JPH03131817A - Light beam scanning optical device - Google Patents

Light beam scanning optical device

Info

Publication number
JPH03131817A
JPH03131817A JP26889989A JP26889989A JPH03131817A JP H03131817 A JPH03131817 A JP H03131817A JP 26889989 A JP26889989 A JP 26889989A JP 26889989 A JP26889989 A JP 26889989A JP H03131817 A JPH03131817 A JP H03131817A
Authority
JP
Japan
Prior art keywords
light beam
light
optical system
receiving element
imaging optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26889989A
Other languages
Japanese (ja)
Inventor
Yoshio Ariki
有木 美雄
Takaki Hisada
隆紀 久田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26889989A priority Critical patent/JPH03131817A/en
Publication of JPH03131817A publication Critical patent/JPH03131817A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To relax the fitting accuracy of a photodetector by providing a luminous flux adjusting means so that the spot shape of a beam which is made incident on the photodetector is equal to a spot diameter on a scanned surface and larger in spot diameter in the vertical direction. CONSTITUTION:When the luminous flux of the light beam 14 is not adjusted, spots 27 on sensor surfaces 15 and 16 of the photodetector are the same as the spot on the scanned surface and an adjustment margin is L1. When the luminous flux of this light beam 14 is adjusted by a coating film 20, spots 28 on the sensor surfaces 15 and 16 of the photodetector are larger in diameter at right angles to a scanning direction as compared with the spots 27, so the adjustment margin is L2. Thus, the luminous flux in section perpendicular to the scanning-directional section of the light beam 14 traveling to the photodetector 9 is adjusted by the coating film 20. Consequently, the fitting accuracy of the photodetector is relaxes and the adjustment can be made easily and speedily.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザビームプリンタなどに用いられる光ビー
ム走査光学装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light beam scanning optical device used in a laser beam printer or the like.

〔従来の技術〕[Conventional technology]

光ビームを走査する走査光学装置において、光ビームの
偏向器として回転多面鏡やガルバノミラ−か広く用いら
れており、1ラインごとの走査開始位置を正確に合わせ
るために光ビームが非′riii像域を走査し【いる箇
所に同期検知手段を設け、検類タイミングから書出しタ
イミングまでの時間間隔を一定に設定する方法が従来か
ら行なわれている。その際、高速走査している光ビーム
を昼い応答速度で検出するために、例えばビンフォトダ
イオード等の受光素子が使用されるが、受光素子の大き
さが0.5w角程度と小さく、受光素子へ正しくビーム
を入射するためには、反射ミラーや受光素子の調整が必
要となる。さらに、走査光学装置の構成上、光ビームを
受光素子に入射する場合どうしても、光ビームの一部を
折り返さなければならなく、前記反射ミラーの保持9w
4整が難しくなるという欠点があった。この解決方法と
しては、前記反射ミラーと前記受光素子とを一体に支持
する。
In scanning optical devices that scan light beams, rotating polygon mirrors and galvano mirrors are widely used as light beam deflectors. Conventionally, a method has been used in which a synchronization detection means is provided at a location where the data is scanned and the time interval from the inspection timing to the writing timing is set constant. At that time, a light receiving element such as a bin photodiode is used to detect the high-speed scanning light beam at daytime response speed, but the size of the light receiving element is small, about 0.5w square, and the light receiving element is small. In order to make the beam enter the element correctly, it is necessary to adjust the reflecting mirror and the light-receiving element. Furthermore, due to the configuration of the scanning optical device, when the light beam is incident on the light receiving element, a part of the light beam must be folded back, and the holding 9w of the reflecting mirror is required.
The disadvantage was that it became difficult to adjust the four-way order. As a solution to this problem, the reflecting mirror and the light receiving element are integrally supported.

例えば特開昭62−204221号公報に示された技術
思想や、前記反射ミラーを光ファイバに変更する。
For example, the technical idea disclosed in Japanese Unexamined Patent Publication No. 62-204221 is used, or the reflecting mirror is changed to an optical fiber.

例えば特開昭65−27i14号公報に示された技術思
想等がある。
For example, there is a technical concept disclosed in Japanese Patent Application Laid-Open No. 65-27i14.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記した従来技術のように、反射ミラーと受光
素子とを一体に支持する方法では、受光素子とそれを取
付けたプリント基板などの一般に取付は精度の出しにく
い部材の固定によって位置を出す必要があることから支
持部材を高精度に仕上げてもその効果が十分に現われな
い等の問題があった。一方、光ファイバを使用する方法
では、受光素子の取付は精度は無視されるが、他方の光
フアイバ断面には、従来の反射ミラーの微調整が必要で
あり、この場合もその効果が十分に現われない等の問題
がありた。
However, in the method of integrally supporting the reflecting mirror and the light-receiving element as in the above-mentioned conventional technology, the position of the light-receiving element and the printed circuit board on which it is mounted must be determined by fixing members that are generally difficult to mount with precision. Therefore, even if the supporting member is finished with high precision, the effect is not fully realized. On the other hand, in the method of using optical fibers, the precision of mounting the light receiving element is ignored, but the cross section of the other optical fiber requires fine adjustment of the conventional reflecting mirror, and in this case as well, the effect is not fully realized. There were problems such as not appearing.

本発明の目的は、簡易な構成で、かつ反射ミラーと受光
素子との取付は精度を大幅に緩和することの出来る光ビ
ーム走査光学装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a light beam scanning optical device that has a simple configuration and can significantly reduce the accuracy of mounting a reflecting mirror and a light receiving element.

〔課題を解決するための手段〕[Means to solve the problem]

上記した目的を達成するため、本発明では、受光素子上
に入射するビームのスポット形状を走査方向に対しては
、被走査面上のスポット径と同一で、走査方向に垂直な
方向に対してはスポット径を太らせるように第2の結像
光学系の一部に光束調整手段を設けた構成としている。
In order to achieve the above object, the present invention makes the spot shape of the beam incident on the light receiving element the same as the spot diameter on the scanned surface in the scanning direction, and in the direction perpendicular to the scanning direction. In this embodiment, a light flux adjusting means is provided in a part of the second imaging optical system so as to increase the spot diameter.

〔作 用〕[For production]

一般に元ビームを集束する場合、走査スポット径をj、
7・0レンズの焦点距離を!、入射ビーム径をり、波長
なλとすると1次式の関係が成り立つ。
Generally, when focusing the original beam, the scanning spot diameter is j,
7.0 lens focal length! , the incident beam diameter and the wavelength λ, a linear relationship holds true.

d=に・ (f/D )・λ ・・・・・・・・・・・
・■ただし、には比例定数である。よりて、■式から明
らかなように、走査スポット径dは入射ビーム径りに反
比例する関係にあり、入射ビーム径りを小さくすれば走
査スポット径dは大きくなることが判る。
d=ni・(f/D)・λ・・・・・・・・・・・・
・■However, is a constant of proportionality. Therefore, as is clear from equation (2), the scanning spot diameter d is inversely proportional to the incident beam diameter, and it can be seen that the scanning spot diameter d increases as the incident beam diameter is made smaller.

ここで、第5図は1本発明による光ビーム走査光学装置
のスポット形状を示した模式図であり、(,1は被走査
面上でのスポット25を示し、スポット径は走査方向お
よび走査方向に垂直な方向共にdであり、−船釣には1
00μ襲前後である。これに対し、(b)は受光素子上
のスポット26であり、スポット径は本発明による前記
した光束調整手段により、走査方向に垂直な方向のみd
′と大きくしている。
Here, FIG. 5 is a schematic diagram showing the spot shape of the light beam scanning optical device according to the present invention. Both the direction perpendicular to is d, and -1 for boat fishing.
It is around 00μ attack. On the other hand, (b) is a spot 26 on the light receiving element, and the spot diameter is d only in the direction perpendicular to the scanning direction by the above-mentioned light flux adjustment means according to the present invention.
'.

なお、光束調整手段は、上式■の関係から、走査方向に
鋸直な方向のみ(mlに比べ(b)が小さくなるように
光束を調整している。この結果、受光素子のセンサーは
前記したように0.5■角程度であり、(α)に比べ(
blの方がスポット径が大きい分だけセンサー上に光束
が入りやすくなる。すなわち、(A)のスポットd′を
センサーの大きさQ、5■以上になるように光束制限量
を調整することで、受光素子の取付は精度が劣りていて
も高精度な同期検知を得ることが出来る。
Note that the light flux adjusting means adjusts the light flux only in the direction perpendicular to the scanning direction (compared to ml) from the relationship of the above equation (2) so that (b) is smaller. As a result, the sensor of the light receiving element As shown, it is about 0.5 ■ square, and compared to (α), (
With bl, the light flux is easier to enter the sensor due to the larger spot diameter. In other words, by adjusting the luminous flux restriction amount so that the spot d' in (A) is equal to or larger than the sensor size Q, 5■, highly accurate synchronized detection can be obtained even if the mounting accuracy of the light receiving element is poor. I can do it.

なお、前記従来技術においては、スポット径は(−)の
状態のままで取付は精度の緩和を行なりている。
In addition, in the prior art, the spot diameter remains in the (-) state and the mounting accuracy is relaxed.

〔実施例〕〔Example〕

以下、本発明を実施例によりて説明する。 The present invention will be explained below with reference to Examples.

第1図(、)は本発明の1実施例に係る光ビーム走査光
学装置の概略構成を示す斜視図であり、#!1図<h)
はその主要部拡大斜視図である。該光学装置は、光源1
.結合レンズ2.第1の結像光学系3゜偏向器(回転多
面鏡4.モータ5)、第2の結像光学系6.被走査物7
.同期検知用ミラー8.受光素子9.コーティング膜2
0(第1図(blに詳細図示)で主に構成されている。
FIG. 1 (,) is a perspective view showing a schematic configuration of a light beam scanning optical device according to an embodiment of the present invention, and #! Figure 1<h)
is an enlarged perspective view of the main part thereof. The optical device includes a light source 1
.. Combined lens 2. First imaging optical system 3° deflector (rotating polygon mirror 4. motor 5), second imaging optical system 6. Scanned object 7
.. Mirror for synchronization detection 8. Light receiving element 9. Coating film 2
0 (details shown in Figure 1 (bl)).

前記光源1は、該実施例では半導体レーザによりなって
おり、この光源1からのビームは発散光が出射される。
The light source 1 is a semiconductor laser in this embodiment, and the beam from this light source 1 is emitted as a diverging light.

前記結合レンズ2は、上記発散光をコリメートして#1
ぼ平行光束にすると共に、その光軸方向の位置調整によ
って、ビームの走査方向の断面内で前記被走査物70面
上に光ビーム10を集束させるためのピント調整を行う
。前記第1の結像光学系3は、該実施例ではシリンドリ
カルレンズよりなり、前記走査方向の断面に対して垂直
な断面内だけパワーを有しており、光ビーム10を偏向
器における前記回転多面鏡40反射面11上の近傍で一
度集束させる。このとき、第1の結像光学系5は走査方
向の断面内ではパワーを有さないので、上記反射面11
上は線像となる。
The coupling lens 2 collimates the diverging light into #1
The light beam 10 is made into a substantially parallel light beam, and by adjusting its position in the optical axis direction, focus adjustment is performed to focus the light beam 10 on the surface of the object to be scanned 70 within a cross section in the scanning direction of the beam. The first imaging optical system 3 is composed of a cylindrical lens in this embodiment, has power only in a cross section perpendicular to the cross section in the scanning direction, and directs the light beam 10 to the rotating polygon in the deflector. The light is once focused near the mirror 40 reflection surface 11. At this time, since the first imaging optical system 5 has no power within the cross section in the scanning direction, the reflecting surface 11
The top is a line image.

偏向器の回転多面鏡4は前記モータ5によって第1図(
α)の矢印方向に回転し、反射面9の反射角が変ること
によって、光ビーム10を偏向する。そして、1つの反
射面に光ビーム10を照射している間で1回の走査が行
われ、回転多面鏡4が1回転する間に反射面の数だけの
走査が行われる。また、光ビーム10の偏向走査は、偏
向器の回転軸(すなわち1回転多面鏡4の回転中心軸)
に垂直な平面内でなされ、前記光源1から第1の結像光
学系3までは、その光軸が走査方向の断面内にあるよう
に配置されている。
The rotating polygon mirror 4 of the deflector is rotated by the motor 5 as shown in FIG.
By rotating in the direction of the arrow α) and changing the reflection angle of the reflecting surface 9, the light beam 10 is deflected. One scanning is performed while one reflecting surface is irradiated with the light beam 10, and while the rotating polygon mirror 4 rotates once, scanning is performed as many times as there are reflecting surfaces. In addition, the deflection scanning of the light beam 10 is based on the rotation axis of the deflector (i.e., the rotation center axis of the one-rotation polygon mirror 4).
The optical axis from the light source 1 to the first imaging optical system 3 is arranged within a cross section in the scanning direction.

前記第2の結像光学系6は、本実施例では第2レンズ1
3と第2レンズ13とからなり、最終的に光ビーム10
を被走査物70面上の一点に集束させる作用を行うと共
に、副走査方向断面において、偏向器の反射面11と被
走査物7の面とが共役関係になるように調整している。
The second imaging optical system 6 includes a second lens 1 in this embodiment.
3 and a second lens 13, and finally the light beam 10
The deflector is adjusted so that the reflection surface 11 of the deflector and the surface of the object 70 are in a conjugate relationship in the cross section in the sub-scanning direction.

前記被走査物7は、例えばレーザビームプリンタ等では
感光ドラムがこれに相当し、光ビーム10で信号を露光
させる。
The object to be scanned 7 corresponds to a photosensitive drum in a laser beam printer, for example, and exposes a signal with a light beam 10.

前記コーティング@20は、走査方向の断面に対して垂
直な断面内において、光ビーム14の光束をl114整
(図中ではt)するように機能し、該コーティング膜2
0によりその光束を調整された光ビーム14は、一走査
毎に同期検知ミラー8で反射され、前記第2の結像光学
系6のほぼ焦点位置に置かれた受光素子9で受光される
。受光素子9は記録信号開始の時点を決定する働きをな
し、不図示の制御回路により受光時から一定時間後に記
録信号開始の信号を発生する。この信号により、光源1
は不図示の変調回路からの記録信号に応じて明暗に変調
され、被走査物7上に記録画像の潜像が形成される。
The coating @ 20 functions to adjust the luminous flux of the light beam 14 (t in the figure) in a cross section perpendicular to the cross section in the scanning direction, and the coating film 2
The light beam 14 whose luminous flux has been adjusted by 0 is reflected by the synchronous detection mirror 8 for each scan, and is received by the light receiving element 9 placed approximately at the focal position of the second imaging optical system 6. The light-receiving element 9 serves to determine the time point at which the recording signal starts, and a control circuit (not shown) generates a signal to start the recording signal after a certain period of time from the time of light reception. This signal causes light source 1
is modulated brightly and darkly according to a recording signal from a modulation circuit (not shown), and a latent image of a recorded image is formed on the object 7 to be scanned.

本実施例では、受光素子9に向かう光ビーム14の走査
方向の断面に対して垂直な断面での光束をコーティング
膜20によって満1iすることで受光素子の取付は精度
を大幅に緩和できることになり、すなわち、調整が容易
にかつびん速に行える。
In this embodiment, the coating film 20 fills up the luminous flux in the cross section perpendicular to the cross section in the scanning direction of the light beam 14 directed toward the light receiving element 9, so that the accuracy of mounting the light receiving element can be greatly reduced. That is, adjustments can be made easily and quickly.

第2図に前記光ビーム14の光束を調整した場合と、調
整なしの場合との前記受光素子の調整マージンの比較を
示す、第2図(、)は、前記光ビーム14の光束を調整
しない場合であり、受光素子のセンサー面15.16上
でのスポット27は、前記被走査面上のスポットと同一
であり、調整マージンはり、となる、第2図(b)は1
本実施例によるものすなわち、前記光ビーム14の光束
を前記コーティング膜20により調整した場合であり、
受光素子のセンサー面15.16上でのスポット28は
、スポット27に比べ走査方向に垂直な方向で径が大き
くなることから、調整マージンはL宜となり、その結果
、受光素子の取付は精度が大幅に緩和されることになる
Figure 2 shows a comparison of the adjustment margin of the light receiving element when the luminous flux of the light beam 14 is adjusted and when it is not adjusted. In this case, the spot 27 on the sensor surface 15.16 of the light-receiving element is the same as the spot on the scanned surface, and the adjustment margin is 1.
According to this embodiment, the luminous flux of the light beam 14 is adjusted by the coating film 20,
Since the spot 28 on the sensor surface 15, 16 of the light receiving element has a larger diameter in the direction perpendicular to the scanning direction than the spot 27, the adjustment margin is set to L, and as a result, the mounting accuracy of the light receiving element is reduced. This will be significantly eased.

なお、該実施例においては、前記コーティング膜20を
前記第2の結像光学系6の第2レンズ13の被走査物7
側のレンズ面に設けたが、第3図に示すように、他のレ
ンズ面に設けても同様の効果が得られる。
In this embodiment, the coating film 20 is applied to the scanned object 7 of the second lens 13 of the second imaging optical system 6.
Although it is provided on the side lens surface, the same effect can be obtained even if it is provided on the other lens surface, as shown in FIG.

第3図は第1図(1E)の主要部斜視図であり、第2の
結像光学系6を通過し、受光素子9に向かう光ビーム1
4の光束を調整するコーティング膜を第2レンズ13の
A(上記説明で使用したもの)の位置、およびBの位置
、もしくは、第ルンズのCの位置、およびDの位置のい
づれかに設けても同様の効果が得られる。また、本実施
例では、第2の結像光学系6は、第ルンズ12.第2レ
ンズ13の2枚構成であるが、これは何枚構成でありて
も良いことは勿論である。さらに1本実施例では、第1
の結像光学系3により回転多面鏡4の反射面上11で線
像な作り、第2の結像光学系を前記反射面11と前記被
走査物7面とが共役関係になったいわゆる面倒れ補正光
学系で示したが、これは必ずしも必要ではなく、第1の
結像光学系3を取り除いたものであっても良い。
FIG. 3 is a perspective view of the main part of FIG.
A coating film for adjusting the luminous flux of No. 4 may be provided at either the position A (used in the above explanation) and the position B of the second lens 13, or the position C and the position D of the second lens 13. A similar effect can be obtained. Further, in this embodiment, the second imaging optical system 6 includes the second lens 12 . Although the second lens 13 has a two-lens configuration, it goes without saying that any number of lenses may be used. Furthermore, in this embodiment, the first
The imaging optical system 3 creates a line image on the reflective surface 11 of the rotating polygon mirror 4, and the second imaging optical system creates a so-called troublesome image in which the reflective surface 11 and the surface 7 of the object to be scanned are in a conjugate relationship. Although a distortion correction optical system is shown, this is not necessarily necessary, and the first imaging optical system 3 may be removed.

ここで、上述した実施例においては、光束調整手段とし
て、コーティング膜20を用いたが、第4図に示す光束
調整手段を用いても同等の効果が得られる。第4図は、
不図示第2の結像光学系の第2レンズ13をレンズ固定
ベース17にレンズ保持部材21(通常板バネ等)にて
取付ける場合の、核レンズ保持部材21にて、不図示受
光素子に向かう光ビーム14の走査方向に垂直な方向の
光束を調整するよ5な構成としたものである。このよう
に構成すると前記したコーティング膜を設ける工程の削
減ができる。
Here, in the above embodiment, the coating film 20 was used as the luminous flux adjusting means, but the same effect can be obtained by using the luminous flux adjusting means shown in FIG. 4. Figure 4 shows
When the second lens 13 of the second imaging optical system (not shown) is attached to the lens fixing base 17 using the lens holding member 21 (usually a plate spring, etc.), the lens is directed toward the light receiving element (not shown) by the nuclear lens holding member 21. It has five configurations to adjust the luminous flux in the direction perpendicular to the scanning direction of the light beam 14. With this configuration, the steps for providing the coating film described above can be reduced.

なお、これら実施例では、偏向装置として回転多面鏡を
用いているが、ガルバノミラ−等の反射鏡を用いる他の
偏向装置を使用した場合についても適用できる。さらに
1本実施例では、説明をレーザビームプリンタ用光学装
置に適用した場合に基づき行なりたが、この棟の光学装
置に限られるものでなく、画像等の情報の記録や再生に
係る他の各種光学装置に適用出来る。
In these embodiments, a rotating polygon mirror is used as the deflection device, but the present invention can also be applied to the case where another deflection device using a reflecting mirror such as a galvanometer mirror is used. Furthermore, in this embodiment, the explanation is based on the case where it is applied to an optical device for a laser beam printer, but it is not limited to the optical device of this building, and is applicable to other optical devices related to recording and reproducing information such as images. It can be applied to various optical devices.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、光ビーム走査光学装置に
おいて、ごく簡易な構成の光束調整手段を付加すること
によって、被検出光束を検出手段に良好に導くための光
学調整が容易に行え、その産業的価値は多大である。
As described above, according to the present invention, in a light beam scanning optical device, by adding a light flux adjusting means with a very simple configuration, optical adjustment for properly guiding the detected light flux to the detection means can be easily performed. Its industrial value is enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(α)は本発明の一実施例の装置全体の概略構成
を示す斜視図、第1図<b>は第1図(α)の主要部拡
大fR視図、第2図は本発明の効果を示した説明図、第
5図は゛第1図(、a)の主要部の斜視図、第4図は本
発明の他の実施例を示す要部斜視図、第5図は本発明の
原理説明図である。 1 ・・・・・・・・・・・・・・・ 2 ・・・・・・・・・・・・・・・ 3 ・・・・・・・・・・・・・・・ 4 ・・・・・・・・・・・・・・・ 5 ・・・・・・・・・・・・・・・ 6 ・・・・・・・・・・・・・・・ 7 ・・・・・・・・・・・・・・・ 8 ・・・・・・・・・・・・・・・ 9 ・・・・・・・・・・・・・・・ 10.14 ・・・・・・ 12 ・・・・・・・・・・・・ 13 ・・・・・・・・・・・・ 15.16 ・・・・・・ 17 ・・・・・・・・・・・・ 18 ・・・・・・・・−・・ 20 ・・・・・・・・・・・・ 21 ・・・・・・・・・・・・ 25 ・・・・・・・・−・・ 26 ・・・・・・・・・・・・ 27.28 ・・・・・・ 光源 結合レンズ 第1の結像光学系 回転多面鏡 モータ 第2の結像光学系 被走査物 同期検知用ミラー 受光素子 光ビーム 第ルンズ 第2レンズ 受光素子のセンサー レンズ固定ペース ネジ コーティング膜 レンズ保持部材 被走査面上のスポラ 受光素子上のスポラ スポット 第 灰 (α) 第 冒 (b) 第 ? 回 / 6受光青÷のセンサー ノ 16 受光素)のセンサー 第 図 q受充青キ 男 図 第 図 Cα) (b)
FIG. 1(α) is a perspective view showing a schematic configuration of the entire device according to an embodiment of the present invention, FIG. 1<b> is an enlarged fR view of the main part of FIG. 1(α), and FIG. FIG. 5 is a perspective view of the main part of FIG. 1 (a), FIG. 4 is a perspective view of the main part showing another embodiment of the invention, and FIG. It is a diagram explaining the principle of the invention. 1 ・・・・・・・・・・・・・・・ 2 ・・・・・・・・・・・・・・・ 3 ・・・・・・・・・・・・・・・ 4 ・・・・・・・・・・・・・・・・ 5 ・・・・・・・・・・・・・・・ 6 ・・・・・・・・・・・・・・・ 7 ・・・・・・・・・・・・・・・ 8 ・・・・・・・・・・・・・・・ 9 ・・・・・・・・・・・・・・・ 10.14 ・・・・・・ 12 ・・・・・・・・・・・・ 13 ・・・・・・・・・・・・ 15.16 ・・・・・・ 17 ・・・・・・・・・・・・・ 18 ・・・・・・・・・・・・・ 20 ・・・・・・・・・・・・ 21 ・・・・・・・・・・・・ 25 ・・・・・・・・・・・・・ 26 ・・・・・・・・・・・・ 27.28 ・・・・・・ Light source coupling lens First imaging optical system Rotating polygon mirror motor Second imaging optical system For scanning object synchronization detection Mirror light-receiving element Light beam Second lens Second lens Sensor of light-receiving element Lens fixing space Screw Coating film Lens holding member Spora on the scanned surface Spora spot on the light-receiving element 2nd gray (α) 1st (b) 1st? times / 6 light receiving blue ÷ sensor no 16 light receiving element) sensor diagram q receiving blue man diagram diagram Cα) (b)

Claims (1)

【特許請求の範囲】 1、光ビーム発生源(1、2)と、該光ビーム発生源か
ら発生した光ビームの光束を線状に結像する第1の結像
光学系(3)と、該第1の結像光学系の近傍にその反射
面(11)を有する偏向器(4、5)と、該偏向器で偏
向された光ビームを被走査物に集束するための第2の結
像光学系(6)と、被走査物(7)とを具備し、さらに
、光ビームに対する同期検知用ミラー(8)と、受光素
子(9)とを具備した光ビーム走査光学装置において、
前記同期検知用ミラーに向う光ビームの走査方向に対し
て垂直な方向の光束のみを制限して前記受光素子上のス
ポット径が走査方向に対して垂直な方向にだけ太っただ
円形状もしくは線状になるように、前記第2の結像光学
系に光束調整手段を設けたことを特徴とする光ビーム走
査光学装置。 2、前記光束調整手段は、 前記第2の結像光学系のレンズ面の一部に、その光束を
制限するような形状にコーティング膜(20)を施した
構成を備える請求項1に記載の光ビーム走査光学装置。 3、前記光束調整手段は、 前記第2の結像光学系のレンズ保持部材(21)の一部
またはそれ自体にその光束を制限するような形状を設け
た構成を備える請求項1に記載の光ビーム走査光学装置
[Claims] 1. A light beam generation source (1, 2), a first imaging optical system (3) that forms a linear image of the light beam generated from the light beam generation source; a deflector (4, 5) having a reflective surface (11) near the first imaging optical system; and a second focusing device for focusing the light beam deflected by the deflector onto the object to be scanned. A light beam scanning optical device comprising an image optical system (6) and an object to be scanned (7), and further comprising a synchronization detection mirror (8) for the light beam and a light receiving element (9),
The spot diameter on the light-receiving element is shaped into an elliptical or linear shape that is thicker only in the direction perpendicular to the scanning direction by restricting only the luminous flux in the direction perpendicular to the scanning direction of the light beam directed toward the synchronization detection mirror. A light beam scanning optical device characterized in that the second imaging optical system is provided with a light flux adjusting means. 2. The light flux adjusting means includes a coating film (20) formed on a part of the lens surface of the second imaging optical system in a shape that limits the light flux. Light beam scanning optical device. 3. The light flux adjustment means according to claim 1, wherein the light flux adjustment means has a configuration in which a part of the lens holding member (21) of the second imaging optical system or itself is provided with a shape that limits the light flux. Light beam scanning optical device.
JP26889989A 1989-10-18 1989-10-18 Light beam scanning optical device Pending JPH03131817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26889989A JPH03131817A (en) 1989-10-18 1989-10-18 Light beam scanning optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26889989A JPH03131817A (en) 1989-10-18 1989-10-18 Light beam scanning optical device

Publications (1)

Publication Number Publication Date
JPH03131817A true JPH03131817A (en) 1991-06-05

Family

ID=17464819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26889989A Pending JPH03131817A (en) 1989-10-18 1989-10-18 Light beam scanning optical device

Country Status (1)

Country Link
JP (1) JPH03131817A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438450A (en) * 1992-12-29 1995-08-01 Canon Kabushiki Kaisha Optical scanning apparatus
JP2002189180A (en) * 2000-12-20 2002-07-05 Canon Inc Scanning optical device and image forming device
JP2003075750A (en) * 2001-09-07 2003-03-12 Canon Inc Scanning optical device and image forming device using the same
JP2007248626A (en) * 2006-03-14 2007-09-27 Ricoh Co Ltd Optical scanner/image forming apparatus
USRE45918E1 (en) 2006-03-08 2016-03-08 Ricoh Company, Limited Optical scanning apparatus, optical writing apparatus, and image forming apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438450A (en) * 1992-12-29 1995-08-01 Canon Kabushiki Kaisha Optical scanning apparatus
JP2002189180A (en) * 2000-12-20 2002-07-05 Canon Inc Scanning optical device and image forming device
JP4551560B2 (en) * 2000-12-20 2010-09-29 キヤノン株式会社 Scanning optical apparatus and image forming apparatus
JP2003075750A (en) * 2001-09-07 2003-03-12 Canon Inc Scanning optical device and image forming device using the same
JP4708629B2 (en) * 2001-09-07 2011-06-22 キヤノン株式会社 Scanning optical device and image forming apparatus using the same
USRE45918E1 (en) 2006-03-08 2016-03-08 Ricoh Company, Limited Optical scanning apparatus, optical writing apparatus, and image forming apparatus
JP2007248626A (en) * 2006-03-14 2007-09-27 Ricoh Co Ltd Optical scanner/image forming apparatus

Similar Documents

Publication Publication Date Title
JP3291906B2 (en) Scanning optical device
JP2580933B2 (en) Optical scanning device having jitter amount measuring means
CA2067887C (en) Raster output scanner with process direction spot position control
JP2001174732A (en) Multi-beam light scanning optical system and image forming device using the system
US6961077B2 (en) Multibeam light source
JP2830670B2 (en) Optical scanning device
JPH03131817A (en) Light beam scanning optical device
US5323259A (en) Light deflecting device
JP3672420B2 (en) Wide-area optical scanning device
JP2971005B2 (en) Optical scanning device
JPH04194812A (en) Laser beam scanning optical device
US5973720A (en) Focusing method, light beam optical system used therefor, and image forming apparatus using same
US5317444A (en) Light scanning apparatus
JP2947952B2 (en) Electrophotographic equipment
JPS63316819A (en) Light beam scanning device
JPH04181914A (en) Scanning optical device
JP2001281588A (en) Emission position adjustment structure for plane- parallel plane
JP3492902B2 (en) Scanning optical device
JPS6145215A (en) Laser printer
JPH04245212A (en) Laser recording device
JP2817454B2 (en) Scanning optical device
JPH03185417A (en) Scanning optical device
JPS613114A (en) Optical beam recording device
JP2003075750A (en) Scanning optical device and image forming device using the same
JP2002311354A (en) Optical scanner