JP2856067B2 - Dimension measurement method using images - Google Patents

Dimension measurement method using images

Info

Publication number
JP2856067B2
JP2856067B2 JP8000994A JP8000994A JP2856067B2 JP 2856067 B2 JP2856067 B2 JP 2856067B2 JP 8000994 A JP8000994 A JP 8000994A JP 8000994 A JP8000994 A JP 8000994A JP 2856067 B2 JP2856067 B2 JP 2856067B2
Authority
JP
Japan
Prior art keywords
line
center
gravity
lines
intersection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8000994A
Other languages
Japanese (ja)
Other versions
JPH07286822A (en
Inventor
勝保 相川
剛治 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIREKO KK
Original Assignee
NIREKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIREKO KK filed Critical NIREKO KK
Priority to JP8000994A priority Critical patent/JP2856067B2/en
Publication of JPH07286822A publication Critical patent/JPH07286822A/en
Application granted granted Critical
Publication of JP2856067B2 publication Critical patent/JP2856067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は各辺が波うっている形状
の矩形に近い形状(以下単に矩形という)の画像につ
き、その傾斜角および幅を計測する方法に係わり、幅の
場合人間の目視による測定と大差ないように、画像処理
によって測定する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring an inclination angle and a width of an image having a shape close to a rectangular shape in which each side is wavy (hereinafter simply referred to as a rectangular shape). The present invention relates to a method for performing measurement by image processing so as not to be significantly different from measurement by visual observation.

【0002】[0002]

【従来の技術】テレビジョンのシャドウマスクやIC
(集積回路)の基板に穴あけするような場合、露光エッ
チングが行われる。これは加工するパターンを拡大して
透明フイルムに描き、感光剤を塗った目的の面に投光し
て結像させることにより縮小像を得、これをエッチング
することにより目的のパターンを得る加工方法である。
このような露光エッチングにより矩形の小穴を開ける場
合、小さい穴ほど回折による屈折で露光に用いるレーザ
光がしみ出し、フイルム上の矩形を投光すると、繭形に
中央が凹む傾向がある。一方シャドウマスクはCRT
(陰極線管)の走査結像を電気信号へ変換するためには
中央に膨らみを有する樽形の形状がよいので、樽形の矩
形が用いられる。矩形の各辺は、感光剤自体粒子である
こと、およびエッチングは錆のように進行するので、直
線とはならず凹凸の曲線となっている。しかも、この凹
凸の中には幅は狭いがピークの大きなものがランダムに
混じっている場合が多い。
2. Description of the Related Art Television shadow masks and ICs
When a hole is formed in a substrate of an (integrated circuit), exposure etching is performed. This is a processing method that enlarges the pattern to be processed, draws it on a transparent film, projects it on the target surface coated with a photosensitizer, forms an image, and obtains a reduced image, and then etches this to obtain the target pattern. It is.
When a rectangular small hole is formed by such exposure etching, the smaller the hole, the more the laser light used for exposure exudes due to refraction by diffraction, and when a rectangular shape on the film is projected, the center tends to be dented in a cocoon shape. On the other hand, shadow mask is CRT
In order to convert the scan image of the (cathode ray tube) into an electric signal, a barrel-shaped shape having a bulge at the center is preferable, and a barrel-shaped rectangle is used. Since each side of the rectangle is a particle of the photosensitive agent itself and the etching proceeds like rust, it is not a straight line but a curve of irregularities. In addition, in many cases, those irregularities having a narrow width but a large peak are randomly mixed.

【0003】図8は露光エッチングによって得られる矩
形小穴の形状を示す。(A)は樽形の矩形を示し、
(B)は繭形の矩形を示す。各辺は凹凸の曲線よりな
り、かつ凹凸には幅は狭いがピークの大きなものが表れ
ている。矩形の大きさの一例を示すと、矩辺(幅)が8
0〜200μm、凹凸のピークからピークまでの波高は
4〜10μm、突然発生する大きな波高は他の大部分の
波高の2〜3倍程度である。また、この矩形を顕微鏡に
接続したテレビカメラで撮像し、CRTに表示する場
合、1画素の大きさは2μm程度となるので、矩形の幅
は40〜100画素、凹凸の通常のピークからピークま
での波高は2〜5画素で表される。また、凹凸の周期は
3〜8画素となっている。
FIG. 8 shows the shape of a rectangular small hole obtained by exposure etching. (A) shows a barrel-shaped rectangle,
(B) shows a cocoon-shaped rectangle. Each side is composed of an uneven curve, and the unevenness has a narrow width but a large peak. To show an example of the size of a rectangle, the rectangular side (width) is 8
The wave height from peak to peak is 4 to 10 μm, and the suddenly generated large wave height is about 2 to 3 times that of most other wave heights. When this rectangle is imaged by a television camera connected to a microscope and displayed on a CRT, since the size of one pixel is about 2 μm, the width of the rectangle is 40 to 100 pixels, and the regular peak to peak of unevenness is used. Is represented by 2 to 5 pixels. The period of the irregularities is 3 to 8 pixels.

【0004】このような形状、寸法の矩形について、矩
形の傾きθと幅の測定が行われる。同時にその付近の矩
形の相対位置や間隔も測定される。従来は目視により顕
微鏡の視野で十字線と像を相対移動して測定していた。
これを画像解析により自動測定する時、傾きθは図9に
示すように矩形の重心Gを通り長辺の方向を示す中心線
Sの傾斜をCRT画面の走査線Pに垂直な線Qとの角度
θで表す。角度θの測定は、矩形の重心Gを求め、この
重心Gを通り、矩形と交差する線分で交点間の長さが最
大の線分L1と次に大きな線分L2すなわち仮想対角線
を求め、このL1とL2の2等分線を中心線Sとし、走
査線Pに垂直な垂直線Qとの角度としてθを求めてい
た。
For a rectangle having such a shape and dimensions, the inclination θ and the width of the rectangle are measured. At the same time, the relative positions and intervals of the rectangles in the vicinity are measured. Conventionally, the measurement was performed by moving the crosshair and the image relative to each other visually in the visual field of the microscope.
When this is automatically measured by image analysis, the inclination θ is defined by the inclination of the center line S passing through the rectangular center of gravity G and indicating the direction of the long side as shown in FIG. 9 and the line Q perpendicular to the scanning line P on the CRT screen. It is represented by the angle θ. The angle θ is determined by determining the center of gravity G of the rectangle, passing through the center of gravity G, and finding the line segment L1 having the largest length between intersections at the line segment intersecting the rectangle and the next largest line segment L2, that is, a virtual diagonal line, The bisector of L1 and L2 is set as the center line S, and θ is determined as an angle with a vertical line Q perpendicular to the scanning line P.

【0005】矩形の幅の測定は人が顕微鏡の十字線を用
いて測定する時は図8のように平均的な線を引くことに
より分解能及び再現性のよい測定ができる。一方、図1
0は矩形の幅の画像解析による自動測定方法を示す。
(A)は幅に平行な線分から求める寸法で走査線Pに垂
直な垂直線Qに対する中心線Sの角度θを上述した方法
により求め、重心Gを通り、走査線Pに角度θの線分を
引き、この線分に平行に前後数本の線分を引き、各線分
と矩形との交点を求め、各線分につき交点間の長さを求
め、この長さの平均値を矩形の幅とする。なお、各平行
線の間隔は数画素程度離れて設定していた。(B)は面
積から求める方法で、重心Gを挟んで中心線Sに直交す
る2本の平行線H1,H2間隔hで引き、この2本の線
分H1,H2と矩形の長辺で囲まれる斜線で示す面積を
求め、この面積をhで除した値を幅とする方法である。
When a person measures the width of a rectangle using a crosshair of a microscope, a good resolution and reproducibility can be obtained by drawing an average line as shown in FIG. On the other hand, FIG.
0 indicates an automatic measurement method by image analysis of a rectangular width.
(A) is a dimension determined from a line segment parallel to the width, and the angle θ of the center line S with respect to the vertical line Q perpendicular to the scanning line P is determined by the above-described method. , Draw several lines before and after in parallel with this line, find the intersection of each line and the rectangle, find the length between the intersections for each line, and calculate the average of this length as the width of the rectangle I do. Note that the interval between the parallel lines was set at a distance of about several pixels. (B) is a method of calculating from the area, which is drawn at an interval h between two parallel lines H1 and H2 orthogonal to the center line S across the center of gravity G and surrounded by these two line segments H1 and H2 and the long side of the rectangle. In this method, the area indicated by the oblique lines is obtained, and the value obtained by dividing the area by h is used as the width.

【0006】[0006]

【発明が解決しようとする課題】人が目視により十字線
を用いて測定するには人力が必要で、疲労が生じ長時間
かかる。図9で示す画像解析による方法で角度θを測定
する場合、矩形の四隅の形状で線分L1とL2が決まる
が、この四隅の形状は崩れている場合が多く、かつ凹凸
による変形によって大きく影響され、線分L1,L2の
決定に大きな誤差が生じ、この2等分線で得られる中心
線の角度θの誤差が大きかった。
In order for a person to measure visually using a crosshair, human power is required, and fatigue takes a long time. When the angle θ is measured by the method based on the image analysis shown in FIG. 9, the line segments L1 and L2 are determined by the shapes of the four corners of the rectangle, but the shapes of the four corners are often distorted and greatly affected by deformation due to unevenness. As a result, a large error occurs in the determination of the line segments L1 and L2, and the error of the angle θ of the center line obtained by the bisector is large.

【0007】図10(A)に示す方法は、平行線のピッ
チが矩形の長辺の凹凸のピッチと一致し、両辺の凹部の
位置にばかり平行線が来る場合や、凸部の位置にばかり
来るようになる可能性があり、このような計測データ
は、目視によって矩形の形状を直線化し、長辺間の距離
を計測する場合と異なる場合が多かった。目視によって
凹凸のある辺を直線化する場合、最大値と最小値のデー
タは無意識の内に除かれて直線化している場合が多く、
このような処理をしていないことも異なる原因となって
いる。
In the method shown in FIG. 10A, the pitch of the parallel lines coincides with the pitch of the irregularities on the long side of the rectangle, and the parallel lines come only at the positions of the concave portions on both sides, or only at the positions of the convex portions. Such measurement data often differs from the case where the rectangular shape is linearized visually and the distance between the long sides is measured. When linearizing uneven sides by visual observation, the data of the maximum and minimum values are often unintentionally removed and linearized.
Not performing such processing is another cause.

【0008】また、図10(B)に示す方法は、hを大
きくとると矩形が樽形の場合、中央の膨らみから外れた
対辺間隔の小さい部分を含むようになり、目視による計
測値よりも小さな値となる。またhを小さくすると平行
線H1,H2を表す画素の取り方によって斜線で示す面
積が変わる。図11は面積計算の際に平行線H1,H2
を表す画素をどのように取るかを説明する図で、実線で
表す画素をとった場合と破線で表す画素をとった場合と
では面積の大きさが異なってくる。なお、図11におい
て長辺に沿って引いた直線L,Lは目視の場合、人
が引く平均線を表したものである。
In the method shown in FIG. 10 (B), when h is increased, if the rectangle is barrel-shaped, it includes a portion with a small distance between opposite sides deviating from the central bulge, and the measured value is smaller than the visually measured value. It will be a small value. When h is reduced, the area indicated by oblique lines changes depending on how the pixels representing the parallel lines H1 and H2 are taken. FIG. 11 shows parallel lines H1 and H2 when calculating the area.
This is a diagram for explaining how to represent a pixel representing a pixel, and the size of the area differs between a case where a pixel represented by a solid line is taken and a case where a pixel represented by a broken line is taken. Note that straight lines L 3 and L 4 drawn along the long sides in FIG. 11 represent average lines drawn by a person when viewed visually.

【0009】本発明は上述の問題点に鑑みてなされたも
ので、画像処理装置により略矩形の傾きを精度よく算出
する方法および略矩形の幅を目視による測定と同じ程度
の精度で測定する方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and has a method of calculating the inclination of a substantially rectangular shape with an image processing apparatus and a method of measuring the width of a substantially rectangular shape with the same degree of accuracy as a visual measurement. The purpose is to provide.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、略矩形の画像の重心を求め、この重心を通り走査線
に直交する垂直線を設定し、この垂直線に直交して間隔
hで第1線と第2線を引き、第1線と略矩形の交点を
A,B,第2線と略矩形の交点をC,Dとし、四辺形A
BCDの面積A1を求め、各交点A,B,C,Dより相
手の第1線、第2線へ垂線を引き両端の垂線と第1線及
び第2線とで囲まれる面積をA0とし、 θ=tan-1(A0−A1)/h2 ……(1) (1)式で表されるθを略矩形の重心を通り長辺の方向
を示す中心線と垂直線とのなす角度とする。
In order to achieve the above object, the center of gravity of a substantially rectangular image is obtained, a vertical line passing through the center of gravity and perpendicular to the scanning line is set, and the vertical line is perpendicular to the vertical line and at intervals h. A first line and a second line are drawn, and the intersection of the first line and the substantially rectangle is A and B, the intersection of the second line and the substantially rectangle is C and D, and the quadrilateral A
The area A1 of the BCD is obtained, a perpendicular line is drawn from each of the intersections A, B, C, and D to the opposing first and second lines, and the area surrounded by the perpendicular lines at both ends and the first and second lines is A0, θ = tan −1 (A0−A1) / h 2 (1) The angle between the center line and the vertical line passing through the substantially rectangular center of gravity and indicating the direction of the long side of θ represented by the equation (1) I do.

【0011】また、略矩形の画像の重心を求め、この重
心を通り、走査線と直交する垂直線と略矩形の重心を通
り長辺の方向を示す中心線との角度θを所定の方法で求
め、重心を通り走査線と角度θ±mΔθ(mは整数)を
なす各線を引き、各線と略矩形の交点を求め、各線の交
点間の線分の長さを求め、最大値と最小値を除いた残り
の長さの平均値Mを算出する方法であって、前記Δθを
平均値Mの推定値をM′とし、略矩形と線分との交点近
傍でΔθ・M′/2が1画素の大きさ程度となるように
し、前記mを、略矩形の辺の波うちを表す凹凸1組以上
を2m+1本の線の交差範囲内に含むように定める。
Further, the center of gravity of the substantially rectangular image is determined, and the angle θ between a vertical line passing through the center of gravity and orthogonal to the scanning line and a center line passing through the center of gravity of the substantially rectangle and indicating the direction of the long side is determined by a predetermined method. Draw each line that passes through the center of gravity and forms an angle θ ± mΔθ (m is an integer) with the scanning line, finds the intersection of each line and a substantially rectangle, finds the length of the line segment between the intersections of each line, and finds the maximum and minimum values Is a method of calculating an average value M of the remaining length excluding the above, wherein Δθ is an estimated value of the average value M, and Δθ · M ′ / 2 is near an intersection of a substantially rectangular and a line segment. The size of the pixel is set to be about one pixel, and the above-mentioned m is determined so as to include at least one set of unevenness representing a wave of a substantially rectangular side in an intersection range of 2m + 1 lines.

【0012】また、略矩形の画像の重心を求め、この重
心を通り、走査線と直交する垂直線と略矩形の重心を通
り長辺の方向を示す中心線との角度θを所定の方法で求
め、重心を通り走査線と角度θをなす基準線を求め、こ
の基準線と平行にピッチδでこの基準線も含め合計n本
の線を引き、この各線と略矩形の辺との交点間の線分の
長さを求め、最大値と最小値を除いた残りの平均値Nを
求める方法であって、前記ピッチδを1画素の大きさ程
度とし、前記nを、略矩形の辺の波うちを表す凹凸1組
以上をn本の線の交差範囲内に含むように定める。
The center of gravity of the substantially rectangular image is determined, and the angle θ between a vertical line passing through the center of gravity and perpendicular to the scanning line and a center line passing through the center of gravity of the substantially rectangular shape and indicating the direction of the long side is determined by a predetermined method. Then, a reference line that passes through the center of gravity and forms an angle θ with the scanning line is obtained, and a total of n lines including this reference line are drawn in parallel with this reference line at a pitch δ, and between the intersections of these lines and the sides of the substantially rectangle Is a method of calculating the length of the line segment and calculating the average value N excluding the maximum value and the minimum value, wherein the pitch δ is about the size of one pixel, and the n is It is determined that at least one set of irregularities representing the waving is included in the intersection range of the n lines.

【0013】また、前記略矩形と交差する線分の座標点
は画素の中心又は四角に配置された4個の画素の中心点
を用いるものとし、この座標点位置に交差点がない場合
には、重心を通り、走査線と角度θをなす線を内側とし
て該当する線分の外側で最も近い画素の中心又は4個の
画素の中心点を交差点として線分の長さを計算する。
The coordinate point of a line segment intersecting with the above-mentioned substantially rectangular shape uses the center of a pixel or the center point of four pixels arranged in a square, and if there is no intersection at this coordinate point position, The length of the line segment is calculated with the line passing through the center of gravity and forming an angle θ with the scanning line as the inside, and the center of the nearest pixel or the center point of the four pixels outside the corresponding line segment as the intersection.

【0014】[0014]

【作用】図2は略矩形の傾きθの計算方法を説明する図
である。顕微鏡に取り付けたテレビカメラにより撮像し
た画像を画素で表示する。画像を表示装置に表示する
際、走査線Pに垂直な線を垂直線Qとし、矩形の重心G
を通り、長辺に沿った線を中心線Sとし、この中心線S
と垂直線Qとの角度θを略矩形の傾きとする。四辺形
A,E,D,Fの面積A0から斜線で表される略矩形の
面積A1を差し引いた値は、三角形AEC、三角形BD
Fの面積を示し、この面積をhで除した値(A0−A
1)/hは直線CEと直線BFの平均値を表す。角度C
AEをθa,角度BDFをθbとし、θaとθbの平均
角をθとするとh・tanθ=(A0−A1)/hが成
立し、この式より(1)式が導かれ、このθを略矩形の
傾きとする。
FIG. 2 is a diagram for explaining a method of calculating the inclination θ of a substantially rectangle. An image captured by a television camera attached to a microscope is displayed in pixels. When an image is displayed on a display device, a line perpendicular to the scanning line P is defined as a vertical line Q, and a rectangular center of gravity G
, A line along the long side is defined as a center line S, and the center line S
And the angle θ between the vertical line Q and the vertical line Q is a substantially rectangular inclination. The value obtained by subtracting the area A1 of a substantially rectangular shape represented by oblique lines from the area A0 of the quadrilaterals A, E, D, and F is a triangle AEC, a triangle BD
F indicates the area, and a value obtained by dividing this area by h (A0-A
1) / h represents the average value of the straight line CE and the straight line BF. Angle C
Assuming that AE is θa, angle BDF is θb, and the average angle between θa and θb is θ, h · tan θ = (A0−A1) / h holds. From this expression, Expression (1) is derived, and this θ is approximately Let it be the inclination of the rectangle.

【0015】図4は中心線Sと垂直線Qとの角度がθで
ある略矩形の重心近傍の幅Mを算出する方法を示す図
で、略矩形の重心Gを通り、走査線Pにθ傾いた直線で
ある基準線Tを引く。この基準線Tは中心線Sに直交す
る。基準線Tを中心にΔθの角度で左右にm本づつ、放
射状に直線を引き略矩形との交点を求め、この交点間の
線分の長さを求め、最大値と最小値を除いてその平均値
Mを求める。この平均値Mを略矩形の幅とする。最大値
と最小値を除くことにより、突発的なピーク値を除くこ
とができ適正な平均値が得られる。Δθの値を交点の近
傍で放射状の直線のピッチを表すΔθ・M′/2を1画
素の大きさ程度とし、放射状に交差することにより各放
射状の直線が略矩形の両辺の凹部の位置ばかりに通るこ
とや凸部の位置ばかり通る確率を少なくする。また、1
組以上の凹凸を含む範囲に放射状の線を設けることによ
り、略矩形の辺の平均の位置を表すようになる。以上が
総合されて、目視による測定に近い結果が得られる。な
お、複数の直線の交点間の長さを平均化することによ
り、各画素の大きさ(例えば2μm)の分解能を超える
分解能が得られる。実例では、平均することにより1μ
m程度の再現性のある測定結果が得られる。
FIG. 4 is a diagram showing a method of calculating a width M near the center of gravity of a substantially rectangular shape in which the angle between the center line S and the vertical line Q is θ. A reference line T, which is an inclined straight line, is drawn. This reference line T is orthogonal to the center line S. Draw a straight line radially at an angle of Δθ with the angle of Δθ centering on the reference line T, find the intersection with the approximate rectangle, find the length of the line segment between these intersections, and remove the maximum and minimum values. An average value M is obtained. This average value M is set as a substantially rectangular width. By removing the maximum value and the minimum value, a sudden peak value can be removed and a proper average value can be obtained. The value of Δθ is Δθ · M ′ / 2 representing the pitch of a radial straight line near the intersection, which is about the size of one pixel. And the probability of passing only through the position of the convex portion is reduced. Also, 1
By providing a radial line in a range including a set of irregularities or more, the average position of the substantially rectangular sides is represented. In summary, a result close to the measurement by visual observation is obtained. By averaging the length between the intersections of a plurality of straight lines, a resolution exceeding the resolution of the size of each pixel (for example, 2 μm) can be obtained. In the example, 1μ
A reproducible measurement result of about m is obtained.

【0016】図6は中心線Sと垂直線Qとの角度がθで
ある略矩形の重心近傍の幅Nを算出する他の方法を示す
図で、図4とは異なり基準線T平行に、基準線Tも含め
n本を1画素程度の間隔で引き、略矩形との交点を求め
る。次にこの交点間の線分の長さを求め、最大値と最小
値を除き平均値Nを求めている。平行線を用いて幅を測
定する従来の方法に比べピッチが1画素程度と小さく、
平行線の範囲を1組の凹凸以上を含む範囲とすることに
より各平行線が略矩形の両辺の凹部の位置ばかり通るこ
とや凸部の位置ばかり通る確率は少なくなっている。図
4に示す方法とほぼ同様に、目視による測定に近い結果
が得られる。
FIG. 6 is a view showing another method of calculating the width N near the center of gravity of a substantially rectangular shape in which the angle between the center line S and the vertical line Q is θ. The n lines including the reference line T are drawn at intervals of about one pixel, and an intersection with a substantially rectangular shape is obtained. Next, the length of the line segment between the intersections is obtained, and the average value N is obtained except for the maximum value and the minimum value. Compared with the conventional method of measuring width using parallel lines, the pitch is as small as about 1 pixel,
By setting the range of the parallel lines to a range including a set of irregularities or more, the probability that each parallel line passes only at the positions of the concave portions on both sides of the substantially rectangular shape and at the position of the convex portions is reduced. In almost the same manner as in the method shown in FIG. 4, a result close to measurement by visual observation is obtained.

【0017】略矩形と交差する線分の交差点間の長さは
画素を表す座標点間の長さとして算出されるが、画素を
表す座標としては図7に示すように四角に配置された画
素の中心点(A)、または画素の中心(B)とすること
とし、1つの画像についてはいずれかを用いて混用しな
いようにする。略矩形の両辺と図4に示す放射状の線、
図6に示す平行線が交差した時、交差点の位置が画素の
中心または4個の画素の中心と一致しないときは、つま
り、該当する放射状の線や平行線との交差点上に画素を
表す座標がないときは、図4,図6に示す基準線Tを内
側として放射状の線や平行線の外側で最も近い画素を表
す座標を用いる。このようにすることにより、1画素以
下のピッチで放射状の線や平行線の位置を画素によって
表示できる。
The length between the intersections of the line segments intersecting the substantially rectangle is calculated as the length between the coordinate points representing the pixels. The coordinates representing the pixels are the pixels arranged in a square as shown in FIG. , Or the center of the pixel (B), and one of them is used so as not to mix them. Both sides of the substantially rectangular shape and the radial lines shown in FIG. 4,
When the parallel line shown in FIG. 6 intersects and the position of the intersection does not coincide with the center of the pixel or the center of the four pixels, that is, the coordinates representing the pixel on the intersection with the corresponding radial line or parallel line When there is no, the coordinates representing the closest pixel outside the radial line or the parallel line with the reference line T shown in FIGS. 4 and 6 inside are used. By doing so, the positions of radial lines and parallel lines can be displayed by pixels at a pitch of one pixel or less.

【0018】[0018]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。図1は本実施例を実現する装置の構成を示
すブロック図である。顕微鏡1には接眼レンズ部に撮像
用レンズを取り付け、この撮像レンズを通して撮像する
撮像装置16が取り付けられている。測定試料を載せる
ステージ17はオートステージドライバ10からの信号
によりスタンドに設けたパルスモータで前後左右に移動
させる平面移動機構18により平面位置調整が行われ、
オートフォーカスドライバ11により垂直移動機構19
を作動させてステージ17の上下方向の移動を行い、焦
点を合わせる。なお、テレビのシャドウマスクの検査で
はオートステージにシャドウマスクを一定角度づつ回転
して検査対象点を視野に入れ、かつ走査線に対して穴の
方向を適切に傾けて測定精度を高めるための回転機構が
ある。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of an apparatus for realizing this embodiment. The microscope 1 is provided with an imaging lens attached to an eyepiece and an imaging device 16 for taking an image through the imaging lens. The position of the stage 17 on which the measurement sample is placed is adjusted by a plane moving mechanism 18 that moves back and forth and right and left by a pulse motor provided on the stand by a signal from the auto stage driver 10,
Vertical movement mechanism 19 by auto focus driver 11
Is operated to move the stage 17 in the up-down direction to focus. In the inspection of the shadow mask of a television, the shadow mask is rotated on the auto stage by a certain angle to put the inspection point in the field of view, and the direction of the hole is appropriately inclined with respect to the scanning line to increase the measurement accuracy. There is a mechanism.

【0019】A/D変換器2は撮像装置16からの入力
データをアナログからディジタルに変換し、入力バッフ
ァ3はこのディジタルデータを一時的に格納する。バス
4は信号の伝達を行い、プログラムメモリ5は本装置の
動作を規定するプログラムを格納し、CPU6はこのプ
ログラムに従い装置全体の制御を行う。
The A / D converter 2 converts input data from the imaging device 16 from analog to digital, and the input buffer 3 temporarily stores the digital data. The bus 4 transmits signals, the program memory 5 stores a program that defines the operation of the apparatus, and the CPU 6 controls the entire apparatus according to the program.

【0020】画像処理プロセッサ7は入力した画像デー
タの濃淡処理、2値化処理、画像解析等を行い、濃淡画
像メモリ8は濃淡画像データを格納し、2値化メモリ9
は2値化画像データを格納する。オートステージドライ
バ10はCPUからの指示により測定試料を載せるステ
ージ17を平面移動機構18を制御してX,Y方向に移
動させ、測定試料の測定位置、領域の設定を行う。オー
トフォーカスドライバ11はCPU6から垂直移動機構
19への制御命令を受け、垂直移動機構19を制御し、
自動的に焦点を合わせる。出力バッファ12は出力する
データを一旦格納し、D/A変換器13はこの出力デー
タをディジタルよりアナログに変換し、CRT14はこ
の出力データを画面に表示する。キーボード15よりオ
ペレータが指示やデータを入力する。
An image processor 7 performs density processing, binarization processing, image analysis and the like of the input image data. A density image memory 8 stores density image data,
Stores binary image data. The auto stage driver 10 controls the plane moving mechanism 18 to move the stage 17 on which the measurement sample is placed in the X and Y directions in accordance with an instruction from the CPU, and sets the measurement position and area of the measurement sample. The auto focus driver 11 receives a control command from the CPU 6 to the vertical movement mechanism 19, controls the vertical movement mechanism 19,
Focus automatically. The output buffer 12 temporarily stores the output data, the D / A converter 13 converts the output data from digital to analog, and the CRT 14 displays the output data on the screen. An operator inputs instructions and data from the keyboard 15.

【0021】次に第1実施例として矩形の傾きθを計算
する方法を図2および図3に示すフロー図を用いて説明
する。まず、矩形の画像を撮像し、画像データを得る
(ST1)。次にこの画像データにより矩形の重心Gを
求める(ST2)。この重心Gを通り画像表示する場合
の走査線Pと直交する垂直線Qを設定し(ST3)、こ
の垂直線Qに直交する第1線L1と第2線L2を間隔h
で引き、第1線L1と矩形との交点A,B、第2線L2
と矩形との交点C,Dを求める(ST4)。次に交点よ
り相手側の線に対し垂線を引き、その最外側の垂線と第
1線L1,第2線L2で囲まれる四角形AFDEの面積
A0を求める(ST5)。四辺形A,B,C,Dの面積
A1を求め、(1)式にh,A0,A1を代入し、θを
求める(ST6)。重心Gを通り垂直線Qとθ傾斜した
線を矩形の中心線Sとする。
Next, as a first embodiment, a method of calculating the inclination .theta. Of a rectangle will be described with reference to flowcharts shown in FIGS. First, a rectangular image is captured to obtain image data (ST1). Next, the center of gravity G of the rectangle is obtained from the image data (ST2). A vertical line Q orthogonal to the scanning line P for displaying an image through the center of gravity G is set (ST3), and a first line L1 and a second line L2 orthogonal to the vertical line Q are set at an interval h.
And intersections A and B between the first line L1 and the rectangle, and the second line L2
Intersection of the rectangular C, obtaining the D (ST4). Next, a perpendicular line is drawn from the intersection to the line on the other side, and the area A0 of the square AFDE surrounded by the outermost perpendicular line and the first line L1 and the second line L2 is obtained (ST5). The area A1 of each of the quadrilaterals A, B, C, and D is obtained, and h, A0, and A1 are substituted into the equation (1) to obtain θ (ST6). A line passing through the center of gravity G and inclined by θ with respect to the vertical line Q is defined as a rectangular center line S.

【0022】次に第2実施例として矩形の幅を測定する
方法を説明する。図4は樽形矩形の重心近傍の形状と幅
Mを測定する方法を示す図であり、図5は第2実施例の
フロー図である。図4において垂直線Qは走査線Pに垂
直な線、中心線Sは重心Gを通り垂直線Qと第1実施例
で求めたθ傾斜した直線である。なお、θは第1実施例
以外の方法で求めた値、例えば、図9に示した従来例で
求めた角度を用いることもできる。基準線Tは重心Gを
通り、走査線Pとθ傾斜した直線で、中心線Sと直交し
ている。矩形の重心G近傍の長辺の形状は左右の階段状
の実線で示されており、一部詳細に示すように斜線で示
す画素を正方形として、その画素の外形を表している。
直線L3,L4は矩形の幅Mが得られた後、Mを分かり
易く示すため中心線Sに対して左右に平行に引いた仮想
線である。
Next, a method for measuring the width of a rectangle will be described as a second embodiment. FIG. 4 is a diagram showing a method of measuring the shape and the width M near the center of gravity of a barrel-shaped rectangle, and FIG. 5 is a flowchart of the second embodiment. In FIG. 4, a vertical line Q is a line perpendicular to the scanning line P, and a center line S is a straight line passing through the center of gravity G and inclined by the vertical line Q and θ obtained in the first embodiment. Note that θ can be a value obtained by a method other than the first embodiment, for example, an angle obtained by the conventional example shown in FIG. The reference line T is a straight line that passes through the center of gravity G, is inclined by θ with respect to the scanning line P, and is orthogonal to the center line S. The shape of the long side near the center of gravity G of the rectangle is shown by left and right stepped solid lines, and as shown in detail in a part, the hatched pixel is a square, and the outer shape of the pixel is represented.
The straight lines L3 and L4 are imaginary lines drawn in parallel to the center line S left and right after the rectangular width M is obtained, in order to easily show M.

【0023】本方法は基準線Tを中心に重心Gを通り左
右に角度Δθごとにm本の線を放射状に引き、左右の長
辺との交点を求め、各線分の交点間の長さの平均値Mを
求めて、これを矩形の重心G近傍の幅とするものであ
る。平均値を算出するに当たっては異常値として最大値
と最小値は除いて、残りの値で平均する。また、Δθは
幅の予想値をM′としてΔθ・M′/2の値が1画素の
大きさ程度(1画素の大きさの0.3〜1.5倍程度が
よい)となるように設定する。Δθ・M′/2の値は角
度Δθごとに引いた線の直線L3,L4との交点のピッ
チに相当している。mの値は直線L3,L4を想定し
て、このL3,L4を中心として凹,凸1組の波形が1
組以上(望ましくは2組程度)2m+1本の放射状の線
でカバーできるように定める。図4は1組の場合を示し
ている。
In this method, m lines are drawn radially at an angle Δθ to the left and right through the center of gravity G with respect to the reference line T as a center, an intersection with the left and right long sides is obtained, and the length between the intersections of each line is calculated. An average value M is obtained, and this is set as the width near the center of gravity G of the rectangle. In calculating the average value, the maximum value and the minimum value are excluded as abnormal values, and the remaining values are averaged. Further, Δθ is set so that the value of Δθ · M ′ / 2 is about the size of one pixel (preferably about 0.3 to 1.5 times the size of one pixel, assuming that the expected value of the width is M ′). Set. The value of Δθ · M ′ / 2 corresponds to the pitch of the intersection of the line drawn for each angle Δθ with the straight lines L3 and L4. The value of m is assumed to be straight lines L3 and L4.
The number is set so that it can be covered by 2 m + 1 radial lines or more (preferably about 2 sets). FIG. 4 shows a case of one set.

【0024】基準線Tの左右にΔθごとにm本引かれた
放射状の線は基準線Tより反時計回りにm=1,2,
3,……とし、時計回りにm=−1,−2,−3,……
と表示している。基準線T、各放射状の線mと矩形の長
辺との交点は、図7で示した画素の座標を表す4画素の
中心点、又は画素の中心と一致しないことが多いが、こ
の場合、基準線Tはこの交点に最も近い画素の座標点を
とり、各放射状の線mとの交点は基準線Tを内側とし
て、各放射状の線mの外側で最も近い画素の座標点を取
る。各線分の交点間の距離はこの座標点間の距離から算
出する。図4の一部詳細に放射状の線m=−5と長辺の
交点を矢印に示すように座標点−5pに移す方法を示
す。この場合座標点として図7の(A)で示す4画素の
中心点を用いているが、(B)の画素の中心としてもよ
い。しかし、いずれか一方に統一する。各交点の画素の
座標点をmp,mqで示し、mpは右側の長辺との交点
の座標点、mqは左側の長辺との交点の座標点を示す。
交点mpとmq間の距離を求める。なお、以上のように
して得られた平均値Mと、推定値M′が大きく異なると
きはM′としてMを用い、再度平均値Mを求めればよ
い。
A radial line drawn m lines to the left and right of the reference line T every Δθ is such that m = 1, 2,
3,... And clockwise m = -1, -2, -3,.
Is displayed. The intersection of the reference line T, each radial line m, and the long side of the rectangle often does not coincide with the center point of the four pixels representing the coordinates of the pixel shown in FIG. 7 or the center of the pixel. In this case, The reference line T takes the coordinate point of the pixel closest to this intersection, and the intersection with each radial line m takes the coordinate point of the nearest pixel outside each radial line m with the reference line T inside. The distance between the intersections of the line segments is calculated from the distance between the coordinate points. A method of shifting the intersection of the radial line m = -5 and the long side to the coordinate point -5p as shown by the arrow is shown in a part of FIG. In this case, although the center point of the four pixels shown in FIG. 7A is used as the coordinate point, it may be the center of the pixel shown in FIG. However, unify either. The coordinates of the pixel at each intersection are indicated by mp and mq, where mp is the coordinates of the intersection with the long side on the right and mq is the coordinates of the intersection with the long side on the left.
Find the distance between the intersection points mp and mq. When the average value M obtained as described above and the estimated value M 'are significantly different, M may be used as M' and the average value M may be obtained again.

【0025】次に図5に示す第2実施例のフロー図によ
り矩形の幅の測定方法を説明する。本実施例は、第1実
施例のフロー図で示す動作に引き続いて行うものとし、
矩形の画像データ、重心G、中心線S、中心線Sの傾斜
θは図1に示す画像処理装置に既に格納されているもの
とする。まずキーボード15よりΔθ,mを入力する
(ST11)。Δθの値は幅の推定値M′を求めて、Δ
θ・M′/2が1画素の大きさ程度となるように定める
が、矩形の大きさがほぼ決まっている場合は、Δθの値
も一定となる。1画素の大きさとしては本実施例では2
μm程度とする。放射状の線の本数2m+1を決めるm
の値は、矩形の長辺の凹凸を1〜2組カバーするように
定めるが、1つの凹又は凸は3〜5画素で構成されるこ
とが多いので、1組の場合はm=5,2組の場合はm=
10と予め定めておくことができる。
Next, a method of measuring the width of a rectangle will be described with reference to the flowchart of the second embodiment shown in FIG. This embodiment is to be performed following the operation shown in the flowchart of the first embodiment,
It is assumed that the rectangular image data, the center of gravity G, the center line S, and the inclination θ of the center line S are already stored in the image processing apparatus shown in FIG. First, Δθ, m is input from the keyboard 15 (ST11). The value of Δθ is obtained by calculating an estimated value M ′ of the width,
θ · M ′ / 2 is determined to be about the size of one pixel. However, when the size of the rectangle is substantially determined, the value of Δθ is also constant. In this embodiment, the size of one pixel is 2
It is about μm. M to determine the number of radial lines 2m + 1
Is determined so as to cover one or two sets of irregularities on the long side of the rectangle. However, since one concave or convex is often composed of 3 to 5 pixels, m = 5 in the case of one set. For two sets, m =
It can be set to 10 in advance.

【0026】次に重心Gを通り、中心線Sに直交する基
準線Tを求める(ST12)。この基準線Tを中心に重
心Gを通り角度Δθピッチで左右にそれぞれm本,基準
線Tを含めて2m+1本の放射状の線分を引き、矩形の
左右の長辺との交点を得る(ST13)。交点が画像の
画素の座標点にないときは基準線Tを内側として、該当
する放射状の線mの外側で最も近い画素の座標点を交点
とする(ST14)。基準線Tおよび各放射状の線mに
ついて、交点間の距離を算出し、最大値と最小値を除
き、残りの平均値Mを算出する(ST15)。
Next, a reference line T passing through the center of gravity G and orthogonal to the center line S is obtained (ST12). With respect to this reference line T, m radial lines and 2m + 1 radial lines including the reference line T are drawn on the left and right at an angle Δθ pitch passing through the center of gravity G to obtain the intersection with the left and right long sides of the rectangle (ST13). ). When the intersection is not at the coordinate point of the pixel of the image, the reference line T is set inside and the coordinate point of the nearest pixel outside the corresponding radial line m is set as the intersection (ST14). The distance between the intersections is calculated for the reference line T and each radial line m, and the remaining average value M is calculated except for the maximum value and the minimum value (ST15).

【0027】次に第3実施例として矩形の幅を測定する
別の方法を説明する。第2実施例が重心Gを通る放射状
の線分と矩形の長辺との交点から幅を算出したのに対
し、本実施例は基準線Tに平行に、1画素の大きさ程度
のピッチで平行線を引き、基準線Tを含めてn本の平行
線と矩形との交点から幅を求めるものである。図10
(A)に示した従来例よりピッチを小さくしているこ
と、平均値を求める際、最大値と最小値を除いているこ
とにより、目視による測定値に近い値が得られる。
Next, another method for measuring the width of a rectangle will be described as a third embodiment. While the second embodiment calculates the width from the intersection of a radial line segment passing through the center of gravity G and the long side of the rectangle, the second embodiment is parallel to the reference line T and has a pitch of about one pixel size. A parallel line is drawn, and a width is obtained from an intersection between the n parallel lines including the reference line T and the rectangle. FIG.
Since the pitch is smaller than that of the conventional example shown in FIG. 1A and the average value is excluded when the maximum value and the minimum value are obtained, a value close to a visually measured value can be obtained.

【0028】図6は図4と同じ樽形矩形の重心近傍の形
状と幅Nを測定する方法を示す図である。図6において
走査線P,垂直線Q,中心線S,垂直線Qと中心線Sと
の角度θ,基準線T,直線L3,L4は図4と同じであ
る。本方法は基準線Tと平行に一定のピッチδで、基準
線Tも含めてn本の平行線を引き、左右の矩形の長辺と
の交点を求め、各線分の交点間の長さの平均値Nを求
め、これを矩形の重心G近傍の幅とするものである。平
均値を出すに当たっては最大値と最小値を除いた残りの
値で平均する。またピッチδは1画素の大きさ程度(1
画素の0.3〜1.5倍程度)となるようにし、nの値
は直線L3,L4を想定してL3,L4を中心として凹
凸1組の波形が1組以上、望ましくは2組程度をn本の
平行線でカバーできるように定める。平行線と左右の矩
形の長辺との交点が図7で説明した画素の座標点上にな
いときは、基準線Tの場合は最も近い画素の座標点、他
の平行線の場合は、基準線Tを内側として該当する平行
線の外側で最も近い画素の座標点とする。なお、本実施
例ではn本の平行線は基準線Tを中心に上下同じ数とし
たが、必ずしも上下同じ数にする必要はない。図6にお
いて、平行線に付した数字は各平行線の番号を示し、n
pは平行線nの右側の交点の画素の座標点を示し、nq
は左側の交点の画素の座標点を示す。
FIG. 6 is a diagram showing a method of measuring the shape and width N near the center of gravity of the same barrel-shaped rectangle as in FIG. 6, the scanning line P, the vertical line Q, the center line S, the angle θ between the vertical line Q and the center line S, the reference line T, and the straight lines L3 and L4 are the same as those in FIG. This method draws n parallel lines including the reference line T at a constant pitch δ in parallel with the reference line T, finds intersections with the long sides of the right and left rectangles, and calculates the length between the intersections of the respective line segments. An average value N is obtained, and this is set as the width near the center of gravity G of the rectangle. In calculating the average value, the average is calculated using the remaining values excluding the maximum value and the minimum value. The pitch δ is about the size of one pixel (1
The value of n is assumed to be straight lines L3 and L4, and one or more sets of irregularities with L3 and L4 as the center, and preferably about two sets Is determined so as to be covered by n parallel lines. When the intersection between the parallel line and the long side of the left and right rectangles is not on the coordinate point of the pixel described in FIG. 7, the coordinate point of the nearest pixel is used for the reference line T, and the reference point is used for other parallel lines. With the line T inside, the coordinate point of the nearest pixel outside the corresponding parallel line is assumed. In this embodiment, the number of the n parallel lines is the same as the number of the upper and lower lines around the reference line T. However, the number of the parallel lines does not necessarily have to be the same number. In FIG. 6, the numbers attached to the parallel lines indicate the numbers of the respective parallel lines, and n
p indicates the coordinate point of the pixel at the intersection on the right side of the parallel line n, and nq
Indicates the coordinate point of the pixel at the left intersection.

【0029】本実施例のフロー図は図5の第2実施例の
フロー図とほぼ同じでピッチδを1画素の大きさ程度に
設定し、nの値は10(凹凸1組の場合)から20(凹
凸2組程度の場合)の値に設定する。
The flow chart of the present embodiment is almost the same as the flow chart of the second embodiment of FIG. 5, in which the pitch δ is set to about the size of one pixel, and the value of n is from 10 (in the case of one set of irregularities). It is set to a value of 20 (about two sets of irregularities).

【0030】矩形については樽形として説明したが、樽
形特有の測定をしているわけではないので、繭形にも、
また対辺が平行な通常の矩形についても、中心線の傾き
θ、幅M(又はN)の測定に各実施例の方法を適用でき
る。また矩形と矩形との距離も測定することができる。
Although the rectangular shape has been described as a barrel shape, the measurement is not unique to the barrel shape.
The method of each embodiment can also be applied to the measurement of the inclination θ of the center line and the width M (or N) of a normal rectangle whose opposite sides are parallel. Also, the distance between rectangles can be measured.

【0031】[0031]

【発明の効果】以上の説明から明らかなように、本発明
は矩形の中心線の傾斜角θを面積を計測することにより
算出するので形状の変化を吸収して精度よく測定するこ
とができる。また、矩形の重心近傍の幅を重心を通り基
準線Tを中心にΔθピッチで左右にm本づつ放射状の線
を引き、各線分につき矩形の長辺との交点間の距離を求
め、最大値と最小値を除いた値の平均値を幅とするが、
Δθのピッチは交点の近傍で1画素程度となるように
し、またmの値を2m+1本の放射状の線が矩形の辺の
凹凸1組以上をカバーするように定めることにより、目
視により測定した幅とほぼ同じ精度の幅が得られる。ま
た矩形の重心を通り、基準線Tに平行に1画素程度のピ
ッチで基準線Tも含めn本の平行線を引き、矩形との交
点を求め、各平行線の交点間の距離を求め、最大値と最
小値を除いた値の平均値を幅とするが、nの値はn本の
平行線が矩形の辺の凹凸1組以上をカバーするように定
めることにより目視により測定した幅とほぼ同じ精度の
幅が得られる。平均値を求めることにより画素の大きさ
による分解能を超える分解能が得られる。
As is clear from the above description, according to the present invention, the inclination angle .theta. Of the center line of the rectangle is calculated by measuring the area. In addition, a radial line is drawn by m lines to the left and right at a Δθ pitch around the reference line T through the width near the center of gravity of the rectangle through the center of gravity, and the distance between the intersections with the long sides of the rectangle is determined for each line segment. And the average value excluding the minimum value as the width,
The pitch of Δθ is set to be about one pixel in the vicinity of the intersection, and the value of m is determined so that 2m + 1 radial lines cover one or more sets of irregularities on the sides of the rectangle. Approximately the same range of accuracy can be obtained. In addition, n parallel lines including the reference line T are drawn at a pitch of about one pixel in parallel with the reference line T, passing through the center of gravity of the rectangle, the intersection with the rectangle is determined, and the distance between the intersections of the parallel lines is determined. The average value of the values excluding the maximum value and the minimum value is defined as the width, and the value of n is determined by visual observation by determining that n parallel lines cover at least one set of irregularities on the sides of the rectangle. Approximately the same range of precision is obtained. By obtaining the average value, a resolution exceeding the resolution depending on the size of the pixel can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例を実現する画像処理装置の構成を示すブ
ロック図である。
FIG. 1 is a block diagram illustrating a configuration of an image processing apparatus that implements an embodiment.

【図2】第1実施例の矩形の傾きθを計算する方法を説
明する図である。
FIG. 2 is a diagram illustrating a method of calculating a rectangular inclination θ according to the first embodiment.

【図3】第1実施例の動作フロー図である。FIG. 3 is an operation flowchart of the first embodiment.

【図4】第2実施例の矩形の幅を測定する方法を説明す
る図である。
FIG. 4 is a diagram illustrating a method for measuring the width of a rectangle according to a second embodiment.

【図5】第2実施例の動作フロー図である。FIG. 5 is an operation flowchart of the second embodiment.

【図6】第3実施例の矩形の幅を測定する方法を説明す
る図である。
FIG. 6 is a diagram illustrating a method of measuring the width of a rectangle according to a third embodiment.

【図7】画素を表す座標点を示す図である。FIG. 7 is a diagram showing coordinate points representing pixels.

【図8】露光エッチングによって加工された矩形の形状
および目視による幅測定を示す図である。
FIG. 8 is a view showing a rectangular shape processed by exposure etching and width measurement by visual observation.

【図9】従来の矩形の傾きθを測定する方法を説明する
図である。
FIG. 9 is a diagram illustrating a conventional method for measuring the inclination θ of a rectangle.

【図10】従来の矩形の幅を測定する方法を説明する図
である。
FIG. 10 is a diagram illustrating a conventional method for measuring the width of a rectangle.

【図11】従来の矩形の幅を面積を用いて測定する方法
を示す図である。
FIG. 11 is a diagram illustrating a conventional method for measuring the width of a rectangle using an area.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01B 11/00 G06T 1/00 G06T 7/60Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01B 11/00 G06T 1/00 G06T 7/60

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 略矩形の画像の重心を求め、この重心を
通り走査線に直交する垂直線を設定し、この垂直線に直
交して間隔hで第1線と第2線を引き、第1線と略矩形
の交点をA,B,第2線と略矩形の交点をC,Dとし、
四辺形ABCDの面積A1を求め、各交点A,B,C,
Dより相手の第1線、第2線へ垂線を引き両端の垂線と
第1線及び第2線とで囲まれる面積をA0とし、 θ=tan-1(A0−A1)/h2 ……(1) (1)式で表されるθを略矩形の重心を通り長辺の方向
を示す中心線と垂直線とのなす角度とすることを特徴と
する画像による寸法測定方法。
1. A center of gravity of a substantially rectangular image is obtained, a vertical line passing through the center of gravity and orthogonal to a scanning line is set, and a first line and a second line are drawn orthogonally to the vertical line and at an interval h. The intersections of the first line and the substantially rectangle are A and B, and the intersections of the second line and the substantially rectangle are C and D,
The area A1 of the quadrilateral ABCD is determined, and each intersection A, B, C,
A perpendicular line is drawn from D to the opposing first and second lines, and the area surrounded by the perpendicular lines at both ends and the first and second lines is A0, and θ = tan −1 (A0−A1) / h 2. (1) A dimension measurement method using an image, wherein θ represented by the expression (1) is an angle between a center line passing through a substantially rectangular center of gravity and indicating a direction of a long side and a vertical line.
【請求項2】 略矩形の画像の重心を求め、この重心を
通り、走査線と直交する垂直線と略矩形の重心を通り長
辺の方向を示す中心線との角度θを所定の方法で求め、
重心を通り走査線と角度θ±mΔθ(mは整数)をなす
各線を引き、各線と略矩形の交点を求め、各線の交点間
の線分の長さを求め、最大値と最小値を除いた残りの長
さの平均値Mを算出する方法であって、前記Δθを平均
値Mの推定値をM′とし、略矩形と線分との交点近傍で
Δθ・M′/2が1画素の大きさ程度となるようにし、
前記mを、略矩形の辺の波うちを表す凹凸1組以上を2
m+1本の線の交差範囲内に含むように定めることを特
徴とする画像による寸法測定方法。
2. A center of gravity of a substantially rectangular image is obtained, and an angle θ between a vertical line passing through the center of gravity and a scanning line and a center line passing through the center of gravity of the substantially rectangle and indicating a direction of a long side is determined by a predetermined method. Asked,
Draw each line that passes through the center of gravity and forms an angle θ ± mΔθ (m is an integer) with the scanning line, finds the intersection of each line and a substantially rectangle, finds the length of the line segment between the intersections of each line, and excludes the maximum and minimum values And calculating an average value M of the remaining lengths, wherein Δθ is an estimated value of the average value M, and Δθ · M ′ / 2 is one pixel near the intersection of a substantially rectangular and a line segment. About the size of
The above-mentioned m is represented by two or more sets of irregularities representing the wavy shape of a substantially rectangular side.
A dimension measuring method based on an image, wherein the dimension is determined so as to be included in an intersection range of m + 1 lines.
【請求項3】 略矩形の画像の重心を求め、この重心を
通り、走査線と直交する垂直線と略矩形の重心を通り長
辺の方向を示す中心線との角度θを所定の方法で求め、
重心を通り走査線と角度θをなす基準線を求め、この基
準線と平行にピッチδでこの基準線も含め合計n本の線
を引き、この各線と略矩形の辺との交点間の線分の長さ
を求め、最大値と最小値を除いた残りの平均値Nを求め
る方法であって、前記ピッチδを1画素の大きさ程度と
し、前記nを、略矩形の辺の波うちを表す凹凸1組以上
をn本の線の交差範囲内に含むように定めることを特徴
とする画像による寸法測定方法。
3. A center of gravity of a substantially rectangular image is obtained, and an angle θ between a vertical line passing through the center of gravity and orthogonal to a scanning line and a center line passing through the center of gravity of the substantially rectangle and indicating a direction of a long side is determined by a predetermined method. Asked,
A reference line passing through the center of gravity and forming an angle θ with the scanning line is determined, and a total of n lines including this reference line are drawn in parallel with this reference line at a pitch δ, and a line between the intersections of these lines and the sides of the substantially rectangle A method of calculating the length of a minute, and calculating the average value N excluding the maximum value and the minimum value, wherein the pitch δ is set to about the size of one pixel, and A dimension measuring method based on an image, characterized in that at least one set of unevenness representing the following is defined so as to be included in the intersection range of n lines.
【請求項4】 前記略矩形と交差する線分の座標点は画
素の中心又は四角に配置された4個の画素の中心点を用
いるものとし、この座標点位置に交差点がない場合に
は、重心を通り、走査線と角度θをなす線を内側として
該当する線分の外側で最も近い画素の中心又は4個の画
素の中心点を交差点として線分の長さを計算することを
特徴とする請求項2または3記載の画像による寸法測定
方法。
4. A coordinate point of a line segment that intersects the substantially rectangular shape uses a center of a pixel or a center point of four pixels arranged in a square. If there is no intersection at this coordinate point position, A line passing through the center of gravity and forming an angle θ with the scanning line as an inner side, and calculating the length of the line segment with the center of the nearest pixel or the center point of four pixels outside the corresponding line segment as an intersection. 4. The method for measuring dimensions using images according to claim 2 or 3.
JP8000994A 1994-04-19 1994-04-19 Dimension measurement method using images Expired - Fee Related JP2856067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8000994A JP2856067B2 (en) 1994-04-19 1994-04-19 Dimension measurement method using images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8000994A JP2856067B2 (en) 1994-04-19 1994-04-19 Dimension measurement method using images

Publications (2)

Publication Number Publication Date
JPH07286822A JPH07286822A (en) 1995-10-31
JP2856067B2 true JP2856067B2 (en) 1999-02-10

Family

ID=13706334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8000994A Expired - Fee Related JP2856067B2 (en) 1994-04-19 1994-04-19 Dimension measurement method using images

Country Status (1)

Country Link
JP (1) JP2856067B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4612552B2 (en) * 2006-02-10 2011-01-12 旭精機工業株式会社 Image processing apparatus and spring molding machine
JP2011137901A (en) * 2009-12-28 2011-07-14 Hitachi High-Technologies Corp Apparatus for setting pattern measuring condition

Also Published As

Publication number Publication date
JPH07286822A (en) 1995-10-31

Similar Documents

Publication Publication Date Title
US7454054B2 (en) Three-dimensional shape input device
JP4445327B2 (en) Display evaluation method and apparatus
CN111220130B (en) Focusing measurement method and terminal capable of measuring object at any position in space
KR20010040339A (en) Method and apparatus for three dimensional inspection of electronic components
KR20020066219A (en) Imaging system, program used for controlling image data in same system, method for correcting distortion of captured image in same system, and recording medium storing procedures for same method
JP4133753B2 (en) Method of measuring optical interference of detour surface and interferometer device for detour surface measurement
WO2010061516A1 (en) Image formation method and image formation device
JP2856067B2 (en) Dimension measurement method using images
JP2623367B2 (en) Calibration method of three-dimensional shape measuring device
JP2900425B2 (en) Image quality inspection equipment
CN110602486B (en) Detection method, detection device, depth camera and computer readable storage medium
JP3156694B2 (en) Scanning electron microscope
JP3281918B2 (en) Shape measurement method and device
JPH0727548A (en) Hole pattern shape evaluating device
US6807314B1 (en) Method of precision calibration of a microscope and the like
KR20020070828A (en) Critical dimension measurement method and apparatus capable of measurement below the resolution of an optical microscope
JP3049600B2 (en) Liquid level measurement method and device
JP3133795B2 (en) Pattern matching device
JP4401126B2 (en) Method for registering predetermined part of dimension measuring device
JPH0658221B2 (en) Scanning electron microscope
JPH0528264A (en) Picture processor
JP2000180263A (en) Automatic measuring method of and automatic measuring device for thermal image
JPS63128215A (en) Detecting method for inclination of camera optical axis
JP2946647B2 (en) Inspection method for integrated circuits
CN116962653A (en) Projection correction method of projector, projector and storage medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees