JP2007212362A - Image processor and spring forming machine - Google Patents

Image processor and spring forming machine Download PDF

Info

Publication number
JP2007212362A
JP2007212362A JP2006034410A JP2006034410A JP2007212362A JP 2007212362 A JP2007212362 A JP 2007212362A JP 2006034410 A JP2006034410 A JP 2006034410A JP 2006034410 A JP2006034410 A JP 2006034410A JP 2007212362 A JP2007212362 A JP 2007212362A
Authority
JP
Japan
Prior art keywords
spring
wire
coil spring
feeding
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006034410A
Other languages
Japanese (ja)
Other versions
JP4612552B2 (en
Inventor
Eiji Obayashi
栄次 大林
Takashi Nojima
高志 野島
Hiroshi Sugiyama
寛 杉山
Shoichi Yasue
章一 安江
Hideo Hayakawa
秀夫 早川
Yoshiteru Watanabe
芳晃 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Seiki Manufacturing Co Ltd
Tokai Spring Seisakusho KK
Original Assignee
Asahi Seiki Manufacturing Co Ltd
Tokai Spring Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Seiki Manufacturing Co Ltd, Tokai Spring Seisakusho KK filed Critical Asahi Seiki Manufacturing Co Ltd
Priority to JP2006034410A priority Critical patent/JP4612552B2/en
Publication of JP2007212362A publication Critical patent/JP2007212362A/en
Application granted granted Critical
Publication of JP4612552B2 publication Critical patent/JP4612552B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image processor capable of stabilizing the measurement position in a coil spring, and a spring forming machine capable of improving the yield of the coil spring using the image processor. <P>SOLUTION: The spring length of the coil spring 91 and the feed amount of a wire rod 90 are metered on the condition that the tip cut end 92 of the wire rod 90 in the head part of the coil spring 91 lies between a first reference line L1 and a second reference line L2 and the displacement amount Zp between intersections becomes threshold Sk1 or more. Therefore, the rotation position of the coil spring 91 during measurement is stabilized, and more accurate measurement than before is allowed. Thus, variation in spring length and coil diameter of the coil spring is suppressed, and the yield can be improved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、成形中のコイルばねの画像をカメラを通して随時取り込み画像処理を行う画像処理装置と、その画像処理装置から取得した情報に応じて工具の位置を補正するばね成形機とに関する。   The present invention relates to an image processing apparatus that captures an image of a coil spring being formed through a camera as needed and performs image processing, and a spring forming machine that corrects the position of a tool according to information acquired from the image processing apparatus.

一般的なコイルばねに比べて、ばね長が比較的長く、ピッチが比較的粗く、さらに、線径dに対するコイル径Dの比率(=D/d)が比較的大きいコイルばねは、形状がばらつき易く、歩留まりが悪い。これに対し、光学式のばね長計測装置を備えると共に、線材の基準送給量とコイルばねの基準ばね長とを予め対応させて記憶したばね成形装置が知られている。このばね成形機では、線材の送給量が基準送給量に達すると、その基準送給量に対応した基準ばね長と、実測したばね長とのずれ量を求め、そのずれ量に応じてピッチ工具の位置を補正していた(例えば、特許文献1参照)。
特開昭53−123363号公報(請求項1及び2、第4ページ右上欄、第5頁左下欄2〜10行目、第2図)
Compared with a general coil spring, the length of the spring is relatively long, the pitch is relatively coarse, and the ratio of the coil diameter D to the wire diameter d (= D / d) is relatively large. Easy and yield is poor. On the other hand, there is known a spring forming apparatus that includes an optical spring length measuring device and stores a reference feeding amount of a wire and a reference spring length of a coil spring in correspondence with each other. In this spring forming machine, when the feed amount of the wire reaches the reference feed amount, the deviation amount between the reference spring length corresponding to the reference feed amount and the actually measured spring length is obtained, and according to the deviation amount. The position of the pitch tool was corrected (for example, see Patent Document 1).
JP-A-53-123363 (Claims 1 and 2, upper right column on page 4, lower left column on page 5, lines 2 to 10, line 2)

ところで、コイルばねが回転しながら成長していく途中で線材の送給量が基準送給量に達したときに、図18に示すように線材1の先端切り口1Aの位置が巻回方向(図18の上下方向)でばらつき得る。このため、従来の構成では、基準ばね長と実測したばね長との間で、先端切り口1Aの位置、即ち、巻き数が異なった条件の下、それら基準ばね長と実測したばね長とのずれ量を求めてピッチ工具の位置の補正を行うことになっていた。このため、補正が的確に行われず、コイルばねの形状がばらついて歩留まりが悪くなっていた。   By the way, when the feeding amount of the wire reaches the reference feeding amount while the coil spring is growing while rotating, the position of the tip end 1A of the wire 1 is the winding direction (see FIG. 18). 18 in the vertical direction). For this reason, in the conventional configuration, the difference between the reference spring length and the actually measured spring length is different between the reference spring length and the actually measured spring length under the condition that the position of the tip cut end 1A, that is, the number of turns is different. The amount of the pitch tool was to be corrected by obtaining the amount. For this reason, the correction is not performed accurately, and the shape of the coil spring varies, resulting in a poor yield.

本発明は、上記事情に鑑みてなされたもので、コイルばねにおける計測位置を安定させることが可能な画像処理装置と、その画像処理装置を用いてコイルばねの歩留まりをよくすることが可能なばね成形機との提供を目的とする。   The present invention has been made in view of the above circumstances, and an image processing device capable of stabilizing the measurement position in the coil spring and a spring capable of improving the yield of the coil spring using the image processing device. The purpose is to provide a molding machine.

上記目的を達成するためになされた請求項1の発明に係る画像処理装置は、ばね成形機によって線材から成形されかつガイドバーの外側に挿通されて回転しながら成長していくコイルばねの画像を、逐次、側方からカメラを通して取り込んで画像処理を行う画像処理装置において、コイルばねの巻回軸方向に延びかつ所定の間隔を開けて平行になった第1基準線及び第2基準線が、コイルばねの画像のうちガイドバーを背景にした線材の側部輪郭線を横切るように設定され、第1基準線と線材の側部輪郭線との交点のうちコイルばねの先頭に位置した第1先頭交点と、第2基準線と線材の側部輪郭線との交点のうちコイルばねの先頭に位置した第2先頭交点とを同一画像上で検出する先頭交点検出手段と、それら第1先頭交点と第2先頭交点との巻回軸方向におけるずれ量を交点間ずれ量として検出する交点間ずれ量検出手段と、線材の先端切り口が、第1基準線と第2基準線との間に位置して交点間ずれ量が所定の閾値以上になった状態を計測可能状態として検出する計測可能状態検出手段とを備えたところに特徴を有する。   In order to achieve the above object, an image processing apparatus according to the first aspect of the present invention provides an image of a coil spring which is formed from a wire rod by a spring molding machine and is inserted into the outside of a guide bar and growing while rotating. The first reference line and the second reference line that extend in the winding axis direction of the coil spring and are parallel to each other at a predetermined interval in the image processing apparatus that sequentially captures images from the side through the camera and performs image processing. The first of the images of the coil spring that is set to cross the side contour of the wire against the background of the guide bar and is located at the head of the coil spring at the intersection of the first reference line and the side contour of the wire Leading intersection detecting means for detecting a leading intersection and a second leading intersection located at the beginning of the coil spring among the intersections of the second reference line and the side contours of the wire, and the first leading intersection And the second intersection Interstitial point deviation amount detection means for detecting the deviation amount in the winding axis direction of the wire as an inter-intersection deviation amount, and the tip end of the wire rod is located between the first reference line and the second reference line, and the deviation amount between the intersection points And a measurable state detecting means for detecting a state in which the value becomes equal to or greater than a predetermined threshold as a measurable state.

請求項2の発明に係るばね成形機は、線材を送給する線材送給装置と、コイルばねのピッチを変更可能なピッチ工具と、予め設定された目標位置データに基づいてサーボモータにてピッチ工具の位置を制御する制御部と、請求項1に記載の画像処理装置と、画像処理装置が計測可能状態を検出したことを条件にして、コイルばねのばね長を計測するばね長計測手段と、ばね長計測手段にて計測した実際のばね長と理論上のばね長とのずれ量を低減させるように目標位置データを補正するばね長補正手段とを備えたところに特徴を有する。   According to a second aspect of the present invention, there is provided a spring forming machine that includes a wire rod feeding device that feeds a wire rod, a pitch tool that can change a pitch of a coil spring, and a pitch that is set by a servo motor based on preset target position data. A control unit that controls the position of the tool, the image processing device according to claim 1, and a spring length measuring unit that measures the spring length of the coil spring on condition that the image processing device detects a measurable state; Further, the present invention is characterized in that it is provided with spring length correcting means for correcting the target position data so as to reduce a deviation amount between the actual spring length measured by the spring length measuring means and the theoretical spring length.

請求項3の発明に係るばね成形機は、線材を送給する線材送給装置と、コイルばねのコイル径を変更可能な成形工具と、予め設定された目標位置データに基づいてサーボモータにて成形工具の位置を制御する制御部と、請求項1に記載の画像処理装置と、コイルばねの成形を開始したこと、又は、画像処理装置が計測可能状態を検出したことを開始条件にして、線材の送給量の計測を開始し、それから所定の巻回数分の線材が送給された後、画像処理装置が計測可能状態を検出したことを終了条件にして計測を終了し、開始条件から終了条件までの間に計測された実際の送給量と理論上の送給量とのずれ量を求める送給ずれ量計測手段と、送給ずれ量計測手段が求めた実際の送給量と理論上の送給量とのずれ量を低減させるように目標位置データを補正するコイル径補正手段とを備えたところに特徴を有する。   According to a third aspect of the present invention, there is provided a spring forming machine that uses a wire feeding device that feeds a wire, a forming tool that can change a coil diameter of a coil spring, and a servo motor based on preset target position data. The control unit that controls the position of the forming tool, the image processing device according to claim 1, and the start of forming the coil spring, or that the image processing device has detected a measurable state, After the measurement of the wire feed amount is started, and after the wire has been fed for a predetermined number of turns, the measurement is terminated with the end condition that the image processing device has detected a measurable state. The feed deviation amount measuring means for obtaining a deviation amount between the actual feed amount measured until the end condition and the theoretical feed amount, and the actual feed amount obtained by the feed deviation amount measuring means The target position data is reduced so as to reduce the deviation from the theoretical feed amount. Characterized in place and a coil diameter correction means for correcting the data.

請求項4の発明に係るばね成形機は、線材を送給する線材送給装置と、コイルばねのコイル径を変更可能な成形工具と、コイルばねのピッチを変更可能なピッチ工具と、予め設定された目標位置データに基づいてサーボモータにて成形工具及びピッチ工具の位置を制御する制御部と、請求項1に記載の画像処理装置と、画像処理装置が計測可能状態を検出したことを条件にして、コイルばねのばね長を計測するばね長計測手段と、ばね長計測手段にて計測した実際のばね長と理論上のばね長とのずれ量を低減させるように目標位置データを補正するばね長補正手段と、コイルばねの成形を開始したこと、又は、画像処理装置が計測可能状態を検出したことを開始条件にして、線材の送給量の計測を開始し、それから所定の巻回数分の線材が送給された後、画像処理装置が計測可能状態を検出したことを終了条件にして計測を終了し、開始条件から終了条件までの間に計測された実際の送給量と理論上の送給量とのずれ量を求める送給ずれ量計測手段と、送給ずれ量計測手段が求めた実際の送給量と理論上の送給量とのずれ量を低減させるように目標位置データを補正するコイル径補正手段とを備えたところに特徴を有する。   A spring molding machine according to a fourth aspect of the present invention includes: a wire rod feeding device that feeds a wire rod; a molding tool that can change a coil diameter of a coil spring; a pitch tool that can change a pitch of the coil spring; A control unit that controls the positions of the forming tool and the pitch tool with a servo motor based on the target position data that has been set, the image processing apparatus according to claim 1, and a condition that the image processing apparatus has detected a measurable state The target position data is corrected so as to reduce the deviation between the spring length measuring means for measuring the spring length of the coil spring and the actual spring length measured by the spring length measuring means and the theoretical spring length. The measurement of the feed amount of the wire is started on the condition that the spring length correction means and the formation of the coil spring are started, or the image processing apparatus detects the measurable state, and then the predetermined number of turns Min wire is sent After that, the measurement is terminated with the end condition that the image processing device has detected a measurable state, and the actual feed amount and the theoretical feed amount measured between the start condition and the end condition are The feed deviation amount measuring means for obtaining the deviation amount of the feed and the coil for correcting the target position data so as to reduce the deviation amount between the actual feed amount and the theoretical feed amount obtained by the feed deviation amount measuring means. It is characterized in that it includes a diameter correcting means.

請求項5の発明は、請求項2又は4に記載のばね成形機において、ばね長計測手段は、ガイドバーから側方にオフセットした走査ラインに沿ってレーザ光を走査するレーザ投光器と、レーザ投光器に対向配置されて、レーザを受光するレーザ受光器と、レーザ投光器からレーザ受光器へのレーザ光がコイルばねの先頭によって遮られた位置に基づいて、コイルばねのばね長を検出する演算処理部とを備えてなるところに特徴を有する。   According to a fifth aspect of the present invention, in the spring molding machine according to the second or fourth aspect, the spring length measuring means scans the laser beam along a scanning line offset laterally from the guide bar, and the laser projector. A laser receiver that receives the laser, and an arithmetic processing unit that detects the spring length of the coil spring based on the position where the laser light from the laser projector to the laser receiver is blocked by the head of the coil spring It is characterized in that it is provided with.

請求項6の発明は、請求項3又は4に記載のばね成形機において、制御部は、開始条件又は終了条件が成立する手前で、線材送給装置による線材送給速度を減速するように構成したところに特徴を有する。   A sixth aspect of the present invention is the spring molding machine according to the third or fourth aspect, wherein the control unit is configured to decelerate the wire feeding speed by the wire feeding device before the start condition or the end condition is satisfied. It has the characteristics in that place.

請求項7の発明は、請求項3又は4に記載のばね成形機において、開始条件から終了条件までに送給される理論上の線材の送給量をLrとし、コイルばねの1巻き分より短く設定された所定の基準送給量をSrとすると、制御部は、開始条件からLr−Srを目標送給量として線材を送給した基準位置で線材送給速度を減速し、送給ずれ量計測手段は、基準位置から画像処理装置が計測可能状態を検出した終了位置までの間の実際の送給量を計測すると共に、その実際の送給量をSjとすると、Sj−Srを実際の送給量と理論上の送給量とのずれ量として求めるように構成されたところに特徴を有する。   The invention of claim 7 is the spring molding machine according to claim 3 or 4, wherein the theoretical wire feed amount fed from the start condition to the end condition is Lr, and from one turn of the coil spring When the predetermined reference feed amount set short is Sr, the control unit decelerates the wire feed speed at the reference position where the wire is fed with Lr-Sr as the target feed amount from the start condition, and the feed deviation The amount measuring means measures the actual feed amount from the reference position to the end position at which the image processing apparatus has detected the measurable state, and assuming that the actual feed amount is Sj, Sj−Sr is actually It is characterized in that it is determined so as to obtain the amount of deviation between the feed amount and the theoretical feed amount.

[請求項1の発明]
請求項1に係る画像処理装置では、コイルばねの画像のうちガイドバーを背景にした線材の側部輪郭線を横切るように第1基準線と第2基準線とが設定される。そして、第1基準線と線材の側部輪郭線との交点のうちコイルばねの先頭に位置した第1先頭交点と、第2基準線と線材の側部輪郭線との交点のうちコイルばねの先頭に位置した第2先頭交点との間の巻回軸方向におけるずれ量が交点間ずれ量として検出される。ここで、ガイドバーを背景にしたコイルばねの先頭部分のシルエットは、線材の先端切り口を挟んで段差状になるから、線材の先端切り口が第1基準線と第2基準線との間に位置した場合には、それ以外の場合に比べて交点間ずれ量が大きくなって所定の閾値以上になり、この状態が計測可能状態として検出される。即ち、本発明の画像処理装置によれば、コイルばねがガイドバーの回りに回転しながら成長していく過程で、コイルばねの先端切り口がガイドバーの回りの一定の回転位置に位置した場合のみを計測可能状態として検出する。これにより、画像処理装置が計測可能状態を検出したことを条件にして、コイルばねのばね長又は線材の送給量等を計測すれば、コイルばねにおける計測位置が安定し、従来より正確な計測が可能になる。
[Invention of Claim 1]
In the image processing apparatus according to the first aspect, the first reference line and the second reference line are set so as to cross the side outline of the wire rod with the guide bar as a background in the image of the coil spring. And among the intersections of the first reference line and the side contour of the wire rod, the first top intersection located at the top of the coil spring and the intersection of the second reference line and the side contour of the wire rod of the coil spring A deviation amount in the winding axis direction from the second top intersection point located at the head is detected as a deviation amount between the intersection points. Here, the silhouette of the leading portion of the coil spring against the background of the guide bar has a stepped shape with the leading end cut of the wire interposed therebetween, so the leading end cut of the wire is located between the first reference line and the second reference line. In such a case, the amount of deviation between the intersections is greater than in other cases and exceeds a predetermined threshold, and this state is detected as a measurable state. That is, according to the image processing apparatus of the present invention, only when the tip end of the coil spring is located at a certain rotational position around the guide bar in the process of the coil spring growing while rotating around the guide bar. Is detected as a measurable state. By measuring the spring length of the coil spring or the feeding amount of the wire rod on the condition that the image processing device has detected a measurable state, the measurement position in the coil spring becomes stable and more accurate measurement than before is possible. Is possible.

[請求項2の発明]
請求項2に係るばね成形機では、上記した請求項1に係る画像処理装置が計測可能状態を検出したことを条件にしてばね長を実測して理論値と比較し、ピッチ工具の目標位置データを補正するので従来より的確な補正が可能になり、ばね長のばらつきが抑えられ、歩留まりを向上させることができる。
[Invention of claim 2]
In the spring forming machine according to claim 2, the spring length is measured and compared with the theoretical value on the condition that the image processing apparatus according to claim 1 detects the measurable state, and the target position data of the pitch tool is obtained. Therefore, more accurate correction than before can be performed, variation in spring length can be suppressed, and yield can be improved.

[請求項3の構成]
請求項3の構成では、コイルばねの成形を開始したこと、又は、上記した請求項1に係る画像処理装置が計測可能状態を検出したことを開始条件にして送給ずれ量計測手段が線材の送給量の計測を開始し、その後所定の巻回数分の線材を送給して画像処理装置が計測可能状態を検出したことを終了条件にして線材の送給量の計測を終了する。ここで、請求項1に係る画像処理装置は、コイルばねの先端切り口がガイドバーの回りの一定の回転位置に位置した場合にのみ計測可能状態を検出するので、開始条件から終了条件までの間に実際に成形された巻回数のばらつきは抑えられる。また、線材の送給量Lは、コイル径をD、ピッチをP、巻回数をN、座巻き部分の線材長さをaとすると、
L=((π・D)+P0.5×N+a
であるから、上記の如く巻回数のばらつきが小さいと、線材の送給量の理論値と実測値とのずれ量にピッチ又は/及びコイル径のばらつきが反映される。そして、そのうちコイル径のずれ量を低減させるように成形工具の目標位置データを補正するので、コイルばねのコイル径のばらつきが抑えられ、従来より歩留まりを向上させることができる。
[Composition of claim 3]
In the configuration of claim 3, the feeding deviation amount measuring means is configured to start the coil spring, or the feeding deviation amount measuring means is based on the fact that the image processing apparatus according to claim 1 detects the measurable state. Measurement of the feed amount is started, and then the wire rod is fed for a predetermined number of turns, and the measurement of the feed amount of the wire rod is ended on the condition that the image processing apparatus has detected a measurable state. Here, the image processing apparatus according to claim 1 detects the measurable state only when the tip end of the coil spring is located at a certain rotational position around the guide bar. The variation in the number of windings actually formed can be suppressed. In addition, the wire feed amount L is as follows: the coil diameter is D, the pitch is P, the number of turns is N, and the wire length of the end turn part is a.
L = ((π · D) 2 + P 2 ) 0.5 × N + a
Therefore, if the variation in the number of windings is small as described above, the variation in pitch or / and coil diameter is reflected in the amount of deviation between the theoretical value of the wire feed amount and the actual measurement value. Since the target position data of the forming tool is corrected so as to reduce the deviation amount of the coil diameter, variation in the coil diameter of the coil spring can be suppressed, and the yield can be improved as compared with the conventional technique.

[請求項4の発明]
請求項4の構成では、コイルばねの成形を開始したこと、又は、上記した請求項1に係る画像処理装置が計測可能状態を検出したことを条件にしてばね長を実測し、その実測値と理論値とを比較してピッチ工具の目標位置データを補正するので、従来より的確な補正が可能になり、ばね長のばらつきが抑えられる。また、画像処理装置が計測可能状態を検出したことを開始条件とし、その後に画像処理装置がまた計測可能状態を検出したことを終了条件にして、それら開始条件と終了条件の間に成形された所定の巻回数分の線材の送給量を実測する。そして、線材送給量の実測値と理論値とを比較して成形工具の目標位置データを補正するので、コイルばねのコイル径のばらつきが従来より抑えられる。これらにより、従来より歩留まりを向上させることができる。
[Invention of claim 4]
In the configuration of claim 4, the spring length is measured on condition that the forming of the coil spring is started or the image processing apparatus according to claim 1 detects the measurable state, and the measured value and Since the target position data of the pitch tool is corrected by comparing with the theoretical value, more accurate correction than before can be performed, and variations in the spring length can be suppressed. In addition, the image processing apparatus is formed between the start condition and the end condition, with the start condition being a measurable state and the image processing apparatus again detecting the measurable state is the end condition. Measure the amount of wire fed for a predetermined number of turns. And since the target position data of a forming tool is correct | amended by comparing the measured value and theoretical value of wire supply amount, the dispersion | variation in the coil diameter of a coil spring is suppressed conventionally. By these, a yield can be improved conventionally.

[請求項5の発明]
請求項5の構成によれば、コイルばねのばね長をレーザを用いて非接触で計測することが可能になる。
[Invention of claim 5]
According to the configuration of the fifth aspect, the spring length of the coil spring can be measured in a non-contact manner using a laser.

[請求項6の発明]
請求項6の構成によれば、開始条件又は終了条件が成立する手前で、線材送給装置による線材送給速度を減速するので、線材の先端切り口が第1基準線と第2基準線との間に比較的ゆっくり進入し、画像処理装置が計測可能状態を検出する際のコイルばねの回転位置がより一層安定する。これにより、より精度が高い計測を行うことが可能になる。
[Invention of claim 6]
According to the configuration of claim 6, since the wire rod feeding speed by the wire rod feeding device is decelerated before the start condition or the end condition is established, the tip end of the wire rod is formed between the first reference line and the second reference line. The rotational position of the coil spring when the image processing apparatus detects a measurable state is relatively stabilized. Thereby, measurement with higher accuracy can be performed.

[請求項7の発明]
請求項7の構成では、開始条件から終了条件までに送給される理論上の線材の送給量Lrから所定の基準送給量Srを減算したLr−Srを目標送給量として線材を送給した基準位置で線材送給速度を減速する。そして、その基準位置から画像処理装置が計測可能状態を検出した終了位置までの間の実際の送給量と理論上の送給量とのずれ量として求める。この構成によっても、開始条件から終了条件までに送給される理論上の線材の送給量と実際の線材の送給量とのずれ量を求めることができる。
[Invention of Claim 7]
In the configuration of claim 7, the wire is fed with Lr-Sr obtained by subtracting a predetermined reference feed amount Sr from the theoretical feed amount Lr of the wire fed from the start condition to the end condition as a target feed amount. The wire feeding speed is reduced at the fed reference position. Then, the amount of deviation between the actual feed amount and the theoretical feed amount from the reference position to the end position where the image processing apparatus detects the measurable state is obtained. Also with this configuration, it is possible to obtain a deviation amount between the theoretical wire feed amount fed from the start condition to the end condition and the actual wire feed amount.

以下、本発明に係る一実施形態を図1〜図16に基づいて説明する。
図1に示したばね成形機10は、鉛直に起立した基台11に、線材送給装置20、1対の上下直動機構30,30、1対の傾斜直動機構40,40等を組み付けてなる。線材送給装置20は、基台11の前面に配置されて、上下に並んだ1対のローラ21,21を備えている。線材送給装置20のうちローラ21,21同士の接合部分からは水平方向の一方側(図1の右側)に線材ガイド12(一般に、「クイル」と呼ばれている)が延ばされ、その線材ガイド12には、両ローラ21,21の共通した接線上に線材挿通孔(図示せず)が貫通形成されている。そして、ローラ21,21の間に線材90を挟持し、送給用サーボモータ22(図5参照)を駆動源にしてこれらローラ21,21を対称回転することで、線材90が図1における右側に送給されて線材ガイド12の先端から送り出される。なお、本実施形態のばね成形機10で成形する線材90は、断面が円形になっている。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment according to the invention will be described with reference to FIGS.
The spring forming machine 10 shown in FIG. 1 is assembled by assembling a wire feeder 20, a pair of up / down linear motion mechanisms 30, 30, a pair of inclined linear motion mechanisms 40, 40, etc. on a base 11 standing upright. Become. The wire rod feeding device 20 includes a pair of rollers 21 and 21 arranged on the front surface of the base 11 and arranged vertically. A wire guide 12 (generally called “quill”) is extended from one side (right side in FIG. 1) in the horizontal direction from the joint between the rollers 21 and 21 of the wire feeding device 20. A wire rod insertion hole (not shown) is formed through the wire rod guide 12 on a common tangent line between the rollers 21 and 21. Then, the wire 90 is sandwiched between the rollers 21 and 21, and the rollers 90 are rotated symmetrically by using the feeding servo motor 22 (see FIG. 5) as a drive source. Is fed from the tip of the wire guide 12. The wire 90 formed by the spring forming machine 10 of this embodiment has a circular cross section.

図2に示すように線材ガイド12に対して線材送給方向の前方には、基台11から心金工具13が突出している。心金工具13は、断面半円形の棒状をなし、その平坦な側面13Aが、線材ガイド12側を向いている。   As shown in FIG. 2, a mandrel tool 13 protrudes from the base 11 in front of the wire guide 12 in the wire feeding direction. The mandrel tool 13 has a bar shape with a semicircular cross section, and its flat side surface 13A faces the wire guide 12 side.

図1に示すように1対の傾斜直動機構40,40は、基台11の前面に固定された増設板41,41に取り付けられている。そして、一方の傾斜直動機構40は、心金工具13から線材送給装置20と反対側の斜め上方に延び、他方の傾斜直動機構40は、一方の傾斜直動機構40の下方に配置されて、心金工具13から離れるに従って斜め上方に向かうように延びている。各傾斜直動機構40には、それらが延びた方向に直動するスライダ43が備えられている。スライダ43のうち心金工具13から離れた側の端部にはリンク部材42の一端部が回動可能に連結され、そのリンク部材42の他端部が、回動円盤45の偏心軸45Jに回動可能に連結されている。回動円盤45は、増設板41に対して回動可能に軸支され、その回転中心から偏心した位置に偏心軸45Jが配置されている。そして、増設板41の裏面側に取り付けられた上下動用サーボモータ46によって回動円盤45が回転駆動され、これによりスライダ43が直動する。   As shown in FIG. 1, the pair of inclined linear motion mechanisms 40, 40 are attached to additional plates 41, 41 fixed to the front surface of the base 11. One inclined linear motion mechanism 40 extends obliquely upward from the mandrel tool 13 on the side opposite to the wire rod feeding device 20, and the other inclined linear motion mechanism 40 is disposed below the one inclined linear motion mechanism 40. Then, it extends so as to go obliquely upward as it moves away from the mandrel tool 13. Each inclined linear motion mechanism 40 is provided with a slider 43 that linearly moves in the direction in which they extend. One end of the link member 42 is rotatably connected to the end of the slider 43 on the side away from the mandrel tool 13, and the other end of the link member 42 is connected to the eccentric shaft 45 </ b> J of the rotating disk 45. It is connected so that it can rotate. The rotating disk 45 is pivotally supported with respect to the additional plate 41, and an eccentric shaft 45J is disposed at a position eccentric from the center of rotation. Then, the rotary disk 45 is rotationally driven by the vertical movement servomotor 46 attached to the back surface side of the additional plate 41, and thereby the slider 43 moves linearly.

各傾斜直動機構40のスライダ43の心金工具13側には工具取付具43Aが取り付けられており、この工具取付具43Aには成形工具16がそれぞれ固定されている。図2に示すように、一方の傾斜直動機構40に備えた成形工具16は、心金工具13に対して斜め上方から突き合わされ、他方の傾斜直動機構40に備えた成形工具16が、心金工具13に対して斜め下方から突き合わされている。また、これら成形工具16,16の先端面には、図示しない丸溝が上下方向に延びている。そして、線材送給装置20から送給された線材90が各成形工具16,16の丸溝に案内されて上方に向けられ、これにより線材90が心金工具13を取り囲むように円弧状に成形されてコイルばね91になり、図4に示すようにそのコイルばね91が基台11から離れる方向に成長していく。   A tool attachment 43A is attached to the mandrel tool 13 side of the slider 43 of each inclined linear motion mechanism 40, and the forming tool 16 is fixed to the tool attachment 43A. As shown in FIG. 2, the forming tool 16 provided in one inclined linear motion mechanism 40 is abutted against the mandrel tool 13 obliquely from above, and the forming tool 16 provided in the other inclined linear motion mechanism 40 is It is abutted against the mandrel tool 13 obliquely from below. Further, round grooves (not shown) extend in the vertical direction on the front end surfaces of the forming tools 16 and 16. Then, the wire rod 90 fed from the wire rod feeding device 20 is guided upward in the round groove of each forming tool 16, 16, so that the wire rod 90 is formed in an arc shape so as to surround the mandrel tool 13. Thus, the coil spring 91 is formed, and the coil spring 91 grows away from the base 11 as shown in FIG.

図1及び図3に示すように上下直動機構30,30は、心金工具13を間に挟んで上下に対称に配置されている。各上下直動機構30には、傾斜直動機構40のスライダ43と同様にスライダ31が備えられ、そのスライダ31が、リンク部材32を介して回動円盤34の偏心軸34Jに連結されている。そして、サーボモータ35にて回動円盤34を回転駆動することでスライダ31が直動する。   As shown in FIGS. 1 and 3, the vertical movement mechanisms 30 and 30 are symmetrically arranged vertically with the mandrel tool 13 interposed therebetween. Each vertical translation mechanism 30 includes a slider 31 similar to the slider 43 of the tilt translation mechanism 40, and the slider 31 is connected to an eccentric shaft 34 </ b> J of the rotating disk 34 via a link member 32. . Then, the rotary disk 34 is rotationally driven by the servo motor 35 so that the slider 31 moves directly.

上側の上下直動機構30におけるスライダ31には工具取付金具31Aが固定され、工具取付金具31Aには切断工具15が固定されている。切断工具15は角柱状をなし、工具取付金具31Aから鉛直下方に延びている。そして、切断工具15を降下すると心金工具13の平坦な側面13Aに隣接して擦れ違い、切断工具15のエッジと心金工具13のエッジとの間で線材90が切断される。   A tool mounting bracket 31A is fixed to the slider 31 in the upper vertical movement mechanism 30, and a cutting tool 15 is fixed to the tool mounting bracket 31A. The cutting tool 15 has a prismatic shape and extends vertically downward from the tool mounting bracket 31A. When the cutting tool 15 is lowered, it rubs adjacent to the flat side surface 13 </ b> A of the mandrel tool 13, and the wire 90 is cut between the edge of the cutting tool 15 and the edge of the mandrel tool 13.

下側の上下直動機構30におけるスライダ31には工具取付金具31Aが固定され、工具取付金具31Aには、ピッチ工具14が固定されている。図4に示すようにピッチ工具14の先端部のうち基台11と反対側には、鉛直方向に対して傾斜した傾斜面14Aが備えられ、この傾斜面14Aがコイルばね91を構成する線材90に対して巻回軸方向で基台11側から当接している。そして、ピッチ工具14を上方に移動することで、コイルばね91を構成する線材90を基台11から離れる方向に押して、コイルばね91のピッチを大きくすることができる。   A tool mounting bracket 31A is fixed to the slider 31 in the lower vertical linear motion mechanism 30, and the pitch tool 14 is fixed to the tool mounting bracket 31A. As shown in FIG. 4, an inclined surface 14 </ b> A inclined with respect to the vertical direction is provided on the side opposite to the base 11 in the tip end portion of the pitch tool 14, and the inclined surface 14 </ b> A constitutes the coil spring 91. Is in contact with the base 11 in the winding axis direction. Then, by moving the pitch tool 14 upward, the wire 90 constituting the coil spring 91 can be pushed away from the base 11 to increase the pitch of the coil spring 91.

図3及び図4に示すように心金工具13の同軸延長線上には、ガイドバー17が設けられて心金工具13の先端面に突き合わされている。このガイドバー17は、断面円形をなしかつ先端にはテーパー部17Aを備えている。また、ガイドバー17の基端部は、例えば、図示しない架台に着脱可能かつ心金金具13に向かって前後移動可能に取り付けられている。そして、基台11から離れるように成長したコイルばね91がガイドバー17の外側に挿通され、そのガイドバー17の回りを回転しながら成長していく(図16参照)。   As shown in FIG. 3 and FIG. 4, a guide bar 17 is provided on the coaxial extension line of the mandrel tool 13 and is abutted against the tip surface of the mandrel tool 13. The guide bar 17 has a circular cross section and is provided with a tapered portion 17A at the tip. Moreover, the base end part of the guide bar 17 is attached so that it can be attached or detached to the mount frame which is not shown in figure, and can move back and forth toward the metal core 13, for example. Then, the coil spring 91 grown away from the base 11 is inserted into the outside of the guide bar 17, and grows while rotating around the guide bar 17 (see FIG. 16).

なお、コイルばね91が完成して、切断工具15により後続の線材90から切り離されると、ガイドバー17が高速で後退し、コイルばね91はガイドバー17から外され自然落下する。   When the coil spring 91 is completed and separated from the subsequent wire 90 by the cutting tool 15, the guide bar 17 is retracted at a high speed, and the coil spring 91 is removed from the guide bar 17 and naturally falls.

図5には、ばね成形機10を駆動するための制御装置60が示されている。制御装置60の制御回路60C(本発明に係る「制御部」に相当する)にはCPU61、ROM62、RAM63、フラッシュメモリ64が備えられている。そして、フラッシュメモリ64に記憶したNCプログラムを実行することで、線材送給装置20、上下直動機構30,30、傾斜直動機構40,40等が駆動されて線材90からコイルばね91が成形される。図6には、そのNCプログラムの一部の一例が示されている。同図に示すように、NCプログラムでは、工具の移動コマンドである「GO1」に、指定工具番号「Z1」〜[Z3]と、その指定された工具の目標位置データD1〜D3とが並記されている。ここで、例えば、「Z1」は一方の成形工具16を指し、「Z2」は他方の成形工具16を指し、「Z3」はピッチ工具14を指している。そして、指定工具番号「Z1」の右横には、目標位置データD1から補正値H1を減算する補正演算式が記載され、指定工具番号「Z2」の右横には、目標位置データD2から補正値H2を減算する補正演算式が記載され、さらに、指定工具番号「Z3」の右横には、目標位置データD3から補正値H3を減算する補正演算式が記載されている。そして、この補正演算式の演算結果の数値で特定される位置に、各指定工具番号「Z1」〜「Z3」の工具が位置決め制御される。即ち、目標位置データD1〜D3が、補正値H1〜H3の減算により補正可能な構成になっている。   FIG. 5 shows a control device 60 for driving the spring molding machine 10. A control circuit 60C (corresponding to a “control unit” according to the present invention) of the control device 60 includes a CPU 61, a ROM 62, a RAM 63, and a flash memory 64. Then, by executing the NC program stored in the flash memory 64, the wire feeding device 20, the vertical linear motion mechanisms 30, 30, the inclined linear motion mechanisms 40, 40, etc. are driven, and the coil spring 91 is formed from the wire 90. Is done. FIG. 6 shows an example of a part of the NC program. As shown in the figure, in the NC program, designated tool numbers “Z1” to [Z3] and target position data D1 to D3 of the designated tool are written in parallel with “GO1” which is a tool movement command. Has been. Here, for example, “Z1” indicates one forming tool 16, “Z2” indicates the other forming tool 16, and “Z3” indicates the pitch tool 14. A correction arithmetic expression for subtracting the correction value H1 from the target position data D1 is written on the right side of the designated tool number “Z1”, and a correction is made from the target position data D2 on the right side of the designated tool number “Z2”. A correction arithmetic expression for subtracting the value H2 is described, and further, a correction arithmetic expression for subtracting the correction value H3 from the target position data D3 is described to the right of the designated tool number “Z3”. Then, the tools of the designated tool numbers “Z1” to “Z3” are positioned and controlled at the position specified by the numerical value of the calculation result of the correction calculation formula. That is, the target position data D1 to D3 can be corrected by subtraction of the correction values H1 to H3.

制御回路60Cは、本発明に係る「送給ずれ量計測手段」に相当し、送給用サーボモータ22に備えた回転センサ(図示せず)の検出値を受け、計測開始から計測終了までの間における検出値の差分に基づいて線材90の送給量を計測し、制御回路60Cに備えたCPU61が、後述するコイル径補正プログラムPG4のステップS45を実行することで、実際の送給量と理論上の送給量とのずれ量を求める。   The control circuit 60C corresponds to the “feeding deviation amount measuring means” according to the present invention, receives a detection value of a rotation sensor (not shown) provided in the feeding servo motor 22, and from the start of measurement to the end of measurement. The feed amount of the wire 90 is measured based on the difference between the detected values between the two, and the CPU 61 provided in the control circuit 60C executes step S45 of the coil diameter correction program PG4 described later, thereby obtaining the actual feed amount. Find the deviation from the theoretical feed amount.

図1に示すように、このばね成形機10には、ガイドバー17を挟んでレーザ投光器53とレーザ受光器54とが設けられ、これらレーザ投光器53とレーザ受光器54とが制御装置60に備えた投受光制御部55に接続されてばね長計測装置56(本発明に係る「ばね長計測手段」に相当する)が構成されている。このばね長計測装置56では、図4に示すようにガイドバー17から側方にオフセットした走査ラインL3に沿ってコイルばね91の線材90を横切るように、レーザ投光器53がレーザ光を走査する。すると、そのレーザ光をレーザ受光器54が受光し、コイルばね91によってレーザ光が遮られた位置に基づいて、投受光制御部55がコイルばね91のばね長を検出する。   As shown in FIG. 1, the spring molding machine 10 is provided with a laser projector 53 and a laser receiver 54 with a guide bar 17 interposed therebetween, and the laser projector 53 and the laser receiver 54 are provided in the control device 60. The spring length measuring device 56 (corresponding to the “spring length measuring means” according to the present invention) is connected to the light projecting / receiving light control unit 55. In this spring length measuring device 56, the laser projector 53 scans the laser beam so as to cross the wire 90 of the coil spring 91 along a scanning line L3 offset laterally from the guide bar 17, as shown in FIG. Then, the laser light receiver 54 receives the laser light, and the light projecting / receiving control unit 55 detects the spring length of the coil spring 91 based on the position where the laser light is blocked by the coil spring 91.

このばね成形機10には、画像処理用のカメラ50(具体的には、CCDカメラ)が備えられている。カメラ50は、ガイドバー17の軸方向と直交する方向に光軸を有し、ガイドバー17に対して斜め上方に配置されている。そして、カメラ50は、図14に示すようにガイドバー17に沿って成長していくコイルばね91を、逐次、側方から撮影する。なお、このカメラ50には、環状の照明器51(図1参照)が図示しないブラケットにて一体に固定されている。   The spring molding machine 10 is provided with a camera 50 for image processing (specifically, a CCD camera). The camera 50 has an optical axis in a direction orthogonal to the axial direction of the guide bar 17, and is disposed obliquely above the guide bar 17. And the camera 50 image | photographs sequentially the coil spring 91 which grows along the guide bar 17, as shown in FIG. An annular illuminator 51 (see FIG. 1) is integrally fixed to the camera 50 with a bracket (not shown).

カメラ50で撮影した画像は制御装置60に備えた画像処理装置52に取り込まれる。その画像は縦横に複数の画素データをマトリックス状に並べてなり、各画素データは、「白」と「黒」とからなる2値信号の情報を有している。そして、画素データの「黒」の画素データの密集度により、画像上における影の濃淡が表されている。画像処理装置52には、取り込んだ画像を視認可能とするためのモニタ52Mが接続されている。図7及び図8には、画像処理装置52が取り込んだ画像が概念的に示されている。ここで、コイルばね91は、断面円形であるから、カメラ50側の照明器51からコイルばね91に向かった光は、コイルばね91の周方向における位置の相違により反射の程度が異なる。そして、カメラ50側から見て線材90の幅方向の中央部分では、カメラ50への反射光が強いために明るくなる。また、ガイドバー17も断面円形であるから、ガイドバー17の幅方向の両側部分でカメラ50への反射光が弱くなり、暗くなる。また、コイルばね91は、ガイドバー17に比べて径が大きいため、ガイドバー17の両側の黒い部分の画像上にはコイルばね91の中央部の白い部分が写し出される。これにより、そのガイドバー17を背景にして線材90の側部輪郭線R1が明確に区別可能になっている。   An image photographed by the camera 50 is taken into an image processing device 52 provided in the control device 60. The image has a plurality of pixel data arranged in a matrix in the vertical and horizontal directions, and each pixel data has binary signal information composed of “white” and “black”. The shade of the shadow on the image is represented by the density of the pixel data “black” of the pixel data. Connected to the image processing device 52 is a monitor 52M for making the captured image visible. 7 and 8 conceptually show images captured by the image processing device 52. Here, since the coil spring 91 has a circular cross section, the degree of reflection of the light from the illuminator 51 on the camera 50 side toward the coil spring 91 differs depending on the position of the coil spring 91 in the circumferential direction. Then, the central portion in the width direction of the wire 90 as viewed from the camera 50 side becomes bright because the reflected light to the camera 50 is strong. Further, since the guide bar 17 is also circular in cross section, the reflected light to the camera 50 becomes weak and dark at both side portions of the guide bar 17 in the width direction. Further, since the coil spring 91 has a larger diameter than the guide bar 17, the white portion at the center of the coil spring 91 is projected on the black portion image on both sides of the guide bar 17. Thereby, the side part outline R1 of the wire 90 can be clearly distinguished against the background of the guide bar 17.

画像処理装置52は、図10に示した画像処理プログラムPG1を実行して、画像処理を行う。すると、まず基準線設定処理(S11)を実行して、図7に示すように、取り込んだ画像上に、第1基準線L1及び第2基準線L2を設定する。具体的には、例えば、ガイドバー17の幅方向における両側部の輪郭線(図7のR3)からガイドバー17の幅方向の中心線を求め、その中心線を上下にオフセットして、これら第1基準線L1及び第2基準線L2を設定する。これにより、第1基準線L1及び第2基準線L2は、コイルばね91の巻回軸方向に延びかつ、ガイドバー17を背景にした線材90の側部輪郭線R1を横切った状態になる。   The image processing device 52 executes the image processing program PG1 shown in FIG. 10 to perform image processing. Then, first, a reference line setting process (S11) is executed to set the first reference line L1 and the second reference line L2 on the captured image as shown in FIG. Specifically, for example, the center line in the width direction of the guide bar 17 is obtained from the contour lines (R3 in FIG. 7) on both sides in the width direction of the guide bar 17, and the center line is offset up and down. A first reference line L1 and a second reference line L2 are set. As a result, the first reference line L1 and the second reference line L2 extend in the winding axis direction of the coil spring 91 and cross the side outline R1 of the wire 90 with the guide bar 17 in the background.

次いで、画素データ抽出処理(図10のS12)を実行して、第1基準線L1及び第2基準線L2に沿って並んだ画素データ群を取り出す。具体的には、例えば、1ビットの幅で、第1基準線L1に沿って並んだ画素データ群を取り込むと共に、1ビットの幅で、第2基準線L2に沿って並んだ画素データ群を取り込む。図9には、第1基準線L1に沿って並んだ1ビット幅の線状の画素データ群の一部が示されている。同図において、正方形の升の1つが1つの画素データG1に相当する。   Next, a pixel data extraction process (S12 in FIG. 10) is executed to extract a pixel data group arranged along the first reference line L1 and the second reference line L2. Specifically, for example, a pixel data group arranged along the first reference line L1 with a width of 1 bit is taken, and a pixel data group arranged along the second reference line L2 with a width of 1 bit is taken. take in. FIG. 9 shows a part of a linear pixel data group having a 1-bit width arranged along the first reference line L1. In the figure, one of the square ridges corresponds to one pixel data G1.

次いで、先頭交点特定処理(図10のS13:本発明に係る「先頭交点検出手段」に相当する)を実行して、第1基準線L1と線材90の側部輪郭線R1との交点のうちコイルばね91の先頭に位置した第1先頭交点P1を求めると共に、第2基準線L2と線材90の側部輪郭線R1との交点のうちコイルばね91の先頭に位置した第2先頭交点P2を求める。具体的には、第1基準線L1に沿って並んだ1ビット幅の線状の画素データ群に対して、基台11から離れた側から所定のビットパターンを検索していく。その一例としては、例えば、図9に示すように基台11から離れた側(図9の右側)から検索していき、同図の符号A1で示した部位のように、「黒」の画素データが3ビット以上連続した後、「白」の画素データが3ビット以上連続したビットパターンを最初に認定した場合に、それら連続した「白」の画素データの先頭の画素データG1の位置を、第1先頭交点P1として求める。第2先頭交点P2に関しても同様にして求める。   Next, the leading intersection specifying process (S13 in FIG. 10: corresponding to the “leading intersection detecting means” according to the present invention) is executed, and among the intersections between the first reference line L1 and the side contour line R1 of the wire 90 A first head intersection point P1 located at the head of the coil spring 91 is obtained, and a second head intersection point P2 located at the head of the coil spring 91 among the intersection points of the second reference line L2 and the side contour line R1 of the wire rod 90 is obtained. Ask. Specifically, a predetermined bit pattern is searched from the side away from the base 11 for a linear pixel data group having a 1-bit width arranged along the first reference line L1. As an example, for example, as shown in FIG. 9, the search is performed from the side away from the base 11 (the right side of FIG. 9), and the “black” pixel as in the part indicated by reference numeral A1 in FIG. When the bit pattern in which “white” pixel data continues for 3 bits or more is first recognized after the data continues for 3 bits or more, the position of the top pixel data G1 of the continuous “white” pixel data is Obtained as the first head intersection P1. The second head intersection point P2 is similarly determined.

次いで、交点間ずれ量演算処理(図10のS14:本願発明に係る「交点間ずれ量検出手段」に相当する)を実行して、第1先頭交点P1と第2先頭交点P2との間でコイルばね91の巻回軸方向におけるずれ量を、交点間ずれ量Zpとして求める。具体的には、第1基準線L1及び第2基準線L2において上記した所定のビットパターンの検索開始位置を、コイルばね91の巻回軸方向における同一位置に設定しておき、その検索開始位置から第1先頭交点P1までのビット長と、検索開始位置から第2先頭交点P2までのビット長との差分を上記した交点間ずれ量Zpとして求める。   Next, an inter-intersection deviation amount calculation process (S14 in FIG. 10: corresponding to “inter-intersection deviation amount detection means” according to the present invention) is executed, and between the first leading intersection P1 and the second leading intersection P2. A deviation amount in the winding axis direction of the coil spring 91 is obtained as an inter-intersection deviation amount Zp. Specifically, the search start position of the predetermined bit pattern described above on the first reference line L1 and the second reference line L2 is set to the same position in the winding axis direction of the coil spring 91, and the search start position The difference between the bit length from the first start intersection point P1 to the first head intersection point P2 and the bit length from the search start position to the second start intersection point P2 is obtained as the above-described inter-intersection deviation amount Zp.

次いで、状態検出処理(S15:本発明に係る「計測可能状態検出手段」に相当する)を実行して、交点間ずれ量Zpが、予め設定された所定の閾値以上であるか否かを判別し、閾値以上であった場合を計測可能状態として検出して状態検出信号Jkを制御回路60Cに出力する。   Next, state detection processing (S15: corresponding to “measurable state detection means” according to the present invention) is executed to determine whether or not the amount of deviation Zp between the intersections is greater than or equal to a predetermined threshold value set in advance. Then, a case where it is equal to or greater than the threshold is detected as a measurable state, and a state detection signal Jk is output to the control circuit 60C.

ここで、図7に示すようにコイルばね91の先頭部分のシルエットは、線材90の先端切り口92を挟んで段差状になるから、線材の先端切り口92が第1基準線L1と第2基準線L2との間に位置した場合には(図8参照)、それ以外の場合(図7参照)に比べて交点間ずれ量Zpが大きくなる。そこで、上記閾値は、先端切り口92が第1基準線L1と第2基準線L2との間に位置した場合(図8参照)の交点間ずれ量Zpより常に小さく、先端切り口92が第1基準線L1と第2基準線L2との間に位置しなかった場合(図7参照)の交点間ずれ量Zpより常に大きな値に設定されている。そして、交点間ずれ量Zpが閾値以上であった場合に、状態検出信号Jkを出力し、そうではなかった場合には状態検出信号Jkを出力しない。   Here, as shown in FIG. 7, the silhouette of the leading portion of the coil spring 91 has a stepped shape with the leading end cut 92 of the wire 90 sandwiched therebetween, so that the leading end cut 92 of the wire becomes the first reference line L1 and the second reference line. When located between L2 (see FIG. 8), the inter-intersection deviation amount Zp is larger than in other cases (see FIG. 7). Therefore, the threshold value is always smaller than the inter-intersection deviation amount Zp when the front end cut 92 is located between the first reference line L1 and the second reference line L2 (see FIG. 8). It is always set to a value larger than the inter-intersection deviation amount Zp when it is not located between the line L1 and the second reference line L2 (see FIG. 7). If the inter-intersection deviation amount Zp is equal to or larger than the threshold value, the state detection signal Jk is output. If not, the state detection signal Jk is not output.

なお、図14には、横軸を例えば線材90の送給量Xに対する、コイルばね91の基端部から第1先頭交点P1までの巻回軸方向における距離Y1のグラフGf1と、コイルばね91の基端部から第2先頭交点P2までの巻回軸方向における距離Y2のグラフGf2とが示されている。同図では、一定の間隔で両グラフGf1,Gf2の縦軸方向の間隔が広がり、この広がるタイミングで、線材90の先端切り口92が第1基準線L1と第2基準線L2との間を通過してコイルばね91が1回転することが分かる。   In FIG. 14, for example, the graph Gf1 of the distance Y1 in the winding axis direction from the proximal end portion of the coil spring 91 to the first leading intersection P1 with respect to the feed amount X of the wire 90, and the coil spring 91 A graph Gf2 of the distance Y2 in the winding axis direction from the base end of the second head to the second head intersection P2 is shown. In the figure, the vertical axis interval of both graphs Gf1 and Gf2 widens at a constant interval, and the leading edge 92 of the wire rod 90 passes between the first reference line L1 and the second reference line L2 at this widening timing. Thus, it can be seen that the coil spring 91 rotates once.

制御装置60の制御回路60Cは、画像処理装置52から状態検出信号Jkを取得したことを条件にして、コイルばね91のばね長Bjと線材90の送給量Xjとを実測する。具体的には、制御回路60CのCPU61が、前記したNCプログラムにより線材90を1つずつ成形する毎に、図10〜図13に示したカウンタ更新プログラムPG2と、ばね長補正プログラムPG3と、コイル径補正プログラムPG4とをマルチタスク機能により同時に実行する。   The control circuit 60C of the control device 60 measures the spring length Bj of the coil spring 91 and the feed amount Xj of the wire 90 on the condition that the state detection signal Jk is acquired from the image processing device 52. Specifically, every time the CPU 61 of the control circuit 60C forms the wire 90 one by one using the NC program described above, the counter update program PG2, the spring length correction program PG3, and the coil shown in FIGS. The diameter correction program PG4 is simultaneously executed by the multitask function.

そして、カウンタ更新プログラムPG2を実行すると、図11に示すように、検出信号カウンタNが初期値の「0」にリセットされ(S21)、その後、画像処理装置52から状態検出信号Jkを取得する度に(S22:YES)、検出信号カウンタNを1つインクリメントする(S23)。これにより、コイルばね91が、ガイドバー17の回りを1回転して、先端切り口92が所定の位置(第1基準線L1と第2基準線L2との間)を通過する度に検出信号カウンタNがインクリメントされていく。   When the counter update program PG2 is executed, as shown in FIG. 11, the detection signal counter N is reset to the initial value “0” (S21), and thereafter the state detection signal Jk is acquired from the image processing device 52. (S22: YES), the detection signal counter N is incremented by one (S23). As a result, each time the coil spring 91 makes one rotation around the guide bar 17 and the leading edge 92 passes through a predetermined position (between the first reference line L1 and the second reference line L2), the detection signal counter. N is incremented.

また、ばね長補正プログラムPG3を実行すると、図12に示すように、カウンタiが初期値の「0」にリセットされると共に、成形前のばね長Bj(0)が「0」に設定される(S31)。そして、検出信号カウンタNが、「2」、「5」、「8」又は「12」の何れかの値になるまで待機し(S32:NOのループ)、何れかの値になったときに(S32:YES)に、カウンタiを1つインクリメントして(S33)、ばね長計測装置56にてばね長の計測を行い、その計測結果をBj(i)に取り込む(S34)。   When the spring length correction program PG3 is executed, as shown in FIG. 12, the counter i is reset to the initial value “0”, and the spring length Bj (0) before molding is set to “0”. (S31). And it waits until the detection signal counter N becomes any value of “2”, “5”, “8” or “12” (S32: NO loop), and when it becomes any value (S32: YES), the counter i is incremented by 1 (S33), the spring length is measured by the spring length measuring device 56, and the measurement result is taken into Bj (i) (S34).

次いで、そのばね長Bj(i)からその前に計測したばね長Bj(i−1)を減算し、或いは、最初に計測したばね長Bj(1)の場合には、成形前のばね長Bj(0)を減算して区間ばね長Bjを求める(S35)。   Next, the spring length Bj (i-1) measured before that is subtracted from the spring length Bj (i), or in the case of the spring length Bj (1) measured first, the spring length Bj before molding The section spring length Bj is obtained by subtracting (0) (S35).

次いで、予めデータテーブルに記憶しておいた区間ばね長の理論値Br(i)を、区間ばね長Bjから減算して実測値と理論値とのずれ量ΔBを求める(S36)。ここで、区間ばね長の理論値Br(i)は、例えば、コイルばね91の一部の区間に含まれる巻回数と設計上のピッチとの積として求めることができる。そして、ずれ量ΔBに所定の係数K3を乗じた値を、前記したNCプログラムにおける補正値H3に設定し(S37)、上記ステップS32に戻る。これにより、1つのコイルばね91の成形中において、検出信号カウンタNが、「2」、「5」、「8」又は「12」になる計4回のタイミングで、ピッチ工具14の目標位置データD3が補正される。   Subsequently, the theoretical value Br (i) of the section spring length stored in advance in the data table is subtracted from the section spring length Bj to obtain a deviation amount ΔB between the actually measured value and the theoretical value (S36). Here, the theoretical value Br (i) of the section spring length can be obtained, for example, as the product of the number of turns included in a part of the section of the coil spring 91 and the designed pitch. Then, a value obtained by multiplying the deviation amount ΔB by a predetermined coefficient K3 is set as the correction value H3 in the NC program (S37), and the process returns to step S32. As a result, during the molding of one coil spring 91, the target position data of the pitch tool 14 is obtained at a total of four times when the detection signal counter N becomes “2”, “5”, “8”, or “12”. D3 is corrected.

コイル径補正プログラムPG4が実行されると、図13に示すように検出信号カウンタNが「2」になるまで待機し(S41:NOのループ)、検出信号カウンタNが「2」になったこと(S41:YES)を開始条件にして、線材送給装置20により線材90の送給量Xjの計測を開始する(S42)。そして、検出信号カウンタNが「5」になるまで送給量を計測し続け(S43:NOのループ)、検出信号カウンタNが「5」になったこと(S43:YES)を終了条件にして送給量Xjの計測を終了する(S44)。   When the coil diameter correction program PG4 is executed, it waits until the detection signal counter N becomes “2” as shown in FIG. 13 (S41: NO loop), and the detection signal counter N becomes “2”. Using (S41: YES) as a start condition, measurement of the feeding amount Xj of the wire 90 is started by the wire feeding device 20 (S42). Then, the feeding amount is continuously measured until the detection signal counter N becomes “5” (S43: NO loop), and the end condition is that the detection signal counter N becomes “5” (S43: YES). The measurement of the feed amount Xj is finished (S44).

次いで、予めデータテーブルに記憶しておいた線材90の理論上の送給量Xr(i)を、実測した送給量Xjから減算してずれ量ΔXを求める(S45)。ここで、理論上の送給量Xr(i)は、検出信号カウンタNが「2」から「5」になるまでの巻回数「3」を設計上のコイル径とピッチとの関数に乗じて求めることができる。そして、ずれ量ΔXに所定の係数K1を乗じた値を、前記したNCプログラムにおける補正値H1に設定すると共に、ずれ量ΔXに所定の係数K2を乗じた値を補正値H2に設定し(S46)、このコイル径補正プログラムPG4を終了する。これにより、1つのコイルばね91の成形中において初期の段階で成形工具16,16の目標位置データD1,D2が補正される。   Next, a theoretical feed amount Xr (i) of the wire 90 stored in advance in the data table is subtracted from the actually measured feed amount Xj to obtain a deviation amount ΔX (S45). Here, the theoretical feed amount Xr (i) is obtained by multiplying the function of the designed coil diameter and pitch by the number of turns “3” until the detection signal counter N changes from “2” to “5”. Can be sought. Then, a value obtained by multiplying the deviation amount ΔX by a predetermined coefficient K1 is set as the correction value H1 in the NC program, and a value obtained by multiplying the deviation amount ΔX by a predetermined coefficient K2 is set as the correction value H2 (S46). ), The coil diameter correction program PG4 is terminated. Thereby, the target position data D1 and D2 of the forming tools 16 and 16 are corrected at an initial stage during the formation of one coil spring 91.

本実施形態のばね成形機10の構成は以上である。
ばね成形機10の動作を説明する。ばね成形機10は、NCプログラムを繰り返して実行することで線材90からコイルばね91を成形して後続の線材90から切り離す動作を繰り返す。このとき、各コイルばね91は、ガイドバー17の外側に挿通されて、ガイドバー17の回りを回転しながら成長し、コイルばね91の先頭部分が基台11から離れる方向に移動していく。そして、この成長していくコイルばね91の画像が、所定周期で、逐次、側方からカメラ50により撮影され、それら撮影された画像が、逐次、画像処理装置52に取り込まれる。
The configuration of the spring forming machine 10 of the present embodiment is as described above.
The operation of the spring forming machine 10 will be described. The spring forming machine 10 repeats the operation of forming the coil spring 91 from the wire 90 and separating it from the subsequent wire 90 by repeatedly executing the NC program. At this time, each coil spring 91 is inserted outside the guide bar 17, grows while rotating around the guide bar 17, and the leading portion of the coil spring 91 moves in a direction away from the base 11. Then, the growing image of the coil spring 91 is sequentially captured from the side by the camera 50 at a predetermined cycle, and the captured images are sequentially captured by the image processing device 52.

画像処理装置52は、取り込んだ画像を、所定周期で、順次、以下のように処理していく。即ち、取り込んだ画像のうちガイドバー17を背景にした線材90の側部輪郭線R1を横切るように第1基準線L1と第2基準線L2とを設定する(図7参照)。そして、第1基準線L1と線材90の側部輪郭線R1との交点のうちコイルばね91の先頭に位置した第1先頭交点P1と、第2基準線L2と線材90の側部輪郭線R1との交点のうちコイルばね91の先頭に位置した第2先頭交点P2とを特定し、それら第1先頭交点P1と第2先頭交点P2との間で巻回軸方向における交点間ずれ量Zpを求める。ここで、コイルばね91の先頭部分のシルエットは、線材90の先端切り口92を挟んで段差状になるから、図8に示すように、先端切り口92が第1基準線L1と第2基準線L2との間に位置した場合には、図7に示すように先端切り口92が第1基準線L1と第2基準線L2との間から外れた場合に比べて交点間ずれ量Zpが大きくなって閾値以上になる。そして、交点間ずれ量Zpが閾値以上になった状態を計測可能状態として検出し、状態検出信号Jkを出力する。   The image processing device 52 sequentially processes the captured images in a predetermined cycle as follows. That is, the first reference line L1 and the second reference line L2 are set so as to cross the side outline R1 of the wire rod 90 with the guide bar 17 in the background of the captured image (see FIG. 7). And the 1st top intersection P1 located in the head of the coil spring 91 among the intersections of the 1st reference line L1 and the side part outline R1 of wire 90, and the 2nd reference line L2 and side part outline R1 of wire 90 And the second head intersection point P2 located at the head of the coil spring 91 is identified, and the amount of deviation Zp between the intersection points in the winding axis direction between the first head intersection point P1 and the second head intersection point P2 is determined. Ask. Here, the silhouette of the leading portion of the coil spring 91 has a stepped shape with the leading end cut 92 of the wire 90 sandwiched therebetween, so that the leading end cut 92 has the first reference line L1 and the second reference line L2 as shown in FIG. 7, the inter-intersection deviation amount Zp becomes larger than that in the case where the front end cut 92 is displaced from between the first reference line L1 and the second reference line L2, as shown in FIG. Be over threshold. Then, the state in which the inter-intersection deviation amount Zp is equal to or greater than the threshold is detected as a measurable state, and a state detection signal Jk is output.

ここで、本実施形態では、図15の最下段に示すように、コイルばね91全体で少なくとも12巻き以上巻回される。換言すれば、コイルばね91はガイドバー17の回りを12回以上回転して先端切り口92が第1基準線L1を12回以上通過し、ばね成形機10の制御回路60Cは画像処理装置52から12回以上の状態検出信号Jkを受信する。そして、制御回路60CのCPU61は、コイルばね91の成形開始から所定番目の状態検出信号Jkを受けたことを条件にして、コイルばね91の成形開始から終了迄の間に、コイルばね91のばね長Bjをばね長計測装置56にて複数回計測する。そして、ばね長Bjの計測を行った各区間毎の区間ばね長を求めて理論値と比較し、ピッチ工具14の目標位置データD3を補正するから、成形されたコイルばね91のばね長のばらつきが抑えられる。   Here, in this embodiment, as shown in the lowermost stage of FIG. 15, the entire coil spring 91 is wound by at least 12 turns. In other words, the coil spring 91 rotates about the guide bar 17 at least 12 times, and the leading edge 92 passes through the first reference line L1 at least 12 times, and the control circuit 60C of the spring forming machine 10 receives from the image processing device 52. The state detection signal Jk is received 12 times or more. Then, the CPU 61 of the control circuit 60C receives the predetermined state detection signal Jk from the start of forming the coil spring 91, and the spring of the coil spring 91 between the start and end of forming the coil spring 91. The length Bj is measured a plurality of times by the spring length measuring device 56. Then, since the section spring length for each section where the spring length Bj is measured is obtained and compared with the theoretical value, and the target position data D3 of the pitch tool 14 is corrected, the spring length variation of the formed coil spring 91 is varied. Is suppressed.

また、CPU61は、コイルばね91の成形開始から所定番目の状態検出信号Jkを受けたことを開始条件にして、線材90の送給量Xjの計測を開始し、その後所定の巻回数分の線材90を送給してから状態検出信号Jkを受けたことを終了条件にして送給量Xjの計測を終了する。ここで、画像処理装置52は、コイルばね91がガイドバー17の回りの一定の回転位置に位置した場合にのみ状態検出信号Jkを出力する(即ち、計測可能状態を検出する)ので、開始条件から終了条件までの間に実際に成形された巻回数のばらつきは抑えられる。また、線材の送給量Lは、コイル径をD、ピッチをP、巻回数をN、座巻き部分の線材長さをaとすると、
L=((π・D)+P0.5×N+a
であるから、上記の如く巻回数のばらつきが小さいと、線材90の送給量の理論値と実測値とのずれ量ΔXにコイル径及びピッチのばらつきが反映される。そして、そのずれ量を低減させるように成形工具16,16の目標位置データD1,D2を補正するから、成形された線材90のコイル径のばらつきも抑えられる。
Further, the CPU 61 starts measuring the feed amount Xj of the wire 90 on the condition that the predetermined state detection signal Jk is received from the start of forming the coil spring 91, and then the wire for a predetermined number of turns. The measurement of the feed amount Xj is ended on the condition that the state detection signal Jk is received after 90 is fed. Here, the image processing device 52 outputs the state detection signal Jk only when the coil spring 91 is positioned at a certain rotational position around the guide bar 17 (that is, detects the measurable state), so the start condition Variation in the number of windings actually formed between the end condition and the end condition is suppressed. In addition, the wire feed amount L is as follows: the coil diameter is D, the pitch is P, the number of turns is N, and the wire length of the end turn part is a.
L = ((π · D) 2 + P 2 ) 0.5 × N + a
Therefore, when the variation in the number of windings is small as described above, the variation in the coil diameter and the pitch is reflected in the deviation amount ΔX between the theoretical value and the actual measurement value of the feeding amount of the wire 90. Since the target position data D1 and D2 of the forming tools 16 and 16 are corrected so as to reduce the amount of deviation, variations in the coil diameter of the formed wire rod 90 can be suppressed.

上記の如く、線材90は成形中に形状がばらついても、ピッチ工具14の目標位置データD3及び/又は成型工具16,16の位置データD1,D2を補正することにより、そのばらつきの要因が迅速に排除される。そして、12回以上の所定回数分巻回されてからコイルばね91を後続の線材90から切断することでコイルばね91が完成する。   As described above, even if the shape of the wire 90 varies during molding, the cause of the variation can be quickly corrected by correcting the target position data D3 of the pitch tool 14 and / or the position data D1 and D2 of the molding tools 16 and 16. To be eliminated. The coil spring 91 is completed by cutting the coil spring 91 from the subsequent wire 90 after being wound by a predetermined number of times of 12 times or more.

このように本実施形態のばね成形機10によれば、コイルばね91の先頭部分における線材90の先端切り口92が第1基準線L1と第2基準線L2との間に位置して交点間ずれ量Zpが閾値以上になったことを条件して、コイルばね91のばね長又は線材90の送給量Xjを計測するので、計測時におけるコイルばね91の回転位置が安定し、従来より正確な計測が可能になる。これにより、コイルばね91の形状のばらつきが抑えられ、歩留まりを向上させることができる。   As described above, according to the spring molding machine 10 of the present embodiment, the front end cut end 92 of the wire 90 in the leading portion of the coil spring 91 is located between the first reference line L1 and the second reference line L2 and is shifted between the intersection points. Since the spring length of the coil spring 91 or the feed amount Xj of the wire 90 is measured on the condition that the amount Zp is equal to or greater than the threshold value, the rotational position of the coil spring 91 at the time of measurement is stable and more accurate than before. Measurement becomes possible. Thereby, the dispersion | variation in the shape of the coil spring 91 is suppressed, and a yield can be improved.

[他の実施形態]
本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
[Other Embodiments]
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.

(1)前記実施形態において、送給量Xjを計測するための開始条件及び終了条件が成立する手前で線材送給装置20による線材送給速度を減速することが好ましい。これにより、線材90の先端切り口92が第1基準線L1と第2基準線L2との間に比較的ゆっくり進入し、画像処理装置52が計測可能状態を検出する際のコイルばね91の回転位置がより一層安定し、より精度が高い計測を行うことが可能になる。   (1) In the above-described embodiment, it is preferable to decelerate the wire feeding speed by the wire feeding device 20 just before the start condition and the end condition for measuring the feed amount Xj are satisfied. As a result, the leading end 92 of the wire 90 enters relatively slowly between the first reference line L1 and the second reference line L2, and the rotational position of the coil spring 91 when the image processing device 52 detects the measurable state. Becomes more stable and more accurate measurement can be performed.

(2)前記実施形態では、コイル径補正のために、制御回路60CのCPU61が、画像処理装置52から状態検出信号Jkを取得したことを開始条件にして送給量Xjの計測を開始したが、新たにコイルばね91の成形を開始したことを開始条件にして送給量Xjの計測を開始する構成にしてもよい。   (2) In the above embodiment, for the coil diameter correction, the CPU 61 of the control circuit 60C starts measuring the feeding amount Xj on the condition that the state detection signal Jk is acquired from the image processing device 52. The measurement of the feed amount Xj may be started on the condition that the molding of the coil spring 91 is newly started.

(3)前記実施形態では、開始条件から終了条件までに送給される理論上の線材90の送給量Xr(i)と実際の送給量Xjとのずれ量ΔXを求め、そのずれ量ΔXに基づいてコイル径を補正していたが、以下のように構成してしてもよい。即ち、コイルばね91の成形を開始したことを開始条件にして線材90の送給量Xjの計測を開始し、図17(A)に示すように、線材90の送給量Xjが終了条件に至る長さより理論上、所定の基準送給量Srだけ不足した長さになる基準位置Q1まで通常の送給速度で線材90を送給する。そして、基準位置Q1から低速で線材90を送給して、画像処理装置52が状態検出信号Jkを出力した終了位置(先端切り口92が第1基準線L1に達した位置)までの間の実際の送給量Sjを計測すると共に、実際の送給量Sjと理論上の送給量Srとのずれ量ΔS(=Sj−Sr)を求め、このずれ量ΔSに基づいてコイル径を補正する。次いで、その終了位置の通過を開始条件にして、そこから、図17(B)に示すように、線材90の送給量Xjが終了条件に至る長さより理論上、所定の基準送給量Srだけ不足した基準位置Q1まで通常の送給速度で線材90を送給し、その基準位置Q1から低速で線材90を送給して終了位置までの間の実際の送給量Sjと理論上の送給量Srとのずれ量ΔSを求め、このずれ量ΔSに基づいてコイル径を補正する。以下、これを繰り返す。   (3) In the embodiment described above, the deviation amount ΔX between the theoretical feed amount Xr (i) of the wire rod 90 fed from the start condition to the end condition and the actual feed amount Xj is obtained, and the deviation amount. Although the coil diameter is corrected based on ΔX, it may be configured as follows. That is, the measurement of the feed amount Xj of the wire 90 is started on the condition that the forming of the coil spring 91 is started, and the feed amount Xj of the wire 90 is set to the end condition as shown in FIG. The wire rod 90 is fed at a normal feeding speed to a reference position Q1 which is theoretically short by a predetermined reference feed amount Sr than the length of the wire. Then, the wire rod 90 is fed at a low speed from the reference position Q1, and the actual position from the image processing device 52 to the end position where the image detection device 52 outputs the state detection signal Jk (the position where the leading edge 92 has reached the first reference line L1). Is measured, and a deviation amount ΔS (= Sj−Sr) between the actual feeding amount Sj and the theoretical feeding amount Sr is obtained, and the coil diameter is corrected based on the deviation amount ΔS. . Next, the passage of the end position is used as a start condition, and from there, as shown in FIG. 17B, the feed amount Xj of the wire 90 is theoretically a predetermined reference feed amount Sr from the length to reach the end condition. The wire 90 is fed at a normal feeding speed to the deficient reference position Q1, and the actual feeding amount Sj between the reference position Q1 and the wire 90 is fed at a low speed to the end position and the theoretical position. A deviation amount ΔS from the feeding amount Sr is obtained, and the coil diameter is corrected based on the deviation amount ΔS. This is repeated below.

(4)前記実施形態では、ばね長計測装置56によりコイルばね91のばね長を計測していたが、画像処理にてばね長を計測してもよい。   (4) In the embodiment, the spring length of the coil spring 91 is measured by the spring length measuring device 56, but the spring length may be measured by image processing.

(5)前記実施形態のばね成形機10は、ピッチ工具14及び成形工具16,16の目標位置データD1〜D3の全部を補正していたが、何れか1つ又は2つの目標位置データを補正する構成にしてもよい。そのために、例えば、コイルばねのばね長のみを計測する構成、線材の送給量のみを計測する構成にしてもよい。   (5) The spring molding machine 10 of the above embodiment corrects all of the target position data D1 to D3 of the pitch tool 14 and the forming tools 16, 16, but corrects one or two target position data. You may make it the structure to carry out. Therefore, for example, a configuration in which only the spring length of the coil spring is measured or a configuration in which only the wire feed amount is measured may be used.

(6)前記実施形態の理論値には、設計上の数値から算出された値のみならず、良品のコイルばねを成形する過程において求められた経験値も含まれる。   (6) The theoretical values of the embodiment include not only values calculated from design numerical values but also empirical values obtained in the process of forming a good coil spring.

本発明の一実施形態に係るばね成形機の正面図1 is a front view of a spring forming machine according to an embodiment of the present invention. ばね成形機の一部を拡大した部分拡大正面図Partial enlarged front view of a part of the spring forming machine ばね成形機の側面図Side view of spring forming machine ばね成形機の一部を拡大した部分拡大側面図Partially enlarged side view of a part of the spring forming machine ばね成形機の制御上の構成を示した概念図Conceptual diagram showing the control configuration of the spring forming machine NCプログラムの一部を示したプログラムリストProgram list showing part of NC program ガイドバーとコイルばねの画像の概念図Conceptual image of guide bar and coil spring image ガイドバーとコイルばねの画像の概念図Conceptual image of guide bar and coil spring image 第1基準線に沿った画素データ群の概念図Conceptual diagram of pixel data group along the first reference line 画像処理プログラムのフローチャートFlow chart of image processing program カウンタ更新プログラムのフローチャートCounter update program flowchart ばね長補正プログラムのフローチャートSpring length correction program flowchart コイル径補正プログラムのフローチャートCoil diameter correction program flowchart 送給量と第1先頭交点及び第2先頭交点との位置関係を示したグラフA graph showing the positional relationship between the feed amount and the first and second intersections 送給量と各先頭交点の位置と関係を示したグラフA graph showing the relationship between the feed amount and the position of each head intersection 送給量とばね長との関係を示したグラフGraph showing the relationship between feed amount and spring length 他の実施形態のばね成形機の一部を拡大した部分拡大側面図The partial expanded side view which expanded some spring forming machines of other embodiments コイルばねの側面図Coil spring side view

符号の説明Explanation of symbols

10 ばね成形機
11 基台
14 ピッチ工具
16 成形工具
17 ガイドバー
20 線材送給装置
50 カメラ
52 画像処理装置
53 レーザ投光器
54 レーザ受光器
56 ばね長計測装置(ばね長計測手段)
60 制御装置
60C 制御回路(制御部)
90 線材
91 コイルばね
92 先端切り口
D1〜D3 目標位置データ
L1 第1基準線
L2 第2基準線
L3 走査ライン
P1 第1先頭交点
P2 第2先頭交点
R1 側部輪郭線
Zp 交点間ずれ量
ΔB,ΔX、ΔS ずれ量
DESCRIPTION OF SYMBOLS 10 Spring forming machine 11 Base 14 Pitch tool 16 Forming tool 17 Guide bar 20 Wire rod feeding device 50 Camera 52 Image processing device 53 Laser projector 54 Laser receiver 56 Spring length measuring device (spring length measuring means)
60 control device 60C control circuit (control unit)
90 Wire material 91 Coil spring 92 End cut D1-D3 Target position data L1 1st reference line L2 2nd reference line L3 Scan line P1 1st top intersection P2 2nd top intersection R1 Side contour Zp Inter-point deviation amount ΔB, ΔX , ΔS Deviation amount

Claims (7)

ばね成形機によって線材から成形されかつガイドバーの外側に挿通されて回転しながら成長していくコイルばねの画像を、逐次、側方からカメラを通して取り込んで画像処理を行う画像処理装置において、
前記コイルばねの巻回軸方向に延びかつ所定の間隔を開けて平行になった第1基準線及び第2基準線が、前記コイルばねの画像のうち前記ガイドバーを背景にした前記線材の側部輪郭線を横切るように設定され、
前記第1基準線と前記線材の側部輪郭線との交点のうち前記コイルばねの先頭に位置した第1先頭交点と、前記第2基準線と前記線材の側部輪郭線との交点のうち前記コイルばねの先頭に位置した第2先頭交点とを同一画像上で検出する先頭交点検出手段と、
それら第1先頭交点と第2先頭交点との前記巻回軸方向におけるずれ量を交点間ずれ量として検出する交点間ずれ量検出手段と、
前記線材の先端切り口が、前記第1基準線と前記第2基準線との間に位置して前記交点間ずれ量が所定の閾値以上になった状態を計測可能状態として検出する計測可能状態検出手段とを備えたことを特徴とする画像処理装置。
In an image processing apparatus that performs image processing by sequentially capturing images of a coil spring that is molded from a wire rod by a spring molding machine and that is inserted into the outside of the guide bar and growing while rotating, from the side through a camera.
The first reference line and the second reference line that extend in the winding axis direction of the coil spring and are parallel to each other at a predetermined interval are the sides of the wire with the guide bar in the background of the image of the coil spring. Set to cross the contour line,
Of the intersections between the first reference line and the side contour of the wire rod, the first top intersection located at the top of the coil spring and the intersection of the second reference line and the side contour of the wire rod Head intersection detection means for detecting a second head intersection located at the head of the coil spring on the same image;
A point-to-intersection deviation amount detecting means for detecting the amount of deviation in the winding axis direction between the first head intersection point and the second head intersection point as a deviation amount between intersection points;
Detectable state detection in which a state where the tip end of the wire is located between the first reference line and the second reference line and the deviation amount between the intersections is equal to or greater than a predetermined threshold is detected as a measurable state. And an image processing apparatus.
線材を送給する線材送給装置と、
前記コイルばねのピッチを変更可能なピッチ工具と、
予め設定された目標位置データに基づいてサーボモータにて前記ピッチ工具の位置を制御する制御部と、
請求項1に記載の画像処理装置と、
前記画像処理装置が前記計測可能状態を検出したことを条件にして、前記コイルばねのばね長を計測するばね長計測手段と、
前記ばね長計測手段にて計測した実際のばね長と理論上のばね長とのずれ量を低減させるように前記目標位置データを補正するばね長補正手段とを備えたことを特徴とするばね成形機。
A wire feeding device for feeding the wire,
A pitch tool capable of changing the pitch of the coil spring;
A control unit for controlling the position of the pitch tool by a servo motor based on preset target position data;
An image processing apparatus according to claim 1;
A spring length measuring means for measuring a spring length of the coil spring on the condition that the image processing apparatus detects the measurable state;
Spring forming comprising spring length correcting means for correcting the target position data so as to reduce a deviation amount between an actual spring length measured by the spring length measuring means and a theoretical spring length. Machine.
線材を送給する線材送給装置と、
前記コイルばねのコイル径を変更可能な成形工具と、
予め設定された目標位置データに基づいてサーボモータにて前記成形工具の位置を制御する制御部と、
請求項1に記載の画像処理装置と、
前記コイルばねの成形を開始したこと、又は、前記画像処理装置が前記計測可能状態を検出したことを開始条件にして、前記線材の送給量の計測を開始し、それから所定の巻回数分の線材が送給された後、前記画像処理装置が前記計測可能状態を検出したことを終了条件にして前記計測を終了し、前記開始条件から前記終了条件までの間に計測された実際の送給量と理論上の送給量とのずれ量を求める送給ずれ量計測手段と、
前記送給ずれ量計測手段が求めた実際の送給量と理論上の送給量とのずれ量を低減させるように前記目標位置データを補正するコイル径補正手段とを備えたことを特徴とするばね成形機。
A wire feeding device for feeding the wire,
A forming tool capable of changing the coil diameter of the coil spring;
A control unit for controlling the position of the forming tool by a servo motor based on preset target position data;
An image processing apparatus according to claim 1;
The measurement of the feeding amount of the wire is started on the condition that the forming of the coil spring is started or the image processing apparatus detects the measurable state, and then a predetermined number of turns After the wire has been fed, the measurement is terminated on the condition that the image processing apparatus has detected the measurable state, and the actual feeding measured between the start condition and the end condition. A feeding deviation amount measuring means for obtaining a deviation amount between the quantity and the theoretical feeding amount;
Coil diameter correcting means for correcting the target position data so as to reduce the deviation amount between the actual feeding amount obtained by the feeding deviation amount measuring means and the theoretical feeding amount. Spring forming machine.
線材を送給する線材送給装置と、
前記コイルばねのコイル径を変更可能な成形工具と、
前記コイルばねのピッチを変更可能なピッチ工具と、
予め設定された目標位置データに基づいてサーボモータにて前記成形工具及び前記ピッチ工具の位置を制御する制御部と、
請求項1に記載の画像処理装置と、
前記画像処理装置が前記計測可能状態を検出したことを条件にして、前記コイルばねのばね長を計測するばね長計測手段と、
前記ばね長計測手段にて計測した実際のばね長と理論上のばね長とのずれ量を低減させるように前記目標位置データを補正するばね長補正手段と、
前記コイルばねの成形を開始したこと、又は、前記画像処理装置が前記計測可能状態を検出したことを開始条件にして、前記線材の送給量の計測を開始し、それから所定の巻回数分の線材が送給された後、前記画像処理装置が前記計測可能状態を検出したことを終了条件にして前記計測を終了し、前記開始条件から前記終了条件までの間に計測された実際の送給量と理論上の送給量とのずれ量を求める送給ずれ量計測手段と、
前記送給ずれ量計測手段が求めた実際の送給量と理論上の送給量とのずれ量を低減させるように前記目標位置データを補正するコイル径補正手段とを備えたことを特徴とするばね成形機。
A wire feeding device for feeding the wire,
A forming tool capable of changing the coil diameter of the coil spring;
A pitch tool capable of changing the pitch of the coil spring;
A control unit for controlling the positions of the forming tool and the pitch tool by a servo motor based on preset target position data;
An image processing apparatus according to claim 1;
A spring length measuring means for measuring a spring length of the coil spring on the condition that the image processing apparatus detects the measurable state;
Spring length correcting means for correcting the target position data so as to reduce a deviation amount between the actual spring length measured by the spring length measuring means and the theoretical spring length;
The measurement of the feeding amount of the wire is started on the condition that the forming of the coil spring is started or the image processing apparatus detects the measurable state, and then a predetermined number of turns After the wire has been fed, the measurement is terminated on the condition that the image processing apparatus has detected the measurable state, and the actual feeding measured between the start condition and the end condition. A feeding deviation amount measuring means for obtaining a deviation amount between the quantity and the theoretical feeding amount;
Coil diameter correcting means for correcting the target position data so as to reduce the deviation amount between the actual feeding amount obtained by the feeding deviation amount measuring means and the theoretical feeding amount. Spring forming machine.
前記ばね長計測手段は、前記ガイドバーから側方にオフセットした走査ラインに沿ってレーザ光を走査するレーザ投光器と、前記レーザ投光器に対向配置されて、前記レーザを受光するレーザ受光器と、前記レーザ投光器から前記レーザ受光器へのレーザ光が前記コイルばねの先頭によって遮られた位置に基づいて、前記コイルばねのばね長を検出する演算処理部とを備えてなることを特徴とする請求項2又は4に記載のばね成形機。   The spring length measuring means includes a laser projector that scans a laser beam along a scanning line that is offset laterally from the guide bar, a laser receiver that is disposed opposite to the laser projector and receives the laser, and An arithmetic processing unit for detecting a spring length of the coil spring based on a position where a laser beam from the laser projector to the laser receiver is blocked by a head of the coil spring. The spring forming machine according to 2 or 4. 前記制御部は、前記開始条件又は前記終了条件が成立する手前で、前記線材送給装置による線材送給速度を減速するように構成したことを特徴とする請求項3又は4に記載のばね成形機。   5. The spring molding according to claim 3, wherein the control unit is configured to decelerate a wire feeding speed by the wire feeding device before the start condition or the end condition is satisfied. Machine. 前記開始条件から前記終了条件までに送給される理論上の前記線材の送給量をLrとし、前記コイルばねの1巻き分より短く設定された所定の基準送給量をSrとすると、前記制御部は、前記開始条件からLr−Srを目標送給量として線材を送給した基準位置で前記線材送給速度を減速し、
前記送給ずれ量計測手段は、前記基準位置から前記画像処理装置が前記計測可能状態を検出した終了位置までの間の実際の送給量を計測すると共に、その実際の送給量をSjとすると、Sj−Srを前記実際の送給量と理論上の送給量とのずれ量として求めるように構成されたことを特徴とする請求項3又は4に記載のばね成形機。
When the theoretical feed amount of the wire fed from the start condition to the end condition is Lr, and a predetermined reference feed amount set shorter than one turn of the coil spring is Sr, The control unit decelerates the wire feeding speed at a reference position where the wire is fed using Lr-Sr as a target feeding amount from the start condition,
The feeding deviation amount measuring means measures an actual feeding amount from the reference position to an end position where the image processing apparatus detects the measurable state, and the actual feeding amount is defined as Sj. The spring forming machine according to claim 3 or 4, wherein Sj-Sr is obtained as a deviation amount between the actual feeding amount and the theoretical feeding amount.
JP2006034410A 2006-02-10 2006-02-10 Image processing apparatus and spring molding machine Expired - Fee Related JP4612552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006034410A JP4612552B2 (en) 2006-02-10 2006-02-10 Image processing apparatus and spring molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006034410A JP4612552B2 (en) 2006-02-10 2006-02-10 Image processing apparatus and spring molding machine

Publications (2)

Publication Number Publication Date
JP2007212362A true JP2007212362A (en) 2007-08-23
JP4612552B2 JP4612552B2 (en) 2011-01-12

Family

ID=38490937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006034410A Expired - Fee Related JP4612552B2 (en) 2006-02-10 2006-02-10 Image processing apparatus and spring molding machine

Country Status (1)

Country Link
JP (1) JP4612552B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102233399A (en) * 2010-04-06 2011-11-09 瓦菲奥斯股份公司 Method and apparatus for production of helical springs by spring winding
JP2013176797A (en) * 2012-02-29 2013-09-09 Asahi- Seiki Manufacturing Co Ltd Coil spring forming device and spring length measuring device
CN106001334A (en) * 2016-06-20 2016-10-12 东莞市神特自动化设备有限公司 Wire forming machine
CN109454184A (en) * 2018-11-17 2019-03-12 唐彬 A kind of spring circumferential direction deviation correcting device
CN109530587A (en) * 2018-11-17 2019-03-29 唐彬 A kind of spring axial direction deviation correcting device
RU215232U1 (en) * 2022-10-27 2022-12-05 Общество с ограниченной ответственностью "Производственная компания Пружинный проект" DEVICE FOR AUTOMATIC MANUFACTURING OF LONG SPRINGS

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9744584B2 (en) 2014-03-25 2017-08-29 Dae Won Kang Up Co., Ltd. Hot formed coiling machine
KR101419698B1 (en) * 2014-03-25 2014-07-21 대원강업 주식회사 hot formed coiling machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123363A (en) * 1977-04-05 1978-10-27 Nhk Spring Co Ltd Coil spring free length adjusting process and device
JPH06294631A (en) * 1993-04-08 1994-10-21 Asahi Seiki Kogyo Kk Dimension controller using image processing system
JPH07286822A (en) * 1994-04-19 1995-10-31 Nireco Corp Method for measuring dimension from picture
JPH08110208A (en) * 1994-10-07 1996-04-30 Asahi Seiki Kogyo Kk Controller for free length of nc coil spring maker
JPH09269208A (en) * 1996-04-01 1997-10-14 Asahi Seiki Kogyo Kk Spring dimension controlling method for spring manufacturing machine
JPH1030911A (en) * 1996-07-17 1998-02-03 Nichiden Mach Ltd Method for detecting position of minute work piece

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123363A (en) * 1977-04-05 1978-10-27 Nhk Spring Co Ltd Coil spring free length adjusting process and device
JPH06294631A (en) * 1993-04-08 1994-10-21 Asahi Seiki Kogyo Kk Dimension controller using image processing system
JPH07286822A (en) * 1994-04-19 1995-10-31 Nireco Corp Method for measuring dimension from picture
JPH08110208A (en) * 1994-10-07 1996-04-30 Asahi Seiki Kogyo Kk Controller for free length of nc coil spring maker
JPH09269208A (en) * 1996-04-01 1997-10-14 Asahi Seiki Kogyo Kk Spring dimension controlling method for spring manufacturing machine
JPH1030911A (en) * 1996-07-17 1998-02-03 Nichiden Mach Ltd Method for detecting position of minute work piece

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102233399A (en) * 2010-04-06 2011-11-09 瓦菲奥斯股份公司 Method and apparatus for production of helical springs by spring winding
US9566637B2 (en) 2010-04-06 2017-02-14 Wafios Ag Method and apparatus for production of helical springs by spring winding
JP2013176797A (en) * 2012-02-29 2013-09-09 Asahi- Seiki Manufacturing Co Ltd Coil spring forming device and spring length measuring device
CN106001334A (en) * 2016-06-20 2016-10-12 东莞市神特自动化设备有限公司 Wire forming machine
CN106001334B (en) * 2016-06-20 2019-03-29 东莞市神特自动化设备有限公司 A kind of wire forming machine
CN109454184A (en) * 2018-11-17 2019-03-12 唐彬 A kind of spring circumferential direction deviation correcting device
CN109530587A (en) * 2018-11-17 2019-03-29 唐彬 A kind of spring axial direction deviation correcting device
CN109454184B (en) * 2018-11-17 2020-07-07 扬州中碟弹簧制造有限公司 Spring circumference deviation correcting device
RU215232U1 (en) * 2022-10-27 2022-12-05 Общество с ограниченной ответственностью "Производственная компания Пружинный проект" DEVICE FOR AUTOMATIC MANUFACTURING OF LONG SPRINGS

Also Published As

Publication number Publication date
JP4612552B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP4612552B2 (en) Image processing apparatus and spring molding machine
SU1390271A1 (en) Device for adjusting geometrical shape of stitch in sewing machine
JP5666954B2 (en) Method and apparatus for manufacturing a helical spring by spring winding
JP6350657B2 (en) Shape measuring device, structure manufacturing system, shape measuring method, structure manufacturing method, shape measuring program, and recording medium
JP5727253B2 (en) Method for manufacturing a helical spring by spring winding
CN111299078A (en) Automatic tracking dispensing method based on assembly line
US20170228884A1 (en) Image measuring device and program
US9902070B2 (en) Robot system and robot control method for adjusting position of coolant nozzle
JP2892392B2 (en) Automatic stitch adjustment apparatus and method for knitting machine
CN112969900B (en) Tool shape measuring device and tool shape measuring method
US20110239719A1 (en) Method and apparatus for production of helical springs by spring winding
JP3442140B2 (en) Position measurement device and position deviation correction device using three-dimensional visual sensor
US10166594B2 (en) Spring forming device, method for forming a helical spring and corresponding computer program
CN102922129A (en) Accurate cutting method based on laser identification cutting machine
CN107743431A (en) For the probe data analysis for the property for identifying scanning pattern
JP5608984B2 (en) Groove portion deepest position detecting device and groove portion deepest position detecting method
KR101123629B1 (en) Device for Roll Pattern
CN108170095B (en) Machining method of full closed-loop system of numerical control machine tool based on vision
ITUB20153046A1 (en) PERFECTED ROLLING MACHINE FOR FORMING THREADS ON CYLINDRICAL BODIES AND RETROPORTING FORMING PROCEDURE
JP2008294430A (en) Method and apparatus for taking out and shaping of coil
JPH09207020A (en) Billet shear device
JPH08110208A (en) Controller for free length of nc coil spring maker
JP3336575B2 (en) Spring Dimension Management Method for Spring Making Machine
CN111702325A (en) Laser rotary-pendulum cutting head dimming device and adjusting method
JP2001129669A (en) Plasma welding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4612552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees