JPH07286822A - Method for measuring dimension from picture - Google Patents

Method for measuring dimension from picture

Info

Publication number
JPH07286822A
JPH07286822A JP8000994A JP8000994A JPH07286822A JP H07286822 A JPH07286822 A JP H07286822A JP 8000994 A JP8000994 A JP 8000994A JP 8000994 A JP8000994 A JP 8000994A JP H07286822 A JPH07286822 A JP H07286822A
Authority
JP
Japan
Prior art keywords
line
center
gravity
rectangle
lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8000994A
Other languages
Japanese (ja)
Other versions
JP2856067B2 (en
Inventor
Katsuyasu Aikawa
勝保 相川
Koji Nakane
剛治 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nireco Corp
Original Assignee
Nireco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nireco Corp filed Critical Nireco Corp
Priority to JP8000994A priority Critical patent/JP2856067B2/en
Publication of JPH07286822A publication Critical patent/JPH07286822A/en
Application granted granted Critical
Publication of JP2856067B2 publication Critical patent/JP2856067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To measure the inclination of a rectangle with accuracy by means of a picture processor and, at the same time, to measure the width of the rectangle to the same accuracy as that obtained when the width is visually measured. CONSTITUTION:The center of gravity of a nearly rectangular picture is found and a vertical line which passes through the center of gravity and is perpendicular to scanning lines is set. Then first and second lines perpendicular to the vertical line are drawn at an interval (h) and the area A1 of the quadrangle ABCD specified by the points A and B where the first line intersects the near rectangle and points C and D at which the second line intersects the near rectangle, is found. The area surrounded by the outermost ones on both sides of the perpendiculars drawn from the intersections A, B, C, and D to the first and second lines and the first and second lines is made to be A0 and the angle thetaexpressed by theta=tan<-1>(A0-A1)/h<2> is made to be the angle between the center line which passes through the center of gravity of the near rectangle and indicates the direction of the longer sides of the rectangle, and the vertical line.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は各辺が波うっている形状
の矩形に近い形状(以下単に矩形という)の画像につ
き、その傾斜角および幅を計測する方法に係わり、幅の
場合人間の目視による測定と大差ないように、画像処理
によって測定する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of measuring an inclination angle and a width of an image having a shape close to a rectangle (hereinafter simply referred to as a rectangle) having a wavy shape on each side. The present invention relates to a method of measuring by image processing so as not to make a big difference with the visual measurement.

【0002】[0002]

【従来の技術】テレビジョンのシャドウマスクやIC
(集積回路)の基板に穴あけするような場合、露光エッ
チングが行われる。これは加工するパターンを拡大して
透明フイルムに描き、感光剤を塗った目的の面に投光し
て結像させることにより縮小像を得、これをエッチング
することにより目的のパターンを得る加工方法である。
このような露光エッチングにより矩形の小穴を開ける場
合、小さい穴ほど回折による屈折で露光に用いるレーザ
光がしみ出し、フイルム上の矩形を投光すると、繭形に
中央が凹む傾向がある。一方シャドウマスクはCRT
(陰極線管)の走査結像を電気信号へ変換するためには
中央に膨らみを有する樽形の形状がよいので、樽形の矩
形が用いられる。矩形の各辺は、感光剤自体粒子である
こと、およびエッチングは錆のように進行するので、直
線とはならず凹凸の曲線となっている。しかも、この凹
凸の中には幅は狭いがピークの大きなものがランダムに
混じっている場合が多い。
2. Description of the Related Art Television shadow masks and ICs
In the case of making a hole in a (integrated circuit) substrate, exposure etching is performed. This is a processing method in which the pattern to be processed is enlarged and drawn on a transparent film, and a reduced image is obtained by projecting an image onto a target surface coated with a photosensitive agent to form an image, and then etching this to obtain the target pattern. Is.
When a rectangular small hole is formed by such exposure etching, the smaller the hole is, the more the laser light used for exposure is extruded due to refraction by diffraction, and when the rectangle on the film is projected, the center tends to be dented in a cocoon shape. On the other hand, the shadow mask is a CRT
A barrel-shaped rectangle is used because a barrel-shaped shape having a bulge in the center is preferable for converting the scanning image formation of the (cathode ray tube) into an electric signal. Since each side of the rectangle is particles of the photosensitizer itself and etching progresses like rust, it is not a straight line but an uneven curve. In addition, in many cases, the unevenness has a small width but a large peak randomly mixed.

【0003】図8は露光エッチングによって得られる矩
形小穴の形状を示す。(A)は樽形の矩形を示し、
(B)は繭形の矩形を示す。各辺は凹凸の曲線よりな
り、かつ凹凸には幅は狭いがピークの大きなものが表れ
ている。矩形の大きさの一例を示すと、矩辺(幅)が8
0〜200μm、凹凸のピークからピークまでの波高は
4〜10μm、突然発生する大きな波高は他の大部分の
波高の2〜3倍程度である。また、この矩形を顕微鏡に
接続したテレビカメラで撮像し、CRTに表示する場
合、1画素の大きさは2μm程度となるので、矩形の幅
は40〜100画素、凹凸の通常のピークからピークま
での波高は2〜5画素で表される。また、凹凸の周期は
3〜8画素となっている。
FIG. 8 shows the shape of a rectangular small hole obtained by exposure etching. (A) shows a barrel-shaped rectangle,
(B) shows a cocoon-shaped rectangle. Each side is composed of a curve of unevenness, and the unevenness has a narrow width but a large peak. As an example of the size of a rectangle, the quadrangle (width) is 8
The peak-to-peak wave height is 0 to 200 μm, the peak to peak is 4 to 10 μm, and the large wave height that occurs suddenly is about 2 to 3 times that of most other waves. Further, when this rectangle is imaged by a television camera connected to a microscope and displayed on a CRT, the size of one pixel is about 2 μm, so the width of the rectangle is 40 to 100 pixels, and the normal peak to peak of unevenness is measured. Is represented by 2 to 5 pixels. Moreover, the period of the unevenness is 3 to 8 pixels.

【0004】このような形状、寸法の矩形について、矩
形の傾きθと幅の測定が行われる。同時にその付近の矩
形の相対位置や間隔も測定される。従来は目視により顕
微鏡の視野で十字線と像を相対移動して測定していた。
これを画像解析により自動測定する時、傾きθは図9に
示すように矩形の重心Gを通り長辺の方向を示す中心線
Sの傾斜をCRT画面の走査線Pに垂直な線Qとの角度
θで表す。角度θの測定は、矩形の重心Gを求め、この
重心Gを通り、矩形と交差する線分で交点間の長さが最
大の線分L1と次に大きな線分L2すなわち仮想対角線
を求め、このL1とL2の2等分線を中心線Sとし、走
査線Pに垂直な垂直線Qとの角度としてθを求めてい
た。
With respect to a rectangle having such a shape and size, the inclination θ and width of the rectangle are measured. At the same time, the relative position and spacing of the rectangles in the vicinity are also measured. Conventionally, the measurement was performed by visually moving the crosshair and the image relatively in the visual field of the microscope.
When this is automatically measured by image analysis, the inclination θ is the inclination of the center line S passing through the center of gravity G of the rectangle and indicating the direction of the long side with the line Q perpendicular to the scanning line P of the CRT screen, as shown in FIG. It is represented by the angle θ. For the measurement of the angle θ, a center of gravity G of a rectangle is obtained, and a line segment that passes through the center of gravity G and intersects with the rectangle is obtained. Using the bisector of L1 and L2 as the center line S, θ was obtained as the angle with the vertical line Q perpendicular to the scanning line P.

【0005】矩形の幅の測定は人が顕微鏡の十字線を用
いて測定する時は図8のように平均的な線を引くことに
より分解能及び再現性のよい測定ができる。一方、図1
0は矩形の幅の画像解析による自動測定方法を示す。
(A)は幅に平行な線分から求める寸法で走査線Pに垂
直な垂直線Qに対する中心線Sの角度θを上述した方法
により求め、重心Gを通り、走査線Pに角度θの線分を
引き、この線分に平行に前後数本の線分を引き、各線分
と矩形との交点を求め、各線分につき交点間の長さを求
め、この長さの平均値を矩形の幅とする。なお、各平行
線の間隔は数画素程度離れて設定していた。(B)は面
積から求める方法で、重心Gを挟んで中心線Sに直交す
る2本の平行線H1,H2間隔hで引き、この2本の線
分H1,H2と矩形の長辺で囲まれる斜線で示す面積を
求め、この面積をhで除した値を幅とする方法である。
When a person measures the width of a rectangle by using a crosshair of a microscope, an average line can be drawn as shown in FIG. 8 to obtain a measurement with good resolution and reproducibility. On the other hand, FIG.
0 indicates an automatic measurement method by image analysis of the width of a rectangle.
(A) is a dimension obtained from a line segment parallel to the width, and the angle θ of the center line S with respect to the vertical line Q perpendicular to the scanning line P is obtained by the above-described method, passing through the center of gravity G, and the line segment of the angle θ to the scanning line P. Draw a line segment before and after this line segment in parallel, find the intersections of each line segment and the rectangle, find the length between the intersections for each line segment, and calculate the average value of this length as the width of the rectangle. To do. The distance between the parallel lines was set to be several pixels apart. (B) is a method of obtaining from the area, and it is drawn with two parallel lines H1 and H2 spacing h orthogonal to the center line S with the center of gravity G sandwiched between them and surrounded by these two line segments H1 and H2 and the long side of the rectangle. This is a method in which the area indicated by the hatched line is obtained and the value obtained by dividing this area by h is used as the width.

【0006】[0006]

【発明が解決しようとする課題】人が目視により十字線
を用いて測定するには人力が必要で、疲労が生じ長時間
かかる。図9で示す画像解析による方法で角度θを測定
する場合、矩形の四隅の形状で線分L1とL2が決まる
が、この四隅の形状は崩れている場合が多く、かつ凹凸
による変形によって大きく影響され、線分L1,L2の
決定に大きな誤差が生じ、この2等分線で得られる中心
線の角度θの誤差が大きかった。
However, in order for a person to visually measure with a crosshair, human power is required, which causes fatigue and takes a long time. When the angle θ is measured by the method based on the image analysis shown in FIG. 9, the line segments L1 and L2 are determined by the shapes of the four corners of the rectangle, but the shapes of these four corners are often collapsed and are greatly affected by the deformation due to unevenness. As a result, a large error occurs in the determination of the line segments L1 and L2, and the error of the angle θ of the center line obtained by the bisector is large.

【0007】図10(A)に示す方法は、平行線のピッ
チが矩形の長辺の凹凸のピッチと一致し、両辺の凹部の
位置にばかり平行線が来る場合や、凸部の位置にばかり
来るようになる可能性があり、このような計測データ
は、目視によって矩形の形状を直線化し、長辺間の距離
を計測する場合と異なる場合が多かった。目視によって
凹凸のある辺を直線化する場合、最大値と最小値のデー
タは無意識の内に除かれて直線化している場合が多く、
このような処理をしていないことも異なる原因となって
いる。
In the method shown in FIG. 10 (A), the pitch of the parallel lines matches the pitch of the concavities and convexities on the long sides of the rectangle, and the parallel lines only come to the positions of the concave portions on both sides, or only the positions of the convex portions. In many cases, such measurement data is different from the case where the rectangular shape is linearized by visual observation and the distance between the long sides is measured. In the case of visually lining up uneven sides, the maximum and minimum data are often unconsciously removed and straightened.
Another reason is that such processing is not performed.

【0008】また、図10(B)に示す方法は、hを大
きくとると矩形が樽形の場合、中央の膨らみから外れた
対辺間隔の小さい部分を含むようになり、目視による計
測値よりも小さな値となる。またhを小さくすると平行
線H1,H2を表す画素の取り方によって斜線で示す面
積が変わる。図11は面積計算の際に平行線H1,H2
を表す画素をどのように取るかを説明する図で、実線で
表す画素をとった場合と破線で表す画素をとった場合と
では面積の大きさが異なってくる。なお、図11におい
て長辺に沿って引いた直線L1,L2は目視の場合、人
が引く平均線を表したものである。
Further, in the method shown in FIG. 10 (B), when h is set large, when the rectangle has a barrel shape, it includes a portion having a small distance between opposite sides which is deviated from the bulge at the center, which is smaller than a visually measured value. It will be a small value. Further, when h is made small, the area shown by diagonal lines changes depending on how the pixels representing the parallel lines H1 and H2 are taken. Fig. 11 shows parallel lines H1 and H2 when calculating the area.
In a diagram for explaining how to take a pixel represented by, the area size is different between when the pixel represented by the solid line is taken and when the pixel represented by the broken line is taken. Note that, in FIG. 11, straight lines L1 and L2 drawn along the long side represent average lines drawn by a person when visually observed.

【0009】本発明は上述の問題点に鑑みてなされたも
ので、画像処理装置により略矩形の傾きを精度よく算出
する方法および略矩形の幅を目視による測定と同じ程度
の精度で測定する方法を提供することを目的とする。
The present invention has been made in view of the above problems, and a method of accurately calculating the inclination of a substantially rectangular shape by an image processing apparatus and a method of measuring the width of a substantially rectangular shape with the same accuracy as the visual measurement. The purpose is to provide.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、略矩形の画像の重心を求め、この重心を通り走査線
に直交する垂直線を設定し、この垂直線に直交して間隔
hで第1線と第2線を引き、第1線と略矩形の交点を
A,B,第2線と略矩形の交点をC,Dとし、四辺形A
BCDの面積A1を求め、各交点A,B,C,Dより相
手の第1線、第2線へ垂線を引き両端の垂線と第1線及
び第2線とで囲まれる面積をA0とし、 θ=tan-1(A0−A1)/h2 ……(1) (1)式で表されるθを略矩形の重心を通り長辺の方向
を示す中心線と垂直線とのなす角度とする。
In order to achieve the above object, the center of gravity of a substantially rectangular image is obtained, a vertical line passing through the center of gravity and orthogonal to the scanning line is set, and at a distance h orthogonal to the vertical line. The first line and the second line are drawn, the intersection of the first line and the substantially rectangular shape is A, B, the intersection of the second line and the substantially rectangular shape is C, D, and the quadrangle A
Obtain the area A1 of the BCD, draw a perpendicular line from the intersection points A, B, C, D to the first line and the second line of the opponent, and set the area enclosed by the perpendicular line at both ends and the first line and the second line as A0, θ = tan −1 (A0−A1) / h 2 (1) θ expressed by the equation (1) is an angle between the center line indicating the direction of the long side and the vertical line passing through the center of gravity of the substantially rectangular shape. To do.

【0011】また、略矩形の画像の重心を求め、この重
心を通り、走査線と直交する垂直線と略矩形の重心を通
り長辺の方向を示す中心線との角度θを所定の方法で求
め、重心を通り走査線と角度θ±mΔθ(mは整数)を
なす各線を引き、各線と略矩形の交点を求め、各線の交
点間の線分の長さを求め、最大値と最小値を除いた残り
の長さの平均値Mを算出する方法であって、前記Δθを
平均値Mの推定値をM′とし、略矩形と線分との交点近
傍でΔθ・M′/2が1画素の大きさ程度となるように
し、前記mを、略矩形の辺の波うちを表す凹凸1組以上
を2m+1本の線の交差範囲内に含むように定める。
Further, the center of gravity of a substantially rectangular image is obtained, and an angle θ between a vertical line passing through this center of gravity and orthogonal to the scanning line and a center line passing through the center of gravity of the substantially rectangle and indicating the direction of the long side is determined by a predetermined method. Find, draw each line that makes an angle θ ± mΔθ (m is an integer) with the scanning line through the center of gravity, find the intersection of each line and the rectangle, find the length of the line segment between the intersections of each line, and find the maximum and minimum values Is a method of calculating the average value M of the remaining lengths except that the estimated value of the average value M is Δθ, and Δθ · M ′ / 2 is defined in the vicinity of the intersection of the substantially rectangular shape and the line segment. The size is set to be about one pixel, and the m is defined so as to include one or more sets of concavo-convex representing the wave of the side of the substantially rectangular shape within the crossing range of the 2m + 1 lines.

【0012】また、略矩形の画像の重心を求め、この重
心を通り、走査線と直交する垂直線と略矩形の重心を通
り長辺の方向を示す中心線との角度θを所定の方法で求
め、重心を通り走査線と角度θをなす基準線を求め、こ
の基準線と平行にピッチδでこの基準線も含め合計n本
の線を引き、この各線と略矩形の辺との交点間の線分の
長さを求め、最大値と最小値を除いた残りの平均値Nを
求める方法であって、前記ピッチδを1画素の大きさ程
度とし、前記nを、略矩形の辺の波うちを表す凹凸1組
以上をn本の線の交差範囲内に含むように定める。
Further, the center of gravity of a substantially rectangular image is obtained, and an angle θ between a vertical line passing through this center of gravity and orthogonal to the scanning line and a center line passing through the substantially center of gravity and indicating the direction of the long side is determined by a predetermined method. Obtain a reference line that passes through the center of gravity and forms an angle θ with the scanning line, draw a total of n lines in parallel with this reference line at a pitch δ, including this reference line, and between the intersections of these lines and the sides of the substantially rectangular shape. Of the line segment and the remaining average value N excluding the maximum value and the minimum value is obtained, wherein the pitch δ is about one pixel size, and n is a substantially rectangular side. It is determined that at least one set of unevenness representing the corrugation is included within the intersection range of the n lines.

【0013】また、前記略矩形と交差する線分の座標点
は画素の中心又は四角に配置された4個の画素の中心点
を用いるものとし、この座標点位置に交差点がない場合
には、重心を通り、走査線と角度θをなす線を内側とし
て該当する線分の外側で最も近い画素の中心又は4個の
画素の中心点を交差点として線分の長さを計算する。
Further, the coordinate points of the line segment that intersects the substantially rectangular shape use the center points of the pixels or the center points of the four pixels arranged in the squares. If there is no intersection at this coordinate point position, The length of the line segment is calculated with the line that passes through the center of gravity and forms an angle θ with the scanning line as the inner side and the center of the closest pixel or the center point of the four pixels on the outer side of the corresponding line segment as the intersection.

【0014】[0014]

【作用】図2は略矩形の傾きθの計算方法を説明する図
である。顕微鏡に取り付けたテレビカメラにより撮像し
た画像を画素で表示する。画像を表示装置に表示する
際、走査線Pに垂直な線を垂直線Qとし、矩形の重心G
を通り、長辺に沿った線を中心線Sとし、この中心線S
と垂直線Qとの角度θを略矩形の傾きとする。四辺形
A,E,D,Fの面積A0から斜線で表される略矩形の
面積A1を差し引いた値は、三角形AEC、三角形BD
Fの面積を示し、この面積をhで除した値(A0−A
1)/hは直線CEと直線BFの平均値を表す。角度C
AEをθa,角度BDFをθbとし、θaとθbの平均
角をθとするとh・tanθ=(A0−A1)/hが成
立し、この式より(1)式が導かれ、このθを略矩形の
傾きとする。
FIG. 2 is a diagram for explaining a method of calculating the inclination θ of a substantially rectangular shape. The image captured by the television camera attached to the microscope is displayed in pixels. When displaying an image on a display device, a line perpendicular to the scanning line P is defined as a vertical line Q, and a center of gravity G of a rectangle is set.
The centerline S is a line that passes through and extends along the long side.
The angle θ between the vertical line Q and the vertical line Q is a substantially rectangular inclination. The value obtained by subtracting the substantially rectangular area A1 represented by the diagonal lines from the area A0 of the quadrilaterals A, E, D, and F is the triangle AEC and the triangle BD.
The area of F is shown, and the area is divided by h (A0-A
1) / h represents the average value of the straight line CE and the straight line BF. Angle C
If AE is θa, angle BDF is θb, and the average angle of θa and θb is θ, then h · tan θ = (A0−A1) / h holds, and equation (1) is derived from this equation. The inclination of the rectangle.

【0015】図4は中心線Sと垂直線Qとの角度がθで
ある略矩形の重心近傍の幅Mを算出する方法を示す図
で、略矩形の重心Gを通り、走査線Pにθ傾いた直線で
ある基準線Tを引く。この基準線Tは中心線Sに直交す
る。基準線Tを中心にΔθの角度で左右にm本づつ、放
射状に直線を引き略矩形との交点を求め、この交点間の
線分の長さを求め、最大値と最小値を除いてその平均値
Mを求める。この平均値Mを略矩形の幅とする。最大値
と最小値を除くことにより、突発的なピーク値を除くこ
とができ適正な平均値が得られる。Δθの値を交点の近
傍で放射状の直線のピッチを表すΔθ・M′/2を1画
素の大きさ程度とし、放射状に交差することにより各放
射状の直線が略矩形の両辺の凹部の位置ばかりに通るこ
とや凸部の位置ばかり通る確率を少なくする。また、1
組以上の凹凸を含む範囲に放射状の線を設けることによ
り、略矩形の辺の平均の位置を表すようになる。以上が
総合されて、目視による測定に近い結果が得られる。な
お、複数の直線の交点間の長さを平均化することによ
り、各画素の大きさ(例えば2μm)の分解能を超える
分解能が得られる。実例では、平均することにより1μ
m程度の再現性のある測定結果が得られる。
FIG. 4 is a diagram showing a method of calculating the width M near the center of gravity of a substantially rectangular shape in which the angle between the center line S and the vertical line Q is θ. A reference line T which is an inclined straight line is drawn. The reference line T is orthogonal to the center line S. Radially straight lines are drawn from the reference line T at an angle of Δθ at right and left sides to obtain intersections with a substantially rectangular shape, and the length of the line segment between these intersections is obtained. The average value M is calculated. Let this average value M be the width of a substantially rectangular shape. By excluding the maximum and minimum values, sudden peak values can be eliminated and an appropriate average value can be obtained. Let Δθ · M '/ 2, which represents the pitch of the radial straight line near the intersection, be approximately the size of one pixel, and the radial straight lines allow each radial straight line to be located only at the positions of the concave portions on both sides of the rectangle. It reduces the probability of passing through and only the position of the convex portion. Also, 1
By providing a radial line in a range including more than one set of irregularities, it is possible to represent the average position of the sides of a substantially rectangular shape. When the above is put together, the result close to the visual measurement is obtained. By averaging the lengths between the intersections of a plurality of straight lines, a resolution exceeding the resolution of the size of each pixel (for example, 2 μm) can be obtained. In the actual example, 1μ by averaging
Measurement results with a reproducibility of about m can be obtained.

【0016】図6は中心線Sと垂直線Qとの角度がθで
ある略矩形の重心近傍の幅Nを算出する他の方法を示す
図で、図4とは異なり基準線T平行に、基準線Tも含め
n本を1画素程度の間隔で引き、略矩形との交点を求め
る。次にこの交点間の線分の長さを求め、最大値と最小
値を除き平均値Nを求めている。平行線を用いて幅を測
定する従来の方法に比べピッチが1画素程度と小さく、
平行線の範囲を1組の凹凸以上を含む範囲とすることに
より各平行線が略矩形の両辺の凹部の位置ばかり通るこ
とや凸部の位置ばかり通る確率は少なくなっている。図
4に示す方法とほぼ同様に、目視による測定に近い結果
が得られる。
FIG. 6 is a diagram showing another method for calculating the width N near the center of gravity of a substantially rectangular shape in which the angle between the center line S and the vertical line Q is θ, and unlike FIG. 4, parallel to the reference line T, N lines including the reference line T are drawn at intervals of about 1 pixel to obtain intersection points with the substantially rectangular shape. Next, the length of the line segment between the intersections is calculated, and the average value N is calculated except for the maximum value and the minimum value. Compared with the conventional method of measuring the width using parallel lines, the pitch is as small as about 1 pixel,
By setting the range of the parallel lines to a range including one set of concaves and convexes, it is less likely that each parallel line will pass only the positions of the concave portions and the positions of the convex portions on both sides of the substantially rectangular shape. Similar to the method shown in FIG. 4, a result close to the visual measurement is obtained.

【0017】略矩形と交差する線分の交差点間の長さは
画素を表す座標点間の長さとして算出されるが、画素を
表す座標としては図7に示すように四角に配置された画
素の中心点(A)、または画素の中心(B)とすること
とし、1つの画像についてはいずれかを用いて混用しな
いようにする。略矩形の両辺と図4に示す放射状の線、
図6に示す平行線が交差した時、交差点の位置が画素の
中心または4個の画素の中心と一致しないときは、つま
り、該当する放射状の線や平行線との交差点上に画素を
表す座標がないときは、図4,図6に示す基準線Tを内
側として放射状の線や平行線の外側で最も近い画素を表
す座標を用いる。このようにすることにより、1画素以
下のピッチで放射状の線や平行線の位置を画素によって
表示できる。
The length between the intersections of line segments that intersect the substantially rectangular shape is calculated as the length between coordinate points representing pixels, and the coordinates representing pixels are pixels arranged in squares as shown in FIG. The center point (A) or the pixel center (B) is used, and one of the images is used so as not to be mixed. Both sides of the substantially rectangular shape and the radial lines shown in FIG. 4,
When the parallel lines shown in FIG. 6 intersect and the position of the intersection does not coincide with the center of the pixel or the center of the four pixels, that is, the coordinates representing the pixel on the intersection with the corresponding radial line or parallel line. If there is not, the coordinates representing the closest pixel on the outside of the radial line or parallel line are used with the reference line T shown in FIGS. 4 and 6 as the inside. By doing so, the positions of radial lines and parallel lines can be displayed by pixels at a pitch of 1 pixel or less.

【0018】[0018]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。図1は本実施例を実現する装置の構成を示
すブロック図である。顕微鏡1には接眼レンズ部に撮像
用レンズを取り付け、この撮像レンズを通して撮像する
撮像装置16が取り付けられている。測定試料を載せる
ステージ17はオートステージドライバ10からの信号
によりスタンドに設けたパルスモータで前後左右に移動
させる平面移動機構18により平面位置調整が行われ、
オートフォーカスドライバ11により垂直移動機構19
を作動させてステージ17の上下方向の移動を行い、焦
点を合わせる。なお、テレビのシャドウマスクの検査で
はオートステージにシャドウマスクを一定角度づつ回転
して検査対象点を視野に入れ、かつ走査線に対して穴の
方向を適切に傾けて測定精度を高めるための回転機構が
ある。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the arrangement of an apparatus for realizing this embodiment. An image pickup lens 16 is attached to the eyepiece portion of the microscope 1 and an image pickup device 16 for picking up an image through the image pickup lens is attached. The stage 17 on which the measurement sample is placed is subjected to plane position adjustment by a plane moving mechanism 18 for moving the stage 17 back and forth and left and right by a pulse motor provided on the stand in response to a signal from the auto stage driver 10.
Vertical movement mechanism 19 by autofocus driver 11
Is operated to move the stage 17 in the vertical direction to focus. When inspecting the shadow mask of a TV, the shadow mask is rotated on the auto stage by a certain angle to bring the inspection point into view, and the hole is tilted with respect to the scanning line to increase the measurement accuracy. There is a mechanism.

【0019】A/D変換器2は撮像装置16からの入力
データをアナログからディジタルに変換し、入力バッフ
ァ3はこのディジタルデータを一時的に格納する。バス
4は信号の伝達を行い、プログラムメモリ5は本装置の
動作を規定するプログラムを格納し、CPU6はこのプ
ログラムに従い装置全体の制御を行う。
The A / D converter 2 converts the input data from the image pickup device 16 from analog to digital, and the input buffer 3 temporarily stores the digital data. The bus 4 transmits signals, the program memory 5 stores a program that defines the operation of the apparatus, and the CPU 6 controls the entire apparatus according to this program.

【0020】画像処理プロセッサ7は入力した画像デー
タの濃淡処理、2値化処理、画像解析等を行い、濃淡画
像メモリ8は濃淡画像データを格納し、2値化メモリ9
は2値化画像データを格納する。オートステージドライ
バ10はCPUからの指示により測定試料を載せるステ
ージ17を平面移動機構18を制御してX,Y方向に移
動させ、測定試料の測定位置、領域の設定を行う。オー
トフォーカスドライバ11はCPU6から垂直移動機構
19への制御命令を受け、垂直移動機構19を制御し、
自動的に焦点を合わせる。出力バッファ12は出力する
データを一旦格納し、D/A変換器13はこの出力デー
タをディジタルよりアナログに変換し、CRT14はこ
の出力データを画面に表示する。キーボード15よりオ
ペレータが指示やデータを入力する。
The image processor 7 performs grayscale processing, binarization processing, image analysis, etc. of the input image data, the grayscale image memory 8 stores the grayscale image data, and the binarization memory 9
Stores the binarized image data. The auto-stage driver 10 controls the plane moving mechanism 18 to move the stage 17 on which the measurement sample is placed in the X and Y directions according to an instruction from the CPU, and sets the measurement position and area of the measurement sample. The autofocus driver 11 receives a control command from the CPU 6 to the vertical movement mechanism 19, controls the vertical movement mechanism 19,
Focus automatically. The output buffer 12 temporarily stores the data to be output, the D / A converter 13 converts the output data from digital to analog, and the CRT 14 displays the output data on the screen. The operator inputs instructions and data from the keyboard 15.

【0021】次に第1実施例として矩形の傾きθを計算
する方法を図2および図3に示すフロー図を用いて説明
する。まず、矩形の画像を撮像し、画像データを得る
(ST1)。次にこの画像データにより矩形の重心Gを
求める(ST2)。この重心Gを通り画像表示する場合
の走査線Pと直交する垂直線Qを設定し(ST3)、こ
の垂直線Qに直交する第1線L1と第2線L2を間隔h
で引き、第1線L1と矩形との交点A,B、第2線L2
と矩形との交点C,Dを設定する(ST4)。次に交点
より相手側の線に対し垂線を引き、その最外側の垂線と
第1線L1,第2線L2で囲まれる四角形AFDEの面
積A0を求める(ST5)。四辺形A,B,C,Dの面
積A1を求め、(1)式にh,A0,A1を代入し、θ
を求める(ST6)。重心Gを通り垂直線Qとθ傾斜し
た線を矩形の中心線Sとする。
Next, as a first embodiment, a method for calculating the inclination θ of the rectangle will be described with reference to the flow charts shown in FIGS. First, a rectangular image is captured to obtain image data (ST1). Next, the center of gravity G of the rectangle is obtained from this image data (ST2). A vertical line Q orthogonal to the scanning line P for displaying an image through the center of gravity G is set (ST3), and a first line L1 and a second line L2 orthogonal to the vertical line Q are separated by an interval h.
And then the intersections A and B of the first line L1 and the rectangle, the second line L2
And intersections C and D of the rectangle are set (ST4). Next, a perpendicular is drawn from the intersection to the line on the other side, and the area A0 of the quadrangle AFDE surrounded by the outermost perpendicular and the first line L1 and the second line L2 is obtained (ST5). The area A1 of the quadrangle A, B, C, D is calculated, and h, A0, A1 are substituted into the equation (1), and θ
(ST6). A line that passes through the center of gravity G and is inclined by θ with respect to the vertical line Q is a rectangular center line S.

【0022】次に第2実施例として矩形の幅を測定する
方法を説明する。図4は樽形矩形の重心近傍の形状と幅
Mを測定する方法を示す図であり、図5は第2実施例の
フロー図である。図4において垂直線Qは走査線Pに垂
直な線、中心線Sは重心Gを通り垂直線Qと第1実施例
で求めたθ傾斜した直線である。なお、θは第1実施例
以外の方法で求めた値、例えば、図9に示した従来例で
求めた角度を用いることもできる。基準線Tは重心Gを
通り、走査線Pとθ傾斜した直線で、中心線Sと直交し
ている。矩形の重心G近傍の長辺の形状は左右の階段状
の実線で示されており、一部詳細に示すように斜線で示
す画素を正方形として、その画素の外形を表している。
直線L3,L4は矩形の幅Mが得られた後、Mを分かり
易く示すため中心線Sに対して左右に平行に引いた仮想
線である。
Next, a method for measuring the width of a rectangle will be described as a second embodiment. FIG. 4 is a diagram showing a method for measuring the shape and the width M of the barrel rectangle in the vicinity of the center of gravity, and FIG. 5 is a flowchart of the second embodiment. In FIG. 4, a vertical line Q is a line perpendicular to the scanning line P, and a center line S is a vertical line Q passing through the center of gravity G and a straight line inclined by θ obtained in the first embodiment. It should be noted that θ may be a value obtained by a method other than the first embodiment, for example, an angle obtained by the conventional example shown in FIG. The reference line T is a straight line that passes through the center of gravity G, is inclined by θ with respect to the scanning line P, and is orthogonal to the center line S. The shape of the long side near the center of gravity G of the rectangle is shown by the left and right stepwise solid lines, and the pixels indicated by the diagonal lines are squares to show the outline of the pixels, as shown in some detail.
The straight lines L3 and L4 are imaginary lines drawn in parallel to the center line S after the width M of the rectangle is obtained, in order to show M easily.

【0023】本方法は基準線Tを中心に重心Gを通り左
右に角度Δθごとにm本の線を放射状に引き、左右の長
辺との交点を求め、各線分の交点間の長さの平均値Mを
求めて、これを矩形の重心G近傍の幅とするものであ
る。平均値を算出するに当たっては異常値として最大値
と最小値は除いて、残りの値で平均する。また、Δθは
幅の予想値をM′としてΔθ・M′/2の値が1画素の
大きさ程度(1画素の大きさの0.3〜1.5倍程度が
よい)となるように設定する。Δθ・M′/2の値は角
度Δθごとに引いた線の直線L3,L4との交点のピッ
チに相当している。mの値は直線L3,L4を想定し
て、このL3,L4を中心として凹,凸1組の波形が1
組以上(望ましくは2組程度)2m+1本の放射状の線
でカバーできるように定める。図4は1組の場合を示し
ている。
According to this method, m lines are drawn radially through the center of gravity G around the reference line T at every angle Δθ, the intersections with the left and right long sides are obtained, and the length between the intersections of the line segments is calculated. The average value M is calculated and used as the width near the center of gravity G of the rectangle. In calculating the average value, the maximum and minimum values are excluded as abnormal values, and the remaining values are averaged. Further, Δθ is set so that the value of Δθ · M ′ / 2 is about one pixel size (about 0.3 to 1.5 times the size of one pixel), where M ′ is the expected width. Set. The value of Δθ · M ′ / 2 corresponds to the pitch of the intersections of the lines drawn for each angle Δθ with the straight lines L3 and L4. Assuming straight lines L3 and L4 for the value of m, one set of concave and convex waveforms with L3 and L4 as the center is 1
More than one set (preferably about two sets) is defined so that it can be covered by 2m + 1 radial lines. FIG. 4 shows the case of one set.

【0024】基準線Tの左右にΔθごとにm本引かれた
放射状の線は基準線Tより反時計回りにm=1,2,
3,……とし、時計回りにm=−1,−2,−3,……
と表示している。基準線T、各放射状の線mと矩形の長
辺との交点は、図7で示した画素の座標を表す4画素の
中心点、又は画素の中心と一致しないことが多いが、こ
の場合、基準線Tはこの交点に最も近い画素の座標点を
とり、各放射状の線mとの交点は基準線Tを内側とし
て、各放射状の線mの外側で最も近い画素の座標点を取
る。各線分の交点間の距離はこの座標点間の距離から算
出する。図4の一部詳細に放射状の線m=−5と長辺の
交点を矢印に示すように座標点−5pに移す方法を示
す。この場合座標点として図7の(A)で示す4画素の
中心点を用いているが、(B)の画素の中心としてもよ
い。しかし、いずれか一方に統一する。各交点の画素の
座標点をmp,mqで示し、mpは右側の長辺との交点
の座標点、mqは左側の長辺との交点の座標点を示す。
交点mpとmq間の距離を求める。なお、以上のように
して得られた平均値Mと、推定値M′が大きく異なると
きはM′としてMを用い、再度平均値Mを求めればよ
い。
Radial lines drawn on the left and right sides of the reference line T at intervals of Δθ are m = 1, 2,
3, ..., clockwise m = -1, -2, -3, ...
Is displayed. The intersection of the reference line T, each radial line m, and the long side of the rectangle does not often coincide with the center point of the four pixels representing the coordinates of the pixel shown in FIG. 7 or the center of the pixel. In this case, The reference line T is the coordinate point of the pixel closest to this intersection, and the intersection with each radial line m is the coordinate point of the pixel closest to the outside of each radial line m with the reference line T inside. The distance between the intersections of the line segments is calculated from the distance between the coordinate points. A method of moving the intersection of the radial line m = -5 and the long side to the coordinate point -5p as shown by an arrow will be described in detail in part of FIG. In this case, the center point of the four pixels shown in FIG. 7A is used as the coordinate point, but it may be the center of the pixel shown in FIG. 7B. However, unify to either one. The coordinates of the pixel at each intersection are indicated by mp and mq, where mp indicates the coordinates of the intersection with the right long side, and mq indicates the coordinates of the intersection with the left long side.
Find the distance between the intersections mp and mq. When the average value M obtained as described above and the estimated value M ′ are significantly different, M is used as M ′ and the average value M may be obtained again.

【0025】次に図5に示す第2実施例のフロー図によ
り矩形の幅の測定方法を説明する。本実施例は、第1実
施例のフロー図で示す動作に引き続いて行うものとし、
矩形の画像データ、重心G、中心線S、中心線Sの傾斜
θは図1に示す画像処理装置に既に格納されているもの
とする。まずキーボード15よりΔθ,mを入力する
(ST11)。Δθの値は幅の推定値M′を求めて、Δ
θ・M′/2が1画素の大きさ程度となるように定める
が、矩形の大きさがほぼ決まっている場合は、Δθの値
も一定となる。1画素の大きさとしては本実施例では2
μm程度とする。放射状の線の本数2m+1を決めるm
の値は、矩形の長辺の凹凸を1〜2組カバーするように
定めるが、1つの凹又は凸は3〜5画素で構成されるこ
とが多いので、1組の場合はm=5,2組の場合はm=
10と予め定めておくことができる。
Next, a method for measuring the width of a rectangle will be described with reference to the flow chart of the second embodiment shown in FIG. In this embodiment, the operation shown in the flow chart of the first embodiment is performed subsequently,
It is assumed that the rectangular image data, the center of gravity G, the center line S, and the inclination θ of the center line S are already stored in the image processing apparatus shown in FIG. First, Δθ, m is input from the keyboard 15 (ST11). As for the value of Δθ, the estimated value M ′ of the width is obtained, and Δ
Although θ · M ′ / 2 is set to be about one pixel, the value of Δθ is also constant when the size of the rectangle is almost fixed. In this embodiment, the size of one pixel is 2
It is about μm. M to determine the number of radial lines 2m + 1
The value of is determined so as to cover one to two sets of irregularities on the long side of the rectangle, but since one concave or convex is often composed of 3 to 5 pixels, in the case of one set, m = 5. In case of 2 sets, m =
It can be predetermined as 10.

【0026】次に重心Gを通り、中心線Sに直交する基
準線Tを求める(ST12)。この基準線Tを中心に重
心Gを通り角度Δθピッチで左右にそれぞれm本,基準
線Tを含めて2m+1本の放射状の線分を引き、矩形の
左右の長辺との交点を得る(ST13)。交点が画像の
画素の座標点にないときは基準線Tを内側として、該当
する放射状の線mの外側で最も近い画素の座標点を交点
とする(ST14)。基準線Tおよび各放射状の線mに
ついて、交点間の距離を算出し、最大値と最小値を除
き、残りの平均値Mを算出する(ST15)。
Next, a reference line T passing through the center of gravity G and orthogonal to the center line S is obtained (ST12). The reference line T is passed through the center of gravity G, the angle Δθ is pitched to the left and right, and 2m + 1 radial line segments including the reference line T are drawn to obtain intersections with the left and right long sides of the rectangle (ST13). ). When the intersection is not at the coordinate point of the pixel of the image, the reference line T is set to the inside, and the coordinate point of the pixel closest to the outside of the corresponding radial line m is set to the intersection (ST14). With respect to the reference line T and each radial line m, the distance between the intersections is calculated, the maximum value and the minimum value are excluded, and the remaining average value M is calculated (ST15).

【0027】次に第3実施例として矩形の幅を測定する
別の方法を説明する。第2実施例が重心Gを通る放射状
の線分と矩形の長辺との交点から幅を算出したのに対
し、本実施例は基準線Tに平行に、1画素の大きさ程度
のピッチで平行線を引き、基準線Tを含めてn本の平行
線と矩形との交点から幅を求めるものである。図10
(A)に示した従来例よりピッチを小さくしているこ
と、平均値を求める際、最大値と最小値を除いているこ
とにより、目視による測定値に近い値が得られる。
Next, another method for measuring the width of a rectangle will be described as a third embodiment. In the second embodiment, the width is calculated from the intersection of the radial line segment passing through the center of gravity G and the long side of the rectangle, whereas in the present embodiment, the width is calculated in parallel with the reference line T at a pitch of about one pixel. A parallel line is drawn, and the width is obtained from the intersections of n parallel lines including the reference line T and the rectangle. Figure 10
By making the pitch smaller than in the conventional example shown in (A) and excluding the maximum value and the minimum value when obtaining the average value, a value close to the visually measured value can be obtained.

【0028】図6は図4と同じ樽形矩形の重心近傍の形
状と幅Nを測定する方法を示す図である。図6において
走査線P,垂直線Q,中心線S,垂直線Qと中心線Sと
の角度θ,基準線T,直線L3,L4は図4と同じであ
る。本方法は基準線Tと平行に一定のピッチδで、基準
線Tも含めてn本の平行線を引き、左右の矩形の長辺と
の交点を求め、各線分の交点間の長さの平均値Nを求
め、これを矩形の重心G近傍の幅とするものである。平
均値を出すに当たっては最大値と最小値を除いた残りの
値で平均する。またピッチδは1画素の大きさ程度(1
画素の0.3〜1.5倍程度)となるようにし、nの値
は直線L3,L4を想定してL3,L4を中心として凹
凸1組の波形が1組以上、望ましくは2組程度をn本の
平行線でカバーできるように定める。平行線と左右の矩
形の長辺との交点が図7で説明した画素の座標点上にな
いときは、基準線Tの場合は最も近い画素の座標点、他
の平行線の場合は、基準線Tを内側として該当する平行
線の外側で最も近い画素の座標点とする。なお、本実施
例ではn本の平行線は基準線Tを中心に上下同じ数とし
たが、必ずしも上下同じ数にする必要はない。図6にお
いて、平行線に付した数字は各平行線の番号を示し、n
pは平行線nの右側の交点の画素の座標点を示し、nq
は左側の交点の画素の座標点を示す。
FIG. 6 is a diagram showing a method of measuring the shape and the width N of the barrel-shaped rectangle in the vicinity of the center of gravity as in FIG. 6, the scanning line P, the vertical line Q, the center line S, the angle θ between the vertical line Q and the center line S, the reference line T, and the straight lines L3 and L4 are the same as those in FIG. This method draws n parallel lines including the reference line T at a constant pitch δ in parallel with the reference line T, obtains the intersections with the long sides of the left and right rectangles, and calculates the length between the intersections of the line segments. The average value N is obtained and used as the width near the center of gravity G of the rectangle. When calculating the average value, average the remaining values excluding the maximum and minimum values. The pitch δ is about the size of one pixel (1
The value of n is about 0.3 to 1.5 times the number of pixels), and the value of n is one or more waveforms for one set of concave and convex centering on L3 and L4, preferably about two sets, assuming straight lines L3 and L4. To be covered with n parallel lines. When the intersection of the parallel line and the long sides of the left and right rectangles is not on the coordinate point of the pixel described in FIG. 7, the reference line T is the coordinate point of the closest pixel, and the other parallel lines are the reference points. The line T is defined as the inner side and is the coordinate point of the pixel closest to the outer side of the corresponding parallel line. In the present embodiment, the n parallel lines have the same number in the vertical direction with respect to the reference line T, but they do not necessarily have to have the same number in the vertical direction. In FIG. 6, the number attached to the parallel line indicates the number of each parallel line, and n
p indicates the coordinate point of the pixel at the intersection on the right side of the parallel line n, and nq
Indicates the coordinate point of the pixel at the intersection on the left side.

【0029】本実施例のフロー図は図5の第2実施例の
フロー図とほぼ同じでピッチδを1画素の大きさ程度に
設定し、nの値は10(凹凸1組の場合)から20(凹
凸2組程度の場合)の値に設定する。
The flow chart of this embodiment is almost the same as the flow chart of the second embodiment of FIG. 5, and the pitch δ is set to about the size of one pixel, and the value of n is 10 (in the case of one set of concave and convex). It is set to a value of 20 (in the case of about two sets of unevenness).

【0030】矩形については樽形として説明したが、樽
形特有の測定をしているわけではないので、繭形にも、
また対辺が平行な通常の矩形についても、中心線の傾き
θ、幅M(又はN)の測定に各実施例の方法を適用でき
る。また矩形と矩形との距離も測定することができる。
The rectangular shape has been described as a barrel shape, but since it is not the measurement unique to the barrel shape, the cocoon shape also has
Moreover, the method of each embodiment can be applied to the measurement of the inclination θ of the center line and the width M (or N) of an ordinary rectangle whose opposite sides are parallel. Also, the distance between rectangles can be measured.

【0031】[0031]

【発明の効果】以上の説明から明らかなように、本発明
は矩形の中心線の傾斜角θを面積を計測することにより
算出するので形状の変化を吸収して精度よく測定するこ
とができる。また、矩形の重心近傍の幅を重心を通り基
準線Tを中心にΔθピッチで左右にm本づつ放射状の線
を引き、各線分につき矩形の長辺との交点間の距離を求
め、最大値と最小値を除いた値の平均値を幅とするが、
Δθのピッチは交点の近傍で1画素程度となるように
し、またmの値を2m+1本の放射状の線が矩形の辺の
凹凸1組以上をカバーするように定めることにより、目
視により測定した幅とほぼ同じ精度の幅が得られる。ま
た矩形の重心を通り、基準線Tに平行に1画素程度のピ
ッチで基準線Tも含めn本の平行線を引き、矩形との交
点を求め、各平行線の交点間の距離を求め、最大値と最
小値を除いた値の平均値を幅とするが、nの値はn本の
平行線が矩形の辺の凹凸1組以上をカバーするように定
めることにより目視により測定した幅とほぼ同じ精度の
幅が得られる。平均値を求めることにより画素の大きさ
による分解能を超える分解能が得られる。
As is apparent from the above description, according to the present invention, the inclination angle θ of the rectangular center line is calculated by measuring the area, so that the change in shape can be absorbed and the measurement can be performed accurately. In addition, the width near the center of gravity of the rectangle is drawn through the center of gravity through the center of gravity, and radial lines are drawn to the left and right at a pitch of Δθ centering on the reference line T, and the distance between the intersections with the long sides of the rectangle is calculated for each line And the average value of the values excluding the minimum value is the width,
The pitch of Δθ is set to about 1 pixel near the intersection, and the value of m is set to be 2m + 1 radial lines so as to cover at least one set of irregularities on the sides of the rectangle, and the width measured visually. You can get the same accuracy range as. In addition, n parallel lines including the reference line T are drawn in parallel with the reference line T at a pitch of about 1 pixel through the center of gravity of the rectangle, the intersections with the rectangle are obtained, and the distances between the intersections of the parallel lines are obtained. The average value of the values excluding the maximum value and the minimum value is taken as the width, and the value of n is the width measured visually by defining the n parallel lines so as to cover at least one set of irregularities on the sides of the rectangle. A range of almost the same accuracy can be obtained. By obtaining the average value, a resolution exceeding the resolution due to the pixel size can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例を実現する画像処理装置の構成を示すブ
ロック図である。
FIG. 1 is a block diagram illustrating a configuration of an image processing apparatus that implements an exemplary embodiment.

【図2】第1実施例の矩形の傾きθを計算する方法を説
明する図である。
FIG. 2 is a diagram illustrating a method of calculating a tilt θ of a rectangle according to the first embodiment.

【図3】第1実施例の動作フロー図である。FIG. 3 is an operation flowchart of the first embodiment.

【図4】第2実施例の矩形の幅を測定する方法を説明す
る図である。
FIG. 4 is a diagram illustrating a method of measuring a width of a rectangle according to a second embodiment.

【図5】第2実施例の動作フロー図である。FIG. 5 is an operation flow chart of the second embodiment.

【図6】第3実施例の矩形の幅を測定する方法を説明す
る図である。
FIG. 6 is a diagram illustrating a method of measuring the width of a rectangle according to a third embodiment.

【図7】画素を表す座標点を示す図である。FIG. 7 is a diagram showing coordinate points representing pixels.

【図8】露光エッチングによって加工された矩形の形状
および目視による幅測定を示す図である。
FIG. 8 is a diagram showing a rectangular shape processed by exposure etching and a width measurement by visual observation.

【図9】従来の矩形の傾きθを測定する方法を説明する
図である。
FIG. 9 is a diagram illustrating a conventional method for measuring the inclination θ of a rectangle.

【図10】従来の矩形の幅を測定する方法を説明する図
である。
FIG. 10 is a diagram illustrating a conventional method for measuring the width of a rectangle.

【図11】従来の矩形の幅を面積を用いて測定する方法
を示す図である。
FIG. 11 is a diagram showing a conventional method for measuring the width of a rectangle using an area.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 略矩形の画像の重心を求め、この重心を
通り走査線に直交する垂直線を設定し、この垂直線に直
交して間隔hで第1線と第2線を引き、第1線と略矩形
の交点をA,B,第2線と略矩形の交点をC,Dとし、
四辺形ABCDの面積A1を求め、各交点A,B,C,
Dより相手の第1線、第2線へ垂線を引き両端の垂線と
第1線及び第2線とで囲まれる面積をA0とし、 θ=tan-1(A0−A1)/h2 ……(1) (1)式で表されるθを略矩形の重心を通り長辺の方向
を示す中心線と垂直線とのなす角度とすることを特徴と
する画像による寸法測定方法。
1. A center of gravity of a substantially rectangular image is obtained, a vertical line passing through the center of gravity and orthogonal to a scanning line is set, and a first line and a second line are drawn at an interval h orthogonal to the vertical line, The intersections of the first line and the substantially rectangle are A and B, the intersections of the second line and the substantially rectangle are C and D,
The area A1 of the quadrangle ABCD is calculated, and the intersection points A, B, C,
A perpendicular line is drawn from D to the other party's first and second lines, and the area enclosed by the perpendicular lines at both ends and the first and second lines is A0, and θ = tan -1 (A0-A1) / h 2 ... (1) A dimension measuring method using an image, wherein θ represented by the equation (1) is an angle formed by a vertical line passing through a center of gravity of a substantially rectangular shape and indicating a direction of a long side.
【請求項2】 略矩形の画像の重心を求め、この重心を
通り、走査線と直交する垂直線と略矩形の重心を通り長
辺の方向を示す中心線との角度θを所定の方法で求め、
重心を通り走査線と角度θ±mΔθ(mは整数)をなす
各線を引き、各線と略矩形の交点を求め、各線の交点間
の線分の長さを求め、最大値と最小値を除いた残りの長
さの平均値Mを算出する方法であって、前記Δθを平均
値Mの推定値をM′とし、略矩形と線分との交点近傍で
Δθ・M′/2が1画素の大きさ程度となるようにし、
前記mを、略矩形の辺の波うちを表す凹凸1組以上を2
m+1本の線の交差範囲内に含むように定めることを特
徴とする画像による寸法測定方法。
2. A center of gravity of a substantially rectangular image is obtained, and an angle θ between a vertical line passing through the center of gravity and orthogonal to the scanning line and a center line passing through the center of gravity of the substantially rectangle and indicating the direction of the long side is determined by a predetermined method. Seeking,
Draw each line that makes an angle θ ± m Δθ (m is an integer) with the scanning line through the center of gravity, find the intersection of each line and the rectangle, find the length of the line segment between the intersections of each line, and remove the maximum and minimum values. A method for calculating the average value M of the remaining lengths, wherein Δθ is the estimated value of the average value M, and Δθ · M ′ / 2 is one pixel near the intersection of the substantially rectangular shape and the line segment. The size of
Where m is 2 sets of one or more pairs of irregularities representing the wavy side of a substantially rectangular side.
A dimension measuring method using an image, characterized in that it is defined so as to be included in a crossing range of m + 1 lines.
【請求項3】 略矩形の画像の重心を求め、この重心を
通り、走査線と直交する垂直線と略矩形の重心を通り長
辺の方向を示す中心線との角度θを所定の方法で求め、
重心を通り走査線と角度θをなす基準線を求め、この基
準線と平行にピッチδでこの基準線も含め合計n本の線
を引き、この各線と略矩形の辺との交点間の線分の長さ
を求め、最大値と最小値を除いた残りの平均値Nを求め
る方法であって、前記ピッチδを1画素の大きさ程度と
し、前記nを、略矩形の辺の波うちを表す凹凸1組以上
をn本の線の交差範囲内に含むように定めることを特徴
とする画像による寸法測定方法。
3. A center of gravity of a substantially rectangular image is obtained, and an angle θ between a vertical line passing through the center of gravity and orthogonal to the scanning line and a center line passing through the center of gravity of the substantially rectangle and indicating the direction of the long side is determined by a predetermined method. Seeking,
A reference line that passes through the center of gravity and forms an angle θ with the scanning line is obtained, and a total of n lines including this reference line are drawn in parallel with this reference line at a pitch δ, and the line between the intersections of these lines and the sides of the substantially rectangular shape. A method of obtaining a length of a minute and obtaining an average value N remaining after excluding a maximum value and a minimum value, wherein the pitch δ is set to about one pixel size, and n is a wave of a substantially rectangular side. A dimension measuring method using an image, characterized in that at least one set of concave and convex portions representing the above is defined so as to be included in a crossing range of n lines.
【請求項4】 前記略矩形と交差する線分の座標点は画
素の中心又は四角に配置された4個の画素の中心点を用
いるものとし、この座標点位置に交差点がない場合に
は、重心を通り、走査線と角度θをなす線を内側として
該当する線分の外側で最も近い画素の中心又は4個の画
素の中心点を交差点として線分の長さを計算することを
特徴とする請求項2または3記載の画像による寸法測定
方法。
4. The coordinate point of a line segment that intersects with the substantially rectangular shape uses the center point of the pixel or the center point of four pixels arranged in a square, and when there is no intersection at this coordinate point position, A feature is that the length of the line segment is calculated with the center of the closest pixel or the center point of four pixels outside the corresponding line segment as the inside, with the line passing through the center of gravity and forming an angle θ with the scanning line as the inside. The method for measuring a dimension by an image according to claim 2 or 3.
JP8000994A 1994-04-19 1994-04-19 Dimension measurement method using images Expired - Fee Related JP2856067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8000994A JP2856067B2 (en) 1994-04-19 1994-04-19 Dimension measurement method using images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8000994A JP2856067B2 (en) 1994-04-19 1994-04-19 Dimension measurement method using images

Publications (2)

Publication Number Publication Date
JPH07286822A true JPH07286822A (en) 1995-10-31
JP2856067B2 JP2856067B2 (en) 1999-02-10

Family

ID=13706334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8000994A Expired - Fee Related JP2856067B2 (en) 1994-04-19 1994-04-19 Dimension measurement method using images

Country Status (1)

Country Link
JP (1) JP2856067B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212362A (en) * 2006-02-10 2007-08-23 Asahi-Seiki Mfg Co Ltd Image processor and spring forming machine
WO2011080873A1 (en) * 2009-12-28 2011-07-07 株式会社 日立ハイテクノロジーズ Pattern measuring condition setting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212362A (en) * 2006-02-10 2007-08-23 Asahi-Seiki Mfg Co Ltd Image processor and spring forming machine
WO2011080873A1 (en) * 2009-12-28 2011-07-07 株式会社 日立ハイテクノロジーズ Pattern measuring condition setting device

Also Published As

Publication number Publication date
JP2856067B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
US7454054B2 (en) Three-dimensional shape input device
JP2002509259A (en) Method and apparatus for three-dimensional inspection of electronic components
JP4445327B2 (en) Display evaluation method and apparatus
CN111263142B (en) Method, device, equipment and medium for testing optical anti-shake of camera module
US20030142203A1 (en) Omnidirectional visual system, image processing method, control program, and readable recording medium
US9866808B2 (en) Projector system for arranging an image within a projection range
JPH0475359A (en) Coplanarity measuring device
JP4846295B2 (en) Three-dimensional coordinate measuring apparatus and method
KR20020066219A (en) Imaging system, program used for controlling image data in same system, method for correcting distortion of captured image in same system, and recording medium storing procedures for same method
JP4133753B2 (en) Method of measuring optical interference of detour surface and interferometer device for detour surface measurement
JPH1038533A (en) Instrument and method for measuring shape of tire
JP2856067B2 (en) Dimension measurement method using images
JPH0727548A (en) Hole pattern shape evaluating device
JP2001108422A (en) Method and apparatus for measuring shape
JP3134852B2 (en) Crystal distortion measuring device and crystal distortion measuring method
JP3446020B2 (en) Shape measurement method
JPH0528264A (en) Picture processor
JPH0914914A (en) Laser light projection method and apparatus therefor in device measuring for moving value by laser speckle pattern
JP3536952B2 (en) Lens curvature measurement device
JPH1146359A (en) Visual field dislocation adjusting object for image-pickup device
JPH1137735A (en) Method for measuring origin of image, and its recording medium
JP2946647B2 (en) Inspection method for integrated circuits
JP4166451B2 (en) Two image matching device
JPS63128215A (en) Detecting method for inclination of camera optical axis
JPH06174428A (en) Size measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees