JPH0353215A - Exit optical device - Google Patents

Exit optical device

Info

Publication number
JPH0353215A
JPH0353215A JP1188475A JP18847589A JPH0353215A JP H0353215 A JPH0353215 A JP H0353215A JP 1188475 A JP1188475 A JP 1188475A JP 18847589 A JP18847589 A JP 18847589A JP H0353215 A JPH0353215 A JP H0353215A
Authority
JP
Japan
Prior art keywords
optical device
opening
collimator lens
aperture
variance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1188475A
Other languages
Japanese (ja)
Inventor
Jun Azuma
吾妻 純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1188475A priority Critical patent/JPH0353215A/en
Publication of JPH0353215A publication Critical patent/JPH0353215A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Printer (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Fax Reproducing Arrangements (AREA)
  • Optical Head (AREA)
  • Dot-Matrix Printers And Others (AREA)

Abstract

PURPOSE:To eliminate the variance of a size of an image forming spot diameter, while suppressing a light quantity loss of providing an opening corresponding to about half value width of an exit beam by a light source, and controlling the variance of a size of the spot diameter on an irradiated body, caused by the variance of an angle distribution of broadening of the exit beam by the light source. CONSTITUTION:On the light beam exit side of a collimator lens 2, an opening 14 is formed by vacuum vapor deposition, and as for the opening 14, shapes like a square slit, a round slot and an ellipse corresponding to within about half value width of a far field pattern (broadening angle distribution) of a semiconductor laser 1 are provided. Accordingly, while suppressing a light quantity loss, the variance of a size of the image forming spot diameter on the irradiates body caused by the variance of a broadening angle is controlled with accuracy of the opening 14. In such a way, the variance of a size of the image forming spot diameter is suppressed with a small light quantity loss.

Description

【発明の詳細な説明】 [産業状の利用分野J 本発明は,画像信号により変調されたレーザービームを
記録媒体上に走査して画像を記録する装置などに用いら
れるレーザービームコリメータユニットや半導体レーザ
ーを用いた光ディスク用のピックアップユニットなどの
射出光学装置に関する. 〔従来の技術] 近年、レーザービームを走査して画像の記録を行なうレ
ーザービームプリンタ等の記録装置が広く使用されてい
る. 以下,従来の画像記録装置に用いられているレーザー走
査装置について第14図に沿って説明する. 第14図の概略構成図において.41は半導体レーザー
,42はコリメーターレンズ、43は偏向器であるポリ
ゴンミラー、44は結像光学系、45は2[l!録媒体
である感光ドラムであり,画像信号により変調された半
導体レーザー4lからのビームはコ・リメーターレンズ
42により平行光とされ、偏向器43により偏向されて
結像レンズ44によって記録媒体45上に結像して走査
される. ここにおいて、半導体レーザー41の光導波路のIII
造は第15図に示す如くなっており、レーザービームの
出射パターンは方向性(すなわち横方向分布より縦方向
分布の方が長い)を持っている.従って、汎用の半導体
レーザー4lの出射パターンは楕円錘状に広がり、そし
てレーザービームの広がり角にはバラツキがある. よって、第14図に示す如き構成のレーザービームプリ
ンタに、何の工夫もなしにこうした半導体レーザーを光
源として用いると、光ビームの広がり角度のバラッキに
より結像スポットの大きさもバラッキを有することにな
るので、これを防ぐべくコリメーターレンズ42の後に
ビーム整形用の開口48を設けている. 上記の如き従来の構成において、開口48は第l6図に
示す様に、楕円断面形状の光ビームの横方向光量分布(
楕円の短径方向)の半値幅以下の円形開口とするのが一
般的である. [発明が解決しようとする課題] しかし乍ら、こうした従来構成では、円形開口48が第
l6図(b)から分かる様にビームの縦方向分布(楕円
の長径方向)のがなりの部分を遮蔽することになり,光
ビームの光量ロスは相当なものとなる. こうした光量ロスは、特に高速印字出力が要求されるレ
ーザービームプリンタなどで問題となる。すなわち、光
ビームの走査スピードが速くなり、感光体ドラムの感度
に限界がある場合、半導体レーザーの光量を上げる必要
があるが、量産の半導体レーザーの定格出力値は5mW
であるのでこれには限界がある.よって、半導体レーザ
ーからのビームの光量ロスは出来る限り少なくするのが
望ましいのである. 他方,光量ロスを少なくする為に円形開口48の開口径
を光ビームの縦方向分布(楕円の長径方向)の径よりも
大きくすると、光量のロスは確かに抑えられるが,感光
ドラム45上で所定のビームスポット径に収める為には
、光ビームの横方向分布の広がり角のバラツキが開口で
は補正出来なくなっているのでこのベラツキを厳しく制
限しなければならなくなる.こうしたことは,前述した
様に、仲々困難であり、そもそも開口を設けた意義が半
減されてしまう. 更に,第17図で示す様に,半導体レーザー41の取り
付け角度が光ビームの主走査方向に対してバラックと,
結像スポット径も第17図(a)の如く傾き,製品毎に
、走査ラインの太さ(dやacosθで示す)のバラツ
キが生じて問題になる。
[Detailed Description of the Invention] [Industrial Application Field J] The present invention is applicable to laser beam collimator units and semiconductor lasers used in devices that record images by scanning a laser beam modulated by an image signal onto a recording medium. This article relates to an ejection optical device such as a pickup unit for optical discs using [Prior Art] In recent years, recording devices such as laser beam printers that record images by scanning laser beams have been widely used. A laser scanning device used in a conventional image recording device will be explained below with reference to FIG. In the schematic configuration diagram shown in Fig. 14. 41 is a semiconductor laser, 42 is a collimator lens, 43 is a polygon mirror which is a deflector, 44 is an imaging optical system, 45 is 2 [l! A photosensitive drum is a recording medium, and a beam from a semiconductor laser 4l modulated by an image signal is made into parallel light by a collimator lens 42, deflected by a deflector 43, and then directed onto a recording medium 45 by an imaging lens 44. The image is focused on and scanned. Here, III of the optical waveguide of the semiconductor laser 41
The structure is as shown in Figure 15, and the laser beam emission pattern has directionality (that is, the vertical distribution is longer than the horizontal distribution). Therefore, the emission pattern of the general-purpose semiconductor laser 4l spreads out in the shape of an ellipsoid, and the spread angle of the laser beam varies. Therefore, if such a semiconductor laser is used as a light source in a laser beam printer having the configuration shown in FIG. 14 without any modifications, the size of the imaged spot will also vary due to the variation in the spread angle of the light beam. Therefore, in order to prevent this, an aperture 48 for beam shaping is provided after the collimator lens 42. In the conventional configuration as described above, the aperture 48 has a lateral light intensity distribution (
It is common to use a circular aperture whose width is less than the half-width in the short axis direction of the ellipse. [Problems to be Solved by the Invention] However, in such a conventional configuration, as can be seen from FIG. As a result, the loss of light intensity of the light beam becomes considerable. This loss of light amount is particularly problematic in laser beam printers that require high-speed printing output. In other words, when the scanning speed of the light beam increases and the sensitivity of the photoreceptor drum is limited, it is necessary to increase the light intensity of the semiconductor laser, but the rated output value of a mass-produced semiconductor laser is 5 mW.
Therefore, there is a limit to this. Therefore, it is desirable to minimize the loss of light intensity of the beam from the semiconductor laser. On the other hand, if the aperture diameter of the circular aperture 48 is made larger than the diameter of the longitudinal distribution of the light beam (in the long axis direction of the ellipse) in order to reduce the loss of light quantity, the loss of light quantity can certainly be suppressed; In order to keep the beam spot diameter within a predetermined range, the variation in the spread angle of the lateral distribution of the light beam cannot be corrected by the aperture, so this variation must be strictly limited. As mentioned above, this is extremely difficult, and the purpose of providing an opening in the first place is halved. Furthermore, as shown in FIG. 17, the mounting angle of the semiconductor laser 41 is different from that of the barracks with respect to the main scanning direction of the light beam.
The diameter of the imaged spot is also tilted as shown in FIG. 17(a), and the thickness of the scanning line (indicated by d and acos θ) varies from product to product, which becomes a problem.

従一)で.本発明の目的は、上記課題を解決すべく、光
量ロスを抑えつつ光源からの光束の広がり角度のバラツ
キによる結像スポット径の大きさのバラツキをなくした
射出光?装置を提供することにある。
Juichi). An object of the present invention is to solve the above-mentioned problems by emitting light that eliminates variations in the size of the imaging spot due to variations in the spread angle of the light beam from the light source while suppressing the loss of light quantity. The goal is to provide equipment.

また、更に射出ビームの回転位相を制御出来る様にした
射出光学装置を提供することち本発明の目的である. [3題を解決する為の千段j 上記目的を達成する為の本発明では、半導体レーザーな
どの光源とこの光源からのビームを平行光ビームとする
光学系を有する射出光学装置において,光源による射出
ビームの略半値幅に対応する開口が設けられ、光源によ
る射出ビームの広がり角度分布のバラツキによる被照射
体上のスポット径の大きさのバラツキを規制している. 開口が設けられる個所としては種々あり得て、コリメー
ターレンズ上に直接設けたり、鏡筒や、コリメーターレ
ンズを鏡簡内に固定する押え■=などに設けられたりす
る。
Another object of the present invention is to provide an injection optical device that can control the rotational phase of the injection beam. [A Thousand Steps to Solve the Three Problems] In order to achieve the above object, the present invention provides an injection optical device having a light source such as a semiconductor laser and an optical system that converts the beam from the light source into a parallel light beam. An aperture corresponding to approximately the half-width of the emitted beam is provided to control variations in the spot diameter on the irradiated object due to variations in the spread angle distribution of the emitted beam due to the light source. The opening can be provided in various places, such as directly on the collimator lens, in the lens barrel, or in the presser foot for fixing the collimator lens inside the mirror.

[作用】 本発明の構成では、半導体レ・−ザーなどの光源のファ
ーフィールドパターン(広がり角度分布)の略半値幅に
対応する開口で射出ビームの広がり角度分布のバラツキ
を規制しているので、光量ロスを抑えると共に、被照射
体上の結像スポット径の大きさのバラツキを開口の精度
で規制することを可能にしている[実施例】 第1図は本発明の第1実施例を示す.このレーザー射出
装置の概略構成図において、lは半導体レーザー、2は
コリメーターレンズ,3は平導体レーザー1を支持する
基台、4は半導体レーザー1を基台3に固定するバネ、
5はコリメーターレンズ2を支持する鏡筒、6は鏡筒5
を支持するホルダー,7は走査光学装置の一部である. バネ4はネジ10によって基台3に固定され,バネ4の
爪4aに半導体レーザーlの位置決め溝1aが係合する
ことで該レーザーの位相が決定される.固定バネ4゛の
位相は基台3に設けられた位置決めピン3aで決定され
る. コリメーターレンズ2と半導体レーザーlはビントm整
が必要である為,鏡筒5はホルダー6の内部で光軸方向
(Z方向)に移動可能であり,調整後、鏡筒5はホルダ
ー6に対して接着剤によって固定されるs6aはこの接
着剤の注大穴である.また,コリメーターレンズ2と半
導体レーザーlは,光軸同志の合わせ込みの調整が必要
であり、その為に基台3とホルダー6はxY面内で移動
可能であり、a整後、基台3とボルダー6はネジ13で
固定される. コリメーターレンズ2の光ビーム射出側には、真空Ml
により開口l4が形成されている.開口l4は半導体レ
ーザー1に対して位相を決めなければならないので、コ
リメーターレンズ2の形状はレンズ2の非有効領域がD
字型にカットされている.そして、鏡筒5にもコリメー
ターレンズ2のD字型と嵌合するD字型の穴が形成され
て、コリメーターレンズ2との間で位相決めが行なわれ
、結局、開口14と半導体レーザーlとの間の位相決め
が行なわれる様になっている. 更に、レーザー射出装置20を走査光学装置7に固定す
る為に、基台3とホルダー6には、夫々,貫通穴3b,
6bが設けられている.これらの穴3b.6bを固定ネ
ジl5が通り更に走査光学装置7に螺入されることで、
レーザー射出装置20が走査光学装置7に固定される. レーザー射出装置20の位置決めは、位置決めビンl6
がホルダー6の穴6cと基台3の穴3Cに嵌合されるこ
とで行なわれる.以上の瞬成の第1実施例において,開
口l4と半導体レーザーlどの位相決めは、コリメータ
ーレンズの調整ジグ(不図示)によって行なわれる.即
ち、レーザー射出装置lをコリメーターレンズのA整ジ
グに固定するには、射出装置lの貫通穴3b.・6bに
ネジを通して固定する。位置決めは、コリメーターレン
ズの調整ジグに設けられた位置決めビンとホルダー6の
穴6cによって行なわれる。
[Function] In the configuration of the present invention, variations in the spread angle distribution of the emitted beam are regulated by the aperture corresponding to approximately the half-width of the far field pattern (spread angle distribution) of a light source such as a semiconductor laser. In addition to suppressing the loss of light amount, it is possible to control the variation in the diameter of the imaged spot on the object to be irradiated with the accuracy of the aperture [Example] Fig. 1 shows the first example of the present invention. .. In the schematic configuration diagram of this laser emitting device, l is a semiconductor laser, 2 is a collimator lens, 3 is a base that supports the flat conductor laser 1, 4 is a spring that fixes the semiconductor laser 1 to the base 3,
5 is a lens barrel that supports the collimator lens 2, and 6 is a lens barrel 5.
The holder 7 that supports the is a part of the scanning optical device. The spring 4 is fixed to the base 3 with a screw 10, and the positioning groove 1a of the semiconductor laser 1 engages with the claw 4a of the spring 4, thereby determining the phase of the laser. The phase of the fixed spring 4' is determined by a positioning pin 3a provided on the base 3. Since the collimator lens 2 and the semiconductor laser l require bin adjustment, the lens barrel 5 is movable in the optical axis direction (Z direction) inside the holder 6, and after adjustment, the lens barrel 5 is moved to the holder 6. On the other hand, s6a, which is fixed with adhesive, is a large hole for this adhesive. In addition, the collimator lens 2 and the semiconductor laser l require adjustment to align the optical axes with each other, and for this purpose the base 3 and holder 6 are movable within the xY plane. 3 and boulder 6 are fixed with screws 13. A vacuum Ml is provided on the light beam exit side of the collimator lens 2.
An opening l4 is formed by this. Since the aperture l4 must determine the phase with respect to the semiconductor laser 1, the shape of the collimator lens 2 is such that the ineffective area of the lens 2 is D.
It is cut into a letter shape. A D-shaped hole is also formed in the lens barrel 5 to fit with the D-shape of the collimator lens 2, and the phase is determined between the collimator lens 2 and the aperture 14 and the semiconductor laser. The phase between the two is determined. Furthermore, in order to fix the laser emitting device 20 to the scanning optical device 7, the base 3 and the holder 6 are provided with through holes 3b and 6, respectively.
6b is provided. These holes 3b. By passing the fixing screw l5 through 6b and screwing it into the scanning optical device 7,
A laser emitting device 20 is fixed to the scanning optical device 7. The positioning of the laser emitting device 20 is performed using the positioning bin l6.
This is done by fitting the hole 6c of the holder 6 and the hole 3C of the base 3. In the first embodiment of instant formation described above, the phases of the aperture l4 and the semiconductor laser l are determined by a collimator lens adjustment jig (not shown). That is, in order to fix the laser emitting device l to the A alignment jig of the collimator lens, the through hole 3b. - Pass the screw through 6b and fix it. Positioning is performed using a positioning bin provided on the adjustment jig of the collimator lens and the hole 6c of the holder 6.

以上により、半導体レーザー1が既にホルダー6に対し
て位相決めされているので、該レーザーlはコリメータ
ーレンズの調整ジグに対して位相が決められる. 一方,開口l4のコリメーターレンズの調整ジグに対す
る位相決めは次の様に行なわれる.コリメーターレンズ
2のピント調整は、鏡筒5を光軸方向に調整ジグのアク
チュエーターによって移動することで行なわれるが,こ
のアクチュエーターのM筒5とのアタッチメント部に、
鏡筒5の溝5aの形状と嵌合する突起を設けることで,
開口l4のコリメーターレンズの調撃ジグに対する位相
が決められる。
As described above, since the phase of the semiconductor laser 1 has already been determined with respect to the holder 6, the phase of the laser 1 is determined with respect to the adjustment jig of the collimator lens. On the other hand, the phase of the collimator lens of the aperture l4 with respect to the adjustment jig is determined as follows. Focus adjustment of the collimator lens 2 is performed by moving the lens barrel 5 in the optical axis direction using an actuator of an adjustment jig.
By providing a protrusion that fits into the shape of the groove 5a of the lens barrel 5,
The phase of the collimator lens of the aperture l4 with respect to the adjustment jig is determined.

以上により,コリメーターレンズの調整ジグを媒介とし
て半導体レーザーlと開口l4の位相が決定されること
になる. 上記間口l4は、第2図(a)、(b)、(C)に示す
様に、半導体レーザー1のファーフィールドパターン(
広がり角度分布)の略半{di幅以内に対応する方形ス
リット状、丸長穴状、楕円状の形状を有し、これにより
光量ロスを抑えつつ上記広がり角度のバラツキによる被
照射体上の結像スポット径の大きさのバラッキが開口1
4の精度で規制されることになる. 上記実施例では、蒸着で開口l4を形成していたが,第
3図(a)、(b)、(c)で示す様な他の方法でも形
成され得る.即ち、第3図(a)では,開口l4を、ガ
ラスレンズ2の面の中央部を研磨によって仕上げること
で形成し,その外側を地肌面のままにしている.こうし
て開ロ一体のコリメーターレンズ2を形成している. 第31E (b)では、コリメーターレンズ2を樹脂モ
ールド成型する場合において、開口l4の外側にシボ打
ち仕上を施している。第3図(C)では、開口l4を持
つ部材をアウトサート成型で作成することで、開口l4
を形成している. 上記第1と第2実施例では開口l4とコリメーターレン
ズ2を一体に形成していたが、第4図の第3実施例では
これらは別体に構成されている. 第4図において、23はコリメーターレンズ2を鏡筒5
に固定する為の押え環であり、鏡筒5の内部に形成され
た突き当て部(不図示冫にコリメーターレンズ2の球面
形状面と反対側の面を押し当てることによりコリメータ
ーレンズ2を固定する。コリメーターレンズ2は一般に
球面レンズの場合が多く、開口l4側は球面形状となっ
ている。従って,開口l4が楕円形状の場合,そのまま
、コリメーターレンズ2と押え環23の開口l4を当接
させると,2点接触となってコリメーターレンズ2の固
定が不安定となるので,楕円開口の場合は、その周囲に
円形の・面取り加工部24を形成してコリメーターレン
ズ2が安定して固定される様にしている. 鏡筒5に対して押え環23を固定する方法としては,押
え環23の外径部と鏡筒5の内径部にネジ加工を施して
ネジ固定でもよいし、接着剤による接着固定でもよい.
また、材質を樹脂モールドにして、弾性によって鏡筒5
と押え環23を固定してもよい. 尚、第4図において、23aは前述の調整ジグのアクチ
ュエータのアタッチメント部と係合する溝である.他の
点は第1図の第1実施例と同じである. 第5図はレーザー射出装置の第4実施例を示す. 開口l4の1法は被照射体上の結像スポット径に影響し
、高い寸法精度が必要となる.更に,開口l4の形状が
楕円などの非円形状の場合、高度な加工が必要となる。
As described above, the phases of the semiconductor laser l and the aperture l4 are determined using the adjustment jig of the collimator lens. As shown in FIGS. 2(a), (b), and (C), the above-mentioned frontage l4 corresponds to the far field pattern (
It has a rectangular slit shape, a round oblong hole shape, and an elliptical shape that correspond to approximately half {di width of the spread angle distribution), thereby suppressing the loss of light amount and preventing condensation on the irradiated object due to the above-mentioned spread angle variation. The variation in the image spot diameter is due to the aperture 1.
It will be regulated with an accuracy of 4. In the above embodiment, the opening l4 was formed by vapor deposition, but it can also be formed by other methods as shown in FIGS. 3(a), (b), and (c). That is, in FIG. 3(a), the aperture l4 is formed by polishing the central part of the surface of the glass lens 2, leaving the outer surface as a bare surface. In this way, a collimator lens 2 with an open opening is formed. In No. 31E (b), when the collimator lens 2 is molded with resin, a textured finish is applied to the outside of the opening l4. In FIG. 3(C), by creating a member with an opening l4 by outsert molding, the opening l4
is formed. In the first and second embodiments described above, the aperture l4 and the collimator lens 2 are integrally formed, but in the third embodiment shown in FIG. 4, they are constructed separately. In FIG. 4, 23 indicates the collimator lens 2
It is a presser ring for fixing the collimator lens 2 to the abutment part (not shown) formed inside the lens barrel 5 by pressing the surface opposite to the spherical surface of the collimator lens 2. The collimator lens 2 is generally a spherical lens, and the aperture l4 side has a spherical shape. Therefore, if the aperture l4 is elliptical, the collimator lens 2 and the aperture l4 of the holding ring 23 If the apertures are brought into contact with each other, there will be a two-point contact and the fixation of the collimator lens 2 will become unstable. Therefore, in the case of an elliptical aperture, a circular/chamfered part 24 is formed around the aperture so that the collimator lens 2 can be fixed. The holding ring 23 can be fixed stably to the lens barrel 5 by machining screws on the outer diameter of the holding ring 23 and the inner diameter of the lens barrel 5. Alternatively, it may be fixed with adhesive.
In addition, the material is made of resin mold, and the lens barrel 5 is made of elastic material.
The presser ring 23 may also be fixed. In addition, in FIG. 4, 23a is a groove that engages with the attachment portion of the actuator of the aforementioned adjustment jig. Other points are the same as the first embodiment shown in FIG. Figure 5 shows a fourth embodiment of the laser injection device. The first method of aperture l4 affects the diameter of the imaged spot on the irradiated object and requires high dimensional accuracy. Furthermore, if the opening l4 has a non-circular shape such as an ellipse, advanced processing is required.

そこで、第4実施例では鏡筒を樹脂モールドで一体成型
するものである. しかし、樹脂は熱膨張率が大きくレーザー射出装置を取
り巻く温度環境の変化でビントずれを起こす危険性が高
い.従って,第4実施例では、開口l4の周りの部分だ
け樹脂モールド部材27で作り、その外周を金属部材2
8でアウトサート成型している.これにより、鏡筒全体
を樹脂モールドで形成するのに比して性能が更に安定す
る. この樹脂モールド部材27は金属部材28に接着固定し
たり、或は弾性を利用して固定しても良い. コリメーターレンズ2を金属部材28に固定する方法と
しては、第4図に示すような押さえ環方式でもよいし、
瞬間接着剤や紫外線硬化型接着剤などによる接着固定で
ちよい。
Therefore, in the fourth embodiment, the lens barrel is integrally molded with a resin mold. However, resin has a large coefficient of thermal expansion, and there is a high risk of the bottle becoming misaligned due to changes in the temperature environment surrounding the laser injection equipment. Therefore, in the fourth embodiment, only the part around the opening l4 is made of the resin molded member 27, and the outer periphery is made of the metal member 27.
8 is outsert molded. This results in more stable performance compared to forming the entire lens barrel with a resin mold. This resin molded member 27 may be fixed to the metal member 28 by adhesive, or may be fixed using elasticity. As a method of fixing the collimator lens 2 to the metal member 28, a holding ring method as shown in FIG. 4 may be used,
It can be easily fixed using instant adhesive or ultraviolet curing adhesive.

この場合、接着剤のコリメーターレンズ2の機能部への
回り込みを防止する為に、第6図に示すように鏡筒を構
成する金属部材28に接着溝28aを設けると良い.こ
の接着溝28aは第7図に示す様にコリメ・一ターレン
ズ2に段部を設けてコリメーターレンズ2側に設けても
良い. 第8図はレーザー射出装置の第5実施例を示す.第5実
施例では,開口30を半導体レーザーlのカバーガラス
に形成している.半導体レーザー1より射出される光ビ
ームは楕円錐状に広がっているのであるが,このカバー
ガラスに、光ビームの広がりを円錐状に補正する開口3
0を設けることによってビーム整形をしている.開口3
0は,カバーガラスにエッチング,蒸着してもよいし、
或はキャップ部材によって形成しても良い. 第9図は第6実施例を示す.この実施例では,開口l4
をコリメーターレンズ2の押さえ環32に形成している
.開口l4とコリメーターレンズ2の同軸度は被明射体
上の結像スポット径に影響し,高い寸法精度が必要であ
るので、第6実施例では、押さえ環32にガイド部32
aを設け、このガイド部32aを鏡筒本体部33の内径
部に形゛成した円筒六部33aに嵌合させることにより
、開口l4とコリメーターレンズ2の同軸度を保証して
いる. 第10図は第7実施例を示す.この実施例では、楕円開
口は加工が難しいので,開口l4をプレス部品35に形
成して仕上げられている.この場合,開口14の形成さ
れたプレス部品35とコリメーターレンズ2の同軸度を
保証する為に,鏡筒本体部36側にコリメーターレンズ
2とプレス部品35の取り付け固定部が形成されている
.コリメーターレンズ2と開口l4のあるプレス部品3
5は、鏡筒に対して、接着固定されても良いし、押さえ
環37によって押さえ込んでち良い。
In this case, in order to prevent the adhesive from entering the functional parts of the collimator lens 2, it is preferable to provide an adhesive groove 28a in the metal member 28 constituting the lens barrel, as shown in FIG. The adhesive groove 28a may be provided on the collimator lens 2 side by providing a stepped portion in the collimator lens 2 as shown in FIG. Figure 8 shows a fifth embodiment of the laser injection device. In the fifth embodiment, an aperture 30 is formed in the cover glass of the semiconductor laser l. The light beam emitted from the semiconductor laser 1 is spread out in an elliptical cone shape, and the cover glass has an aperture 3 that corrects the spread of the light beam into a cone shape.
The beam is shaped by setting 0. opening 3
0 may be etched or deposited on the cover glass, or
Alternatively, it may be formed by a cap member. Figure 9 shows the sixth embodiment. In this example, the aperture l4
is formed on the holding ring 32 of the collimator lens 2. The degree of coaxiality between the aperture l4 and the collimator lens 2 affects the diameter of the imaged spot on the object to be illuminated, and high dimensional accuracy is required.
The coaxiality of the aperture l4 and the collimator lens 2 is ensured by fitting this guide portion 32a into a cylindrical six portion 33a formed on the inner diameter portion of the lens barrel body portion 33. Figure 10 shows the seventh embodiment. In this embodiment, since an elliptical opening is difficult to process, an opening l4 is formed in the press part 35 and finished. In this case, in order to ensure coaxiality between the press part 35 in which the opening 14 is formed and the collimator lens 2, a fixing part for attaching the collimator lens 2 and the press part 35 is formed on the lens barrel body 36 side. .. Pressed part 3 with collimator lens 2 and aperture l4
5 may be adhesively fixed to the lens barrel, or may be held down by a holding ring 37.

第11図は第8実施例を示す.この実流例では、開口1
4を鏡筒38に形成し、コリメーターレンズ2の押さえ
環39を光入射側に組み込んでいる.開口l4の厚さt
は内壁での反射を防止する上からも薄いことが望ましい
. ところで,レーザービームプリンタなどでは紙の送り方
向(副走査方向)に送りムラが生じ易いので,円形ビー
ムのままでは第l2図に示す様に走査ビッチムラが生じ
る.そこで、第13図に示す様に、紙の送り方向(副走
査方向)の結像スポット径を主走査方向の径に対して大
きくすることが考えられる.これは、半導体レーザーl
のファーフィールドパターン(広がり角度分布)と開口
l4の方向を規制し,結像スポット位置で,紙の送り方
向(副走査方向)の結像スポット径を主走査方向の径に
対して大きくして,紙の送り方向(副走査方向)に生じ
る送りムラを目立たなくするものである. 上記実廁例は、レーザー光の主走査方向に対して,半導
体レーザーlの広がり角度及び開口l4の回転方向を規
制する手段を有している.即ち、射出光学装置から射出
される楕円ビームの、該装置を取り付けるハウジングに
対する回転位相決めをする手・段が、コリメーターレン
ズまたはコリメーターレンズの鏡筒(第1図に示す満5
aなど)、または鏡簡の押さえ環(第4図に示す溝23
aなど)、または鏡筒の開口部の一部に設けられ、更に
鏡筒のホルダー(第1図の穴6bなど)や半導体レーザ
ー(第1図の満1aなど)や半導体レーザーの基台(第
1図の穴3bなど)に設けられている. [発明の効果] 以上説明した様に、・本発明によれば,コリメーターレ
ンズの光ビーム出射側に、半導体レーザーなどの光源の
ファーフィールドパターン(広がり角度分布)の略半値
幅以内に対応する高精度な開口(楕円、丸長大、方形ス
リット状等)を設けるので、広がり角度分布のバラツキ
による結像スポット径の大きさのバラツキを光量ロス少
なく抑えられる.また,広がり角度分市と開口の方向を
主走査方向に対し.て規制し、結像スボッ1・の傾きを
規制してバラツキの少ないスポット径を得られる様にし
ている. 更に、楕円開口によって、結像位置において紙の送り方
向(副走査方向)の結像スポット径を主走査方向の径に
対して大きくすることにより.紙の送り方向(副走査方
向)に生じる送りムラを目立たなくしている.
Figure 11 shows the eighth embodiment. In this actual flow example, opening 1
4 is formed on the lens barrel 38, and a retaining ring 39 of the collimator lens 2 is incorporated on the light incident side. Thickness t of opening l4
It is desirable that the material be thin in order to prevent reflections on the inner wall. By the way, in laser beam printers etc., feeding unevenness tends to occur in the paper feeding direction (sub-scanning direction), so if the circular beam is used as is, scanning pitch unevenness will occur as shown in Figure 12. Therefore, as shown in FIG. 13, it is conceivable to make the imaging spot diameter in the paper feeding direction (sub-scanning direction) larger than the diameter in the main-scanning direction. This is a semiconductor laser
The far field pattern (spread angle distribution) and the direction of the aperture l4 are regulated, and at the imaging spot position, the imaging spot diameter in the paper feeding direction (sub-scanning direction) is made larger than the diameter in the main scanning direction. , which makes feeding unevenness that occurs in the paper feeding direction (sub-scanning direction) less noticeable. The above practical example has means for regulating the spread angle of the semiconductor laser l and the rotational direction of the aperture l4 with respect to the main scanning direction of the laser beam. That is, the means for determining the rotational phase of the elliptical beam emitted from the exit optical device with respect to the housing in which the device is attached is a collimator lens or a lens barrel of the collimator lens (as shown in FIG. 1).
a), or the holding ring of the mirror slip (groove 23 shown in Fig. 4).
(a, etc.), or a part of the opening of the lens barrel, and furthermore, a holder of the lens barrel (such as hole 6b in Figure 1), a semiconductor laser (such as 1a in Figure 1), or a semiconductor laser base ( hole 3b in Figure 1). [Effects of the Invention] As explained above, according to the present invention, the light beam output side of the collimator lens corresponds to within approximately the half width of the far field pattern (spread angle distribution) of a light source such as a semiconductor laser. By providing a highly accurate aperture (elliptical, long round, rectangular slit shape, etc.), variations in the diameter of the imaged spot due to variations in the spread angle distribution can be suppressed with minimal light loss. Also, the spread angle separation and the aperture direction relative to the main scanning direction. By regulating the inclination of the imaging spot 1, it is possible to obtain a spot diameter with little variation. Furthermore, by using an elliptical aperture, the diameter of the imaging spot in the paper feeding direction (sub-scanning direction) at the imaging position is made larger than the diameter in the main-scanning direction. This makes feeding unevenness that occurs in the paper feeding direction (sub-scanning direction) less noticeable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の概略構成分解図、第2図は開
口の形態を示す図、第3図乃至第11図は他の実施例の
説明図、第12図と第13図は紙送り方向の送りムラを
目立たなくする方法を説明する図、第14図は従来例の
概略説明図,第l5図は半導体レーザーの広がり角度分
布を示す図,第16図は従来の開口による結像スポット
径の大きさのバラツキを抑える様子を示す図、第l7図
は結像スポットの傾きを説明する図である. l・・・・・半導体レーザー、2・・・・・コリメータ
ーレンズ.3・・・・・基台、4・・・・・固定バネ、
5,28・、33.36,38・・・・・鏡筒、6・・
・・・ホルダl4・・・・・開口、23、32、37,
39・・・・・押さえ環
FIG. 1 is a schematic exploded view of the structure of an embodiment of the present invention, FIG. 2 is a diagram showing the form of the opening, FIGS. 3 to 11 are explanatory diagrams of other embodiments, and FIGS. 12 and 13 are A diagram explaining a method for making feeding unevenness in the paper feeding direction less noticeable. Figure 14 is a schematic explanatory diagram of a conventional example. Figure 15 is a diagram showing the spread angle distribution of a semiconductor laser. Figure 16 is a diagram showing the result of a conventional aperture. FIG. 17 is a diagram showing how the variation in the image spot diameter is suppressed, and is a diagram illustrating the inclination of the imaging spot. l... Semiconductor laser, 2... Collimator lens. 3...Base, 4...Fixing spring,
5, 28, 33. 36, 38... lens barrel, 6...
...Holder l4...Opening, 23, 32, 37,
39... Holder ring

Claims (1)

【特許請求の範囲】 1、光源と該光源からのビームを平行光ビームとする光
学系を有する射出光学装置において、光源による射出ビ
ームの略半値幅に対応する開口が設けられ、光源による
射出ビームの広がり角度分布のバラツキによる被照射体
上のスポット径の大きさのバラツキを規制している射出
光学装置。 2、前記開口は略楕円形状である請求項1記載の射出光
学装置。 3、前記開口は丸長穴状である請求項1記載の射出光学
装置。 4、前記開口は方形スリット状である請求項1記載の射
出光学装置。 5、射出光学装置から射出される略楕円ビームの、該射
出光学装置を取り付けるハウジングに対する回転位相決
めをする手段を更に有する請求項1記載の射出光学装置
[Claims] 1. In an emission optical device having a light source and an optical system that converts the beam from the light source into a parallel light beam, an aperture corresponding to approximately the half width of the beam emitted by the light source is provided, and the beam emitted by the light source is An injection optical device that regulates variations in the spot diameter on the irradiated object due to variations in the spread angle distribution. 2. The exit optical device according to claim 1, wherein the aperture has a substantially elliptical shape. 3. The exit optical device according to claim 1, wherein the opening is in the shape of a round elongated hole. 4. The exit optical device according to claim 1, wherein the opening has a rectangular slit shape. 5. The ejection optical device according to claim 1, further comprising means for determining the rotational phase of the substantially elliptical beam emitted from the ejection optical device with respect to a housing to which the ejection optical device is mounted.
JP1188475A 1989-07-20 1989-07-20 Exit optical device Pending JPH0353215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1188475A JPH0353215A (en) 1989-07-20 1989-07-20 Exit optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1188475A JPH0353215A (en) 1989-07-20 1989-07-20 Exit optical device

Publications (1)

Publication Number Publication Date
JPH0353215A true JPH0353215A (en) 1991-03-07

Family

ID=16224376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1188475A Pending JPH0353215A (en) 1989-07-20 1989-07-20 Exit optical device

Country Status (1)

Country Link
JP (1) JPH0353215A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591028A (en) * 1993-12-28 1997-01-07 J. Morita Manufacturing Corporation Dental cutting tool holder
JP2008111915A (en) * 2006-10-30 2008-05-15 Kyocera Mita Corp Optical scanner
JP2015011136A (en) * 2013-06-27 2015-01-19 京セラドキュメントソリューションズ株式会社 Lens fixing mechanism, optical scanner, image forming apparatus, and lens fixing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591028A (en) * 1993-12-28 1997-01-07 J. Morita Manufacturing Corporation Dental cutting tool holder
JP2008111915A (en) * 2006-10-30 2008-05-15 Kyocera Mita Corp Optical scanner
JP2015011136A (en) * 2013-06-27 2015-01-19 京セラドキュメントソリューションズ株式会社 Lens fixing mechanism, optical scanner, image forming apparatus, and lens fixing method

Similar Documents

Publication Publication Date Title
US5606449A (en) Optical scanning device
JPS5818653A (en) Recording device
EP0558735B1 (en) Adjustable mount for cylindrical lens with independent rotational feature
JPH0353215A (en) Exit optical device
JPH04282606A (en) Laser beam scanning optical device
JPH09218368A (en) Scanning optical device
JPH1010447A (en) Optical scanner
JP2659137B2 (en) Laser light scanning device
JP2971005B2 (en) Optical scanning device
JPH06160685A (en) Lens assemblage
JPH0654011U (en) Lens mounting structure
JPH03131817A (en) Light beam scanning optical device
JPH09288245A (en) Optical scanner
JPS63316819A (en) Light beam scanning device
JP3672578B2 (en) Laser light source device
JP2001166238A (en) Scanning optical device
JPH04253010A (en) Structure for mounting synthetic resin lens of scanning optical system
JPS63102543A (en) Synchronizing detecting device for laser light scanning device
JP2539356B2 (en) Optical scanning device
JPH0687911U (en) Optical axis adjustment device for laser light source
JPH10213769A (en) Lens holding device and optical beam scanning optical device
JPH05127106A (en) Laser beam scanning optical device
JPH0625817U (en) Laser light scanning device
JPH06175058A (en) Optical scanning device
JP2716624B2 (en) Optical scanning device