11a to 11d ... Light receiving element, 13 ... Piezo element,
15 …… Light emitting device (LD), 16 to 19 …… Mirror, 20 …… Light receiving device (PSD), 21 …… Optical system (Z sensor), 24 …… Chrome surface, 25 …… Glass surface.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ステージ上に載置されたマスクまたはレチ
クル等の被処理物に光を照射し透過光を対物レンズで拡
大してイメージセンサ上に結像させ、この撮像データよ
りパターンの寸法や欠陥を検出するとともに、対物レン
ズと被処理物のパターン面との光軸方向距離変動をZセ
ンサにて測定し対物レンズと被処理物の相対位置関係を
補正しながら処理するマスク/レチクル処理装置におい
て、測定または検査する被処理物に描画された像の一部
であって透過率に差のある境界部分に光を投射しかつ被
処理物と対物レンズを光軸方向に微小範囲相対移動させ
た時にイメージセンサにより得られた電気信号の変化を
見てパターン画と対物レンズの焦点面位置が一致した点
を知り、このとき得られたZセンサの出力を基準として
それ以降の対物レンズと被処理物の光軸方向の位置関係
補正を行なうことを特徴とするマスク/レチクル処理装
置における光軸方向位置補正方法。
1. An object to be processed such as a mask or a reticle placed on a stage is irradiated with light, the transmitted light is enlarged by an objective lens to form an image on an image sensor, and the pattern size and A mask / reticle processing apparatus that detects a defect and measures the distance variation in the optical axis direction between the objective lens and the pattern surface of the object to be processed with a Z sensor and corrects the relative positional relationship between the objective lens and the object to be processed. , The light is projected on the boundary part of the image drawn on the object to be measured or inspected, which has a difference in transmittance, and the object and the objective lens are relatively moved in a small range in the optical axis direction. At that time, by observing the change in the electric signal obtained by the image sensor, the point where the pattern image coincides with the focal plane position of the objective lens is known, and the output of the Z sensor obtained at this time is used as a reference for the subsequent objective laser. The optical axis direction position correcting method in the mask / reticle processing device and performing's and positional relationship correction of the optical axis of the object.
【請求項2】イメージセンサは、複数個の受光素子から
なり受光すると受光量に応じた電気信号が得られること
を特徴とする特許請求の範囲第1項記載のマスク/レチ
クル処理装置における光軸方向位置補正方法。
2. An optical axis in a mask / reticle processing apparatus according to claim 1, wherein the image sensor comprises a plurality of light receiving elements, and when receiving light, an electric signal according to the amount of received light is obtained. Directional position correction method.
【請求項3】パターン面と対物レンズの焦点面位置の一
致した点の検出方法としてパターン面の像の透過率の差
によるイメージセンサの電気信号の立上りまたは立下が
りが最も急峻となる点またはその近傍とすることを特徴
とする特許請求の範囲第2項記載のマスク/レチクル処
理装置における光軸方向位置補正方法。
3. As a method of detecting a point where the pattern surface and the focal plane position of the objective lens coincide with each other, a point at which the rise or fall of the electric signal of the image sensor due to the difference in the transmittance of the image on the pattern surface becomes the steepest or its point. The optical axis direction position correcting method in the mask / reticle processing apparatus according to claim 2, wherein the method is in the vicinity.
【請求項4】パターン面と対物レンズの焦点面位置の一
致した点の検出方法としてイメージセンサより得られた
電気信号と既知のジャストフォーカス時のイメージセン
サの電子信号とを比較することにより得ることを特徴と
する特許請求の範囲第2項記載のマスク/レチクル処理
装置における光軸方向位置補正方法。
4. A method for detecting a point where the pattern surface and the focal plane position of the objective lens coincide with each other, which is obtained by comparing an electric signal obtained from the image sensor with a known electronic signal of the image sensor at just focus. An optical axis direction position correction method in a mask / reticle processing apparatus according to claim 2.
JP62071637A 1987-03-27 1987-03-27 Optical axis direction position correction method in mask / reticle processing apparatus Expired - Lifetime JP2534699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62071637A JP2534699B2 (en) 1987-03-27 1987-03-27 Optical axis direction position correction method in mask / reticle processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62071637A JP2534699B2 (en) 1987-03-27 1987-03-27 Optical axis direction position correction method in mask / reticle processing apparatus

Publications (2)

Publication Number Publication Date
JPS63240180A JPS63240180A (en) 1988-10-05
JP2534699B2 true JP2534699B2 (en) 1996-09-18

Family

ID=13466361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62071637A Expired - Lifetime JP2534699B2 (en) 1987-03-27 1987-03-27 Optical axis direction position correction method in mask / reticle processing apparatus

Country Status (1)

Country Link
JP (1) JP2534699B2 (en)

Also Published As

Publication number Publication date
JPS63240180A (en) 1988-10-05

Similar Documents

Publication Publication Date Title
US5153916A (en) Method and apparatus for detecting focal plane
US5144363A (en) Apparatus for and method of projecting a mask pattern on a substrate
KR100632427B1 (en) Method and apparatus for repeatedly projecting a mask pattern using time-saving height measurement
US6287734B2 (en) Exposure method
KR100266729B1 (en) Surface position detecting method and scanning exposure method using the same
KR920016864A (en) Method and apparatus for repetitively imaging mask pattern
US4468565A (en) Automatic focus and deflection correction in E-beam system using optical target height measurements
JP2003066341A (en) Reticle inspection device
GB2183418A (en) Determining distance to a surface
WO2000067065A1 (en) Optical metrology device for precision angular measurement of a pointing mirror
US11754934B2 (en) Projection exposure apparatus for semiconductor lithography having an optical element with sensor reference and method for aligning the sensor reference
WO2017206755A1 (en) Focusing and leveling measurement device and method
JPH0743245B2 (en) Alignment device
JP2534699B2 (en) Optical axis direction position correction method in mask / reticle processing apparatus
JPS6336526A (en) Wafer exposure equipment
US7361921B2 (en) Device and method for plane-parallel orientation of a the surface of an object to be examined in relation to a focus plane of a lens
JPH05312538A (en) Three-dimensional shape measuring instrument
KR100854222B1 (en) Exposure apparatus
JPH09199573A (en) Positioning stage apparatus and aligner using the same
US20240110879A1 (en) Substrate test apparatus and method
CN102346384A (en) Method for regulating optimum focal plane for silicon chip and exposure device thereof
JPS61181127A (en) Automatic correction mechanism of optical system
JPH1068602A (en) Shape measuring apparatus
JPH01292206A (en) Surface condition measuring apparatus for object
CN115406905A (en) Defect detection device and correction method for defect detection

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070627

Year of fee payment: 11