JPH07286185A - Method for treating mixed waste plastics and system therefor - Google Patents

Method for treating mixed waste plastics and system therefor

Info

Publication number
JPH07286185A
JPH07286185A JP6078962A JP7896294A JPH07286185A JP H07286185 A JPH07286185 A JP H07286185A JP 6078962 A JP6078962 A JP 6078962A JP 7896294 A JP7896294 A JP 7896294A JP H07286185 A JPH07286185 A JP H07286185A
Authority
JP
Japan
Prior art keywords
pressure
mixed waste
solvent
waste plastic
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6078962A
Other languages
Japanese (ja)
Other versions
JP3004871B2 (en
Inventor
Ryokichi Yamada
良吉 山田
Hisao Yamashita
寿生 山下
Tomoko Suzuki
朋子 鈴木
Hiroshi Miyadera
博 宮寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6078962A priority Critical patent/JP3004871B2/en
Publication of JPH07286185A publication Critical patent/JPH07286185A/en
Application granted granted Critical
Publication of JP3004871B2 publication Critical patent/JP3004871B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To provide a mixed waste plastics-treating method intended for waste volume reduction and resource reclamation, capable of raising the decomposition rate of thermosetting resins hard to pyrolyze and gasify without the need for sorting mixed waste plastics, and designed to recover oil relatively rich in low-carbon number components. CONSTITUTION:Mixed waste plastics are fed from a reservoir 1 to a dissolving pyrolysis oven 2 where they are mixed with a solvent fed from an oil reservoir 5 and then heated to effect evaporation of the low-boiling solvent and pressurization of the oven along with dissolution of part of the waste plastics. Subsequently, by pyrolysis and gasification of the solvent and both the dissolved and undissolved mixed waste plastics the oven is pressurized to the pyrolysis pressure, and under this pressure the pyrolysis and gasification are further carried out. The resultant pyrolysis gas discharged from the oven is introduced into a catalytic cracking oven 3 where the gas is cracked by catalytic reaction. The resultant cracked gas is condensed and liquefied in a condenser 3, and the liquefied oil component is reserved in the oil reservoir 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、廃棄物の処理方法に関
し、特に廃棄されたプラスチックを再資源化・減容化す
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating waste, and more particularly to a method for recycling and reducing the volume of discarded plastic.

【0002】[0002]

【従来の技術】最近のプラスチック生産量の増加に伴い
その廃棄物は年々増加している。現在、廃棄プラスチッ
クの大半が埋立てと焼却によって処分されている。しか
し、埋立て用地の不足の問題や、また焼却処分の場合に
は焼却炉の短命化や排ガスなどによる環境汚染の問題が
ある。これらの問題を解決するために、廃棄プラスチッ
クの再資源化やエネルギー回収の方法が研究されてい
る。
2. Description of the Related Art With the recent increase in plastic production, the amount of waste is increasing year by year. Currently, most of the waste plastic is disposed of by landfill and incineration. However, there are problems of shortage of landfill site, and in the case of incineration, there is a problem of short life of incinerator and environmental pollution due to exhaust gas. In order to solve these problems, methods of recycling waste plastics and recovering energy have been studied.

【0003】可燃物、特にプラスチック類の高分子廃棄
物の減容化・再資源化に関しては、例えば熱可塑性プラ
スチックを対象として溶融・熱分解によって油化・回収
し、燃料化して利用する方法が特開昭49−17477
号公報、特開昭59−174689号公報などに開示さ
れている。さらに、プラスチック、ゴム、塗料、潤滑
油、油脂、アスファルト、ピッチ、合成繊維、天然繊維
有機合成固形物などの熱可塑性及び熱硬化性プラスチッ
クなどの混合高分子廃棄物の処理に関しては、混合高分
子廃棄物の一部を燃焼し、その熱により残りの高分子廃
棄物を熱処理、すなわち、部分酸化燃焼・乾留熱分解方
式で高分子廃棄物をガス化、又は油分を回収する方法と
処理装置が特公平2−5796号公報に開示されてい
る。
For reducing the volume and recycling of combustibles, especially polymer wastes of plastics, for example, a method of melting and pyrolyzing thermoplastic plastics to recover and recover them and use them as fuels is available. JP-A-49-17477
JP-A-59-174689 and the like. Furthermore, regarding the treatment of mixed polymer waste such as thermoplastics and thermosetting plastics such as plastics, rubbers, paints, lubricating oils, fats, asphalt, pitch, synthetic fibers, natural fibers organic synthetic solids, mixed polymers There is a method and a treatment device for burning a part of the waste and heat-treating the remaining polymer waste by the heat, that is, for gasifying the polymer waste by the partial oxidation combustion / dry distillation pyrolysis method or recovering the oil content. It is disclosed in Japanese Patent Publication No. 2-5796.

【0004】また、廃棄プラスチックを元の原料である
石油系の油にリサイクルする方法がある。プラスチック
は熱可塑性樹脂と熱硬化性樹脂に大別され、加熱により
溶融・分解する性質を有する熱可塑性樹脂の廃棄物につ
いては、加熱処理を行ない燃料油などとして再資源化す
る方法が特開昭48−60777号公報などに開示され
ている。一方、熱硬化性樹脂については、通常融点を持
たず、高い耐熱性を有する性質上、その廃棄物の加熱処
理は困難であるとされている。
There is also a method of recycling waste plastic into the petroleum-based oil which is the original raw material. Plastics are roughly classified into thermoplastic resins and thermosetting resins. Wastes of thermoplastic resins that have the property of melting and decomposing by heating are subjected to heat treatment to be recycled as fuel oil and the like. It is disclosed in Japanese Unexamined Patent Publication No. 48-60777. On the other hand, thermosetting resins are generally considered to be difficult to heat-treat due to their high melting point and high heat resistance.

【0005】しかし、一般に廃棄プラスチックには、こ
のように性質を異にする熱可塑性樹脂と熱硬化性樹脂と
が混在しており、この混合廃プラスチックを熱分解処理
する方法として、熱可塑性樹脂と熱硬化性樹脂との融点
の違いを利用して別々に処理する方法が特開平3−21
2491号公報に開示されている。この方法は、廃棄プ
ラスチックをその分解油に250〜280℃程度で溶融
させ、その後熱硬化性樹脂を主成分とする未溶融分を6
00〜700℃の高温で分解する方法であるが、処理温
度が高いため消費エネルギーが多い欠点がある。
However, in general, a waste plastic contains a mixture of a thermoplastic resin and a thermosetting resin having different properties as described above. As a method for thermally decomposing the mixed waste plastic, a thermoplastic resin is used. A method of separately treating by utilizing the difference in melting point from the thermosetting resin is disclosed in JP-A-3-21.
It is disclosed in Japanese Patent No. 2491. In this method, waste plastic is melted in its decomposed oil at about 250 to 280 ° C., and then the unmelted component containing a thermosetting resin as a main component
Although it is a method of decomposing at a high temperature of 00 to 700 ° C., it has a drawback that it consumes a lot of energy because of high processing temperature.

【0006】[0006]

【発明が解決しようとする課題】廃棄プラスチックのう
ち特に熱硬化性樹脂は、熱処理により一部は分解する
が、その他の部分は分解せずに網目構造を形成し、不可
逆的に硬化し固体残渣となる性質を有する。この様な熱
硬化性樹脂の熱分解特性は、熱処理条件によって変化す
る。すなわち、熱処理条件を工夫することで、樹脂の硬
化を抑制し、分解率を向上させることができる。上記特
開平3−212491号公報記載の処理方法は、実質的
には熱硬化性樹脂と熱可塑性樹脂とを個別に処理するも
のであり、熱硬化性樹脂の分解率を向上させるためのさ
らなる工夫を要すると考えられる。また、熱硬化性樹脂
の分解温度は熱可塑性樹脂に比べ、高温のものが多く、
そのため分解処理時の消費エネルギーが増大するという
問題がある。
Among the waste plastics, the thermosetting resin, in particular, is decomposed by the heat treatment, but the other part is not decomposed to form a network structure, which is irreversibly hardened to form a solid residue. It has the following properties. The thermal decomposition characteristics of such a thermosetting resin vary depending on the heat treatment conditions. That is, by devising the heat treatment conditions, the curing of the resin can be suppressed and the decomposition rate can be improved. The treatment method described in JP-A-3-212491 described above substantially treats the thermosetting resin and the thermoplastic resin individually, and further devises for improving the decomposition rate of the thermosetting resin. It is considered necessary. Further, the decomposition temperature of the thermosetting resin is often higher than that of the thermoplastic resin,
Therefore, there is a problem that energy consumption during the decomposition process increases.

【0007】本発明の目的は、熱硬化性樹脂と熱可塑性
樹脂の混合廃プラスチックの処理において、特に熱硬化
性樹脂の熱分解促進を図ると共にトータル的に低炭素数
含有量の多い油を回収し得る処理方法を提供することに
ある。
The object of the present invention is to promote the thermal decomposition of the thermosetting resin in the treatment of the mixed waste plastic of the thermosetting resin and the thermoplastic resin and to recover the oil containing a large amount of low carbon number in total. It is to provide a possible processing method.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の混合廃プラスチック処理方法は、密閉容器
内で熱硬化性樹脂と熱可塑性樹脂との混合廃プラスチッ
クを溶媒と混合し、加熱によって溶媒をガス化して圧力
を上昇させ、上昇した圧力下において前記混合廃プラス
チックを溶解させると共に前記溶媒と溶解及び不溶解混
合廃プラスチックを熱分解ガス化することを特徴とす
る。
In order to achieve the above object, the method for treating mixed waste plastic of the present invention is to mix the mixed waste plastic of thermosetting resin and thermoplastic resin with a solvent in a closed container, It is characterized in that the solvent is gasified by heating to increase the pressure, the mixed waste plastic is dissolved under the increased pressure, and the solvent and the dissolved and insoluble mixed waste plastic are pyrolyzed and gasified.

【0009】また、本発明の混合廃プラスチック処理方
法は、第1の密閉容器内で熱硬化性樹脂と熱可塑性樹脂
との混合廃プラスチックを溶媒と混合し、加熱によって
溶媒をガス化して第1の密閉容器内の圧力を上昇させ、
所定の圧力に維持された第1の密閉容器内で前記混合廃
プラスチックを溶解させ、その後第1の密閉容器内の溶
媒と溶解及び不溶解混合廃プラスチックを第2の密閉容
器に移送し、第2の密閉容器内で溶媒と溶解及び不溶解
混合廃プラスチックを加熱し、溶媒のガス化と溶解及び
不溶解混合廃プラスチックの加熱分解ガス化によって第
2の密閉容器内の圧力を上昇させ、所定の圧力に維持さ
れた第2の密閉容器内の溶媒と溶解及び不溶解混合廃プ
ラスチックを熱分解ガス化することを特徴とする。
In the mixed waste plastic treatment method of the present invention, the mixed waste plastic of the thermosetting resin and the thermoplastic resin is mixed with the solvent in the first closed container, and the solvent is gasified by heating. Increase the pressure in the closed container of
The mixed waste plastic is dissolved in the first closed container maintained at a predetermined pressure, and then the solvent and the dissolved and insoluble mixed waste plastic in the first closed container are transferred to the second closed container. The solvent and the dissolved and insoluble mixed waste plastics are heated in the second closed container, and the pressure in the second closed container is increased by gasifying the solvent and the thermal decomposition gasification of the dissolved and insoluble mixed waste plastics. It is characterized in that the solvent and the dissolved and insoluble mixed waste plastic in the second closed container maintained at the pressure of 1 are thermally decomposed and gasified.

【0010】溶媒としては混合廃プラスチックを溶解す
る全ての溶媒を使用することができ、例えば混合廃プラ
スチックを処理して生成された油やその他の石油系油を
用いることができる。前記混合廃プラスチックの溶解及
び熱分解ガス化はゲージ圧2気圧以上、好ましくはゲー
ジ圧5気圧以上の圧力下で行うのが好適である。
As the solvent, any solvent capable of dissolving the mixed waste plastic can be used, and for example, oil produced by processing the mixed waste plastic or other petroleum-based oil can be used. It is suitable that the mixed waste plastic is dissolved and pyrolyzed and gasified under a gauge pressure of 2 atm or more, preferably a gauge pressure of 5 atm or more.

【0011】本発明による混合廃プラスチックの処理方
法は、混合廃プラスチックを貯留する貯留手段と、貯留
手段に接続された混合廃プラスチックの溶解熱分解ガス
化手段と、溶媒貯留手段と、溶媒貯留手段から溶媒を溶
解熱分解ガス化手段に供給する手段と、溶解熱分解ガス
化手段内部を所定温度に維持する手段と、溶解熱分解ガ
ス化手段内の圧力をゲージ圧2気圧以上の所定圧力に維
持する圧力維持手段と、溶解熱分解ガス化手段から排出
されるガスを軽質化する軽質化手段と、軽質化手段で軽
質化されたガスを冷却し液化する手段と、液化物を貯留
する手段と、溶解熱分解ガス化手段内の未分解物を排出
する手段とを具備する混合廃プラスチックの処理装置に
よって実施される。
The method for treating mixed waste plastics according to the present invention comprises a storage means for storing the mixed waste plastics, a dissolution pyrolysis gasification means for the mixed waste plastics connected to the storage means, a solvent storage means, and a solvent storage means. Means for supplying the solvent to the dissolution pyrolysis gasification means, means for maintaining the inside of the dissolution pyrolysis gasification means at a predetermined temperature, and the pressure inside the dissolution pyrolysis gasification means to a predetermined pressure of a gauge pressure of 2 atm or more. Pressure maintaining means for maintaining, lightening means for lightening the gas discharged from the melt pyrolysis gasification means, means for cooling and liquefying the gas lightened by the lightening means, and means for storing liquefaction And a means for discharging undecomposed substances in the melt pyrolysis gasification means, by means of a treatment apparatus for mixed waste plastics.

【0012】また、本発明による混合廃プラスチックの
処理方法は、混合廃プラスチックを貯留する貯留手段
と、貯留手段に接続された混合廃プラスチックの溶解手
段と、溶媒貯留手段と、溶媒貯留手段から溶媒を溶解手
段に供給する手段と、溶解手段内部を第1の所定温度に
維持する手段と、溶解手段内の圧力をゲージ圧2気圧以
上の所定圧力に維持する第1の圧力維持手段と、溶解手
段に接続された混合廃プラスチックの溶解熱分解ガス化
手段と、溶解熱分解ガス化手段内部を第1の温度以上の
第2の所定温度に維持する手段と、溶解熱分解ガス化手
段内の圧力をゲージ圧2気圧以上の所定圧力に維持する
第2の圧力維持手段と、溶解手段及び溶解熱分解ガス化
手段から排出されるガスを軽質化する軽質化手段と、軽
質化手段で軽質化されたガスを冷却し液化する手段と、
液化物を貯留する手段と、溶解熱分解ガス化手段内の未
分解物を排出する手段とを具備する混合廃プラスチック
の処理装置によって実施される。前記圧力維持手段は、
圧力検知手段と、弁手段と、圧力検知手段からの検知信
号に基づいて弁手段の開閉を制御する制御手段から構成
することができる。
Further, the method for treating mixed waste plastics according to the present invention comprises a storage means for storing the mixed waste plastics, a dissolution means for the mixed waste plastics connected to the storage means, a solvent storage means, and a solvent storage means to a solvent. Means for supplying the melting means to the melting means, means for maintaining the inside of the melting means at a first predetermined temperature, first pressure maintaining means for maintaining the pressure inside the melting means at a predetermined pressure of 2 atm or more of gauge pressure, and melting Means for melting and pyrolyzing and gasifying the mixed waste plastics connected to the means, means for maintaining the inside of the melting and pyrolyzing gasification means at a second predetermined temperature higher than the first temperature, A second pressure maintaining means for maintaining the pressure at a predetermined pressure of 2 atm or more, a lightening means for lightening the gas discharged from the melting means and the melting pyrolysis gasification means, and a lightening means for lightening the gas. It Means for gas cooled liquefied was,
It is carried out by an apparatus for treating mixed waste plastic, which comprises a means for storing a liquefied material and a means for discharging an undecomposed material in a melting pyrolysis gasification means. The pressure maintaining means,
The pressure detecting means, the valve means, and the control means for controlling the opening / closing of the valve means based on the detection signal from the pressure detecting means.

【0013】[0013]

【作用】本発明の混合廃プラスチック処理方法による
と、混合廃プラスチックを溶媒と混合し高圧力下で熱分
解するため、一部の混合廃プラスチックが溶解され、こ
の溶解液が熱媒体あるいは反応媒体となり、特に単独熱
分解ではガス化し難い熱硬化性プラスチックの有機質樹
脂分の比較的低温下での熱分解ガス化が促進され、油回
収率の向上が図られる。さらに、通常の熱分解では炭素
数の含有量が多いガスが発生するが、高圧力下で熱分解
するために、溶媒と溶解及び不溶解混合廃プラスチック
との熱分解反応促進が図られ、高分子有機物の低分子有
機物への移行量が増大し、比較的低炭素数含有量の多い
油が回収できる。
According to the mixed waste plastic treatment method of the present invention, since the mixed waste plastic is mixed with the solvent and pyrolyzed under high pressure, a part of the mixed waste plastic is dissolved, and this solution is used as a heat medium or a reaction medium. In particular, the pyrolysis gasification at a relatively low temperature of the organic resin of the thermosetting plastic, which is difficult to gasify by single pyrolysis, is promoted, and the oil recovery rate is improved. Furthermore, although gas with a high carbon number is generated during normal thermal decomposition, thermal decomposition under high pressure promotes thermal decomposition reaction between the solvent and the dissolved and insoluble mixed waste plastics. The amount of transfer of the molecular organic material to the low molecular organic material is increased, and the oil having a relatively low carbon number content can be recovered.

【0014】混合廃プラスチックの溶解及び熱分解ガス
化をゲージ圧2気圧以上、好ましくはゲージ圧5気圧の
高圧下で行うのは、混合廃プラスチックの溶媒への溶解
速度の促進が図れ、かつ、分解生成水素ガスと他の分解
生成ガスとの反応(水素添加)による軽質化の効果を図
るためであり、溶解又は熱分解ガス化の処理圧力がゲー
ジ圧2気圧未満では溶解速度の促進あるいは軽質化の効
果が小さくなるからである。
The dissolution and pyrolysis gasification of the mixed waste plastics under a high pressure of 2 atm or more, preferably 5 atm of gauge pressure can accelerate the dissolution rate of the mixed waste plastics in the solvent, and This is for the purpose of achieving the effect of lightening by the reaction (hydrogenation) of the decomposition product hydrogen gas and other decomposition product gas. When the processing pressure for the dissolution or thermal decomposition gasification is less than 2 atm of the gauge pressure, the dissolution rate is promoted or lightened. This is because the effect of conversion becomes smaller.

【0015】また、本発明の混合廃プラスチック処理装
置によると、混合廃プラスチックの溶解熱分解ガス化手
段あるいは溶解熱分解ガス化手段の圧力をゲージ圧2気
圧以上の所定圧力に維持しながら混合廃プラスチックの
溶解あるいは熱分解ガス化処理を行い、発生したガスを
連続的に軽質化して液化処理するため、混合廃プラスチ
ックを安定して連続的に移送・処理でき、かつ、減容化
・再資源化を効率よく行うことができる。
Further, according to the mixed waste plastic processing apparatus of the present invention, the mixed waste plastic is dissolved while maintaining the pressure of the melting pyrolysis gasification means or the melting pyrolysis gasification means at a predetermined pressure of 2 atm or more in gauge pressure. Since plastic is melted or pyrolyzed and gasified, and the generated gas is continuously lightened and liquefied, mixed waste plastic can be stably transferred and processed continuously, and volume reduction and recycling are possible. Can be efficiently converted.

【0016】[0016]

【実施例】以下、本発明の実施例について説明する。 〔実施例1〕図1は混合廃プラスチックを回分式で処理
する装置の模式図であり、図2はその溶解熱分解炉2内
の圧力変化を表す模式図である。
EXAMPLES Examples of the present invention will be described below. [Embodiment 1] FIG. 1 is a schematic view of an apparatus for treating mixed waste plastic in a batch system, and FIG. 2 is a schematic view showing a pressure change in the melting pyrolysis furnace 2.

【0017】熱可塑性プラスチックと熱硬化性プラスチ
ックを含む混合廃プラスチックは、予め破砕されて、入
口部31から貯留槽1に所定量貯留される。本実施例で
は、熱硬化性樹脂であるガラス繊維強化プラスチック
(FRP)を230g、不飽和ポリエステル樹脂(U
P)を130g、エポキシ樹脂(EP)を230gに、
熱可塑性樹脂であるポリスチレン(PS)を200g、
ポリプロピレン(PP)を300gの割合で混合した混
合廃プラスチックを10mm以下の大きさに破砕して貯
留槽1に供給した。
A mixed waste plastic containing a thermoplastic and a thermosetting plastic is crushed in advance and stored in a predetermined amount in the storage tank 1 through the inlet 31. In this embodiment, 230 g of glass fiber reinforced plastic (FRP), which is a thermosetting resin, and unsaturated polyester resin (U
P) to 130 g, epoxy resin (EP) to 230 g,
200 g of polystyrene (PS), which is a thermoplastic resin,
A mixed waste plastic obtained by mixing polypropylene (PP) at a ratio of 300 g was crushed to a size of 10 mm or less and supplied to the storage tank 1.

【0018】制御機200によりボール弁10を開き、
貯留槽1から所定量の混合廃プラスチックを溶解熱分解
炉2に供給した後、ボール弁10を閉じる。この後、制
御機200はストップ弁14、15を開くと同時に移送
ポンプ6を起動し、溶媒を油貯留槽5から溶解熱分解炉
2に所定量供給する。本実施例では、溶媒としてクレオ
ソート油を用い、前記混合廃プラスチック1090gに
対してクレオソート油200gの割合で供給した。
The ball valve 10 is opened by the controller 200,
After supplying a predetermined amount of mixed waste plastic from the storage tank 1 to the melting pyrolysis furnace 2, the ball valve 10 is closed. After that, the controller 200 opens the stop valves 14 and 15 and simultaneously activates the transfer pump 6 to supply a predetermined amount of the solvent from the oil storage tank 5 to the melting pyrolysis furnace 2. In this example, creosote oil was used as a solvent, and 200 g of creosote oil was supplied to 1090 g of the mixed waste plastic.

【0019】溶解熱分解炉2が熱分解温度まで加熱され
る過程において、初期加熱状態では低沸点の溶媒がガス
化され、溶解熱分解炉2内が熱分解圧力まで加圧される
にしたがい混合廃プラスチックの一部が溶解される。さ
らに、溶解熱分解炉2が熱分解温度に加熱されると、溶
媒と溶解及び不溶解混合廃プラスチックの熱分解ガス化
が促進される。本実施例では溶解熱分解炉2の熱分解温
度を500℃に設定し、熱分解圧力をゲージ圧8気圧に
設定した。
In the process in which the melting pyrolysis furnace 2 is heated to the pyrolysis temperature, the solvent having a low boiling point is gasified in the initial heating state, and the interior of the melting pyrolysis furnace 2 is mixed as the pressure is increased to the pyrolysis pressure. Part of the waste plastic is melted. Further, when the melting pyrolysis furnace 2 is heated to the pyrolysis temperature, the pyrolysis gasification of the solvent and the dissolved and insoluble mixed waste plastic is promoted. In this example, the thermal decomposition temperature of the melting thermal decomposition furnace 2 was set to 500 ° C., and the thermal decomposition pressure was set to a gauge pressure of 8 atm.

【0020】溶解加熱分解炉2内の圧力は圧力検知器1
01によって監視される。混合廃プラスチックの熱分解
ガス化によって溶解熱分解炉2内の圧力が上昇し、8気
圧を越えると、制御機200はストップ弁12を開き、
熱分解ガスを触媒軽質化炉3に導入する。熱分解ガスが
流出し、炉内の圧力がゲージ圧8気圧以下に低下する
と、制御機200はストップ弁12を閉じる。このよう
にして加熱分解中、図2に示すように、溶解熱分解炉2
内の圧力はほぼゲージ圧8気圧に維持され、溶媒と溶解
及び不溶解混合廃プラスチックの熱分解ガス化が促進さ
れる。
The pressure in the melting heating decomposition furnace 2 is the pressure detector 1.
Monitored by 01. When the pressure in the melting pyrolysis furnace 2 rises due to the pyrolysis gasification of the mixed waste plastic and exceeds 8 atm, the controller 200 opens the stop valve 12,
The pyrolysis gas is introduced into the catalyst lightening furnace 3. When the pyrolysis gas flows out and the pressure inside the furnace falls below the gauge pressure of 8 atm, the controller 200 closes the stop valve 12. Thus, during the thermal decomposition, as shown in FIG.
The internal pressure is maintained at about 8 atm, and the pyrolysis gasification of the solvent and the dissolved and insoluble mixed waste plastic is promoted.

【0021】触媒軽質化炉3は、所定の温度に加熱され
たゼオライト系触媒やマンガン系触媒との接触反応によ
って熱分解ガスを軽質化する。軽質化ガスは冷却器4に
おいて凝縮・液化され、液化油質分が油貯留槽5に貯留
される。油貯留槽5に貯留された液化油質分は一部が溶
媒として溶解熱分解炉2に供給される。熱分解ガス化終
了時点においては炉内圧力が一定となり、圧力検知器1
01が炉内の圧力上昇を検知することに基づくストップ
弁12の開閉動作が休止する。ストップ弁12の動作休
止時間が設定時間、例えば5分間を越えるとストップ弁
12を開き、炉内の圧力を下げる。そして、炉内圧力が
ゲージ圧6気圧まで低下した時点でストップ弁12を閉
じ、その状態で5分間待機し、炉内圧力が上昇しないこ
と、すなわち熱分解が完全に終了したことを確認する
と、再びストップ弁12を開いて、炉内圧力をゲージ圧
0気圧すなわち大気圧まで降下させる。
The catalyst lightening furnace 3 lightens the pyrolysis gas by a catalytic reaction with a zeolite catalyst or a manganese catalyst heated to a predetermined temperature. The lightened gas is condensed and liquefied in the cooler 4, and the liquefied oil component is stored in the oil storage tank 5. A part of the liquefied oil component stored in the oil storage tank 5 is supplied to the melting pyrolysis furnace 2 as a solvent. At the end of pyrolysis gasification, the pressure in the furnace becomes constant and the pressure detector 1
The opening / closing operation of the stop valve 12 based on 01 detecting the pressure increase in the furnace is stopped. When the operation rest time of the stop valve 12 exceeds a set time, for example, 5 minutes, the stop valve 12 is opened to reduce the pressure in the furnace. Then, when the pressure inside the furnace is reduced to 6 atm of the gauge pressure, the stop valve 12 is closed, and after waiting for 5 minutes in that state, it is confirmed that the pressure inside the furnace does not rise, that is, the pyrolysis is completely completed, The stop valve 12 is opened again, and the furnace pressure is reduced to 0 gauge pressure, that is, atmospheric pressure.

【0022】溶解熱分解炉2内の圧力が大気圧力まで降
下すると、図示しない手段により溶解熱分解炉2の底部
より窒素ガスを所定量供給し、溶解熱分解炉2内の残留
熱分解ガスを排出して触媒軽質化炉3に導入する。残留
熱分解ガスの排出が終了したのちストップ弁12が閉じ
られ、次いでボール弁11が開かれて未分解の混合廃プ
ラスチック(残渣)が系外に排出される。次に、再びボ
ール弁10が開され、予め貯留槽1に貯留されている混
合廃プラスチックが溶解熱分解炉2に供給されて前記作
動を繰り返す。本実施例においては、混合廃プラスチッ
ク中の熱硬化性樹脂処理重量に対して残渣率24.0W
t%となり、分解ガス化率は76.0Wt%(この内訳
は排ガス32.2Wt%、油回収率43.8Wt%)と
なった。
When the pressure in the melting pyrolysis furnace 2 drops to atmospheric pressure, a predetermined amount of nitrogen gas is supplied from the bottom of the melting pyrolysis furnace 2 by means not shown to remove the residual pyrolysis gas in the melting pyrolysis furnace 2. It is discharged and introduced into the catalyst lightening furnace 3. After the discharge of the residual pyrolysis gas is completed, the stop valve 12 is closed, and then the ball valve 11 is opened to discharge the undecomposed mixed waste plastic (residue) to the outside of the system. Next, the ball valve 10 is opened again, the mixed waste plastic previously stored in the storage tank 1 is supplied to the melting and pyrolysis furnace 2, and the above operation is repeated. In this embodiment, the residual ratio is 24.0 W based on the weight of the thermosetting resin treated in the mixed waste plastic.
t%, and the decomposition gasification rate was 76.0 Wt% (the breakdown is 32.2 Wt of exhaust gas and 43.8 Wt% of oil recovery).

【0023】〔比較例1〕ガラス繊維強化プラスチック
(FRP)を230g、不飽和ポリエステル樹脂(U
P)を130g、エポキシ樹脂(EP)を230gの割
合で混合した廃プラスチックを貯留槽1に供給した。こ
ののち、上記実施例と同様に混合廃プラスチックを溶解
熱分解炉2に供給し、熱硬化性樹脂単独で熱分解を実施
した。熱分解は炉内温度を常温から500℃に昇温させ
て500℃に維持し、炉内圧力をゲージ圧8気圧に維持
した状態で1時間行った。この結果、熱硬化性樹脂のみ
からなる混合廃プラスチック処理重量に対して残渣率5
3.1Wt%、分解ガス化率は46.9Wt%(この内
訳は排ガス21.7Wt%、油回収率25.2Wt%)
となった。
Comparative Example 1 230 g of glass fiber reinforced plastic (FRP), unsaturated polyester resin (U
130 g of P) and 230 g of epoxy resin (EP) were mixed, and waste plastic was supplied to the storage tank 1. After that, the mixed waste plastic was supplied to the melting pyrolysis furnace 2 in the same manner as in the above-mentioned example, and the thermosetting resin alone was used for pyrolysis. Pyrolysis was carried out for 1 hour while raising the temperature in the furnace from room temperature to 500 ° C. and maintaining it at 500 ° C. and maintaining the pressure in the furnace at a gauge pressure of 8 atm. As a result, the residual ratio of 5 to the processing weight of mixed waste plastic consisting of only thermosetting resin
3.1 wt%, decomposition gasification rate 46.9 wt% (The breakdown is exhaust gas 21.7 wt%, oil recovery rate 25.2 wt%)
Became.

【0024】〔比較例2〕さらに、比較例1の試料中に
有機質がどの程度含有されているかを調べるため、比較
例1と同量の処理重量比となるように、ガラス繊維強化
プラスチック(FRP)0.023g、不飽和ポリエス
テル樹脂(UP)0.013g及びエポキシ樹脂(E
P)0.023gを混合して混合廃プラスチック試料を
調製した。この試料を、示差熱天秤を用いて窒素雰囲気
中において常温から500℃に加熱し、500℃に維持
して1時間経過後の重量減少率を測定した。
[Comparative Example 2] Further, in order to examine how much organic matter was contained in the sample of Comparative Example 1, glass fiber reinforced plastic (FRP) was prepared so that the treatment weight ratio was the same as that of Comparative Example 1. ) 0.023 g, unsaturated polyester resin (UP) 0.013 g and epoxy resin (E
P) 0.023 g was mixed to prepare a mixed waste plastic sample. This sample was heated from room temperature to 500 ° C. in a nitrogen atmosphere using a differential thermal balance, maintained at 500 ° C., and the weight loss rate after 1 hour was measured.

【0025】その結果、混合廃プラスチックの処理重量
に対して重量減少率は79.3Wt%(ガス化率、有機
質分ガス化量)、残渣率20.7Wt%(無機質分重
量)となり、有機質の含有量は79.3Wt%であるこ
とが分かる。この条件で、熱分解ガスをさらに冷却・液
化し油質分を回収した。比較例2の結果は、熱硬化性樹
脂単種においては残渣率が20.7Wt%(無機質分重
量)で、残りの有機質の含有量は79.3Wt%であ
り、理想的な場合には、この有機質量が全量ガス化でき
ることを示している。これに対し、比較例1の熱硬化性
樹脂単種での熱分解処理においては残渣率が53.1W
t%である。これは、比較例1における熱分解処理では
比較例2に比べ熱硬化性樹脂中の有機質分が約2.57
倍もガス化しないで残っており、ガス化率が低く少量の
油しか回収できないことを示している。
As a result, the weight reduction rate with respect to the treated weight of the mixed waste plastic was 79.3 Wt% (gasification rate, gasification amount of organic matter), and the residue rate was 20.7 Wt% (weight of inorganic matter). It can be seen that the content is 79.3 Wt%. Under these conditions, the pyrolysis gas was further cooled and liquefied to recover an oily component. The result of Comparative Example 2 is that, in the thermosetting resin single type, the residual rate is 20.7 Wt% (inorganic content weight), and the content of the remaining organic matter is 79.3 Wt%. In an ideal case, It is shown that this organic mass can be completely gasified. On the other hand, in the thermal decomposition treatment with the single thermosetting resin of Comparative Example 1, the residual rate was 53.1 W.
t%. This is because in the thermal decomposition treatment in Comparative Example 1, the organic component in the thermosetting resin was about 2.57 as compared with Comparative Example 2.
It remains twice as much without being gasified, indicating that the gasification rate is low and only a small amount of oil can be recovered.

【0026】これに対し、実施例1における熱分解処理
では、残渣率及び熱分解ガス化率も比較例2の示差熱天
秤での結果と同等となり、比較例1に比べ熱硬化性樹脂
分からの、油回収率も約2倍増加していることが分か
る。 一方、回収油組成の炭素数をガスクロマト質量分
析(GC/MS)で調べた結果、比較例1及び2におい
ては炭素数が20以上の成分が全体の約60Wt%を占
めた。これに対し、実施例1では炭素数が20以上の成
分が全体の約40Wt%で、比較例1及び2に比べ軽質
化量が20Wt%増加されていることが分かった。
On the other hand, in the thermal decomposition treatment in Example 1, the residual rate and the thermal decomposition gasification rate were also the same as the results in the differential thermal balance of Comparative Example 2, and compared with Comparative Example 1, the thermosetting resin content was It can be seen that the oil recovery rate has also increased about twice. On the other hand, as a result of examining the carbon number of the recovered oil composition by gas chromatography mass spectrometry (GC / MS), in Comparative Examples 1 and 2, components having 20 or more carbon atoms accounted for about 60 Wt% of the whole. On the other hand, in Example 1, it was found that the component having a carbon number of 20 or more was about 40 Wt% of the whole, and the lightening amount was increased by 20 Wt% as compared with Comparative Examples 1 and 2.

【0027】このように、溶媒と混合廃プラスチックと
を混合し、高圧力下で熱分解し溶解することにより一部
の混合廃プラスチックが溶解され、この溶解液が熱媒体
あるいは反応媒体となり、特に単独熱分解ではガス化し
難い熱硬化性プラスチックの有機質樹脂分の熱分解ガス
化が促進され、油回収率の向上が図れる。さらに、通常
の熱分解では高炭素数含有量が多いガスが発生するが、
高圧力下で熱分解するために、溶媒と溶解及び不溶解混
合廃プラスチックとの熱分解反応促進が図れ、高分子有
機物の低分子有機物への移行量が増大するガス化反応が
行われ、比較的低炭素数含有量の多い油が回収でき、か
つ、油回収率が増加できる効果があることが分かる。
As described above, a part of the mixed waste plastic is dissolved by mixing the solvent and the mixed waste plastic and thermally decomposing and dissolving under high pressure, and the solution becomes a heat medium or a reaction medium. The pyrolysis gasification of the organic resin component of the thermosetting plastic, which is difficult to gasify by independent pyrolysis, is promoted, and the oil recovery rate can be improved. Furthermore, although gas with a high high carbon content is generated during normal pyrolysis,
Due to the thermal decomposition under high pressure, the thermal decomposition reaction between the solvent and the dissolved and insoluble mixed waste plastics can be promoted, and the gasification reaction that increases the transfer amount of high molecular weight organic compounds to low molecular weight organic substances is performed. It can be seen that the oil having a relatively low carbon number content can be recovered and the oil recovery rate can be increased.

【0028】〔実施例2〕図3は、混合廃プラスチック
を連続式で処理する装置の模式図である。図3におい
て、図1の回分式の処理装置と異なる構成機器は溶解炉
7、ボール弁16、ストップ弁17、圧力検知器10
3、制御機201である。混合廃プラスチックは入り口
部31から貯留槽1に所定量貯留されている。本実施例
においても前記実施例1と同様に、熱硬化性樹脂である
ガラス繊維強化プラスチック(FRP)を230g、不
飽和ポリエステル樹脂(UP)を130g、エポキシ樹
脂(EP)を230g、と熱可塑性樹脂であるポリスチ
レン(PS)を200g、ポリプロピレン(PP)を3
00gの割合で混合した混合廃プラスチックを10mm
以下の大きさに破砕して貯留槽1に供給した。
[Embodiment 2] FIG. 3 is a schematic view of an apparatus for continuously treating mixed waste plastics. In FIG. 3, components different from those of the batch type processing apparatus of FIG. 1 are the melting furnace 7, the ball valve 16, the stop valve 17, and the pressure detector 10.
3, the controller 201. A predetermined amount of the mixed waste plastic is stored in the storage tank 1 from the inlet 31. Also in this example, as in the case of Example 1, the thermoplastic resin was 230 g of glass fiber reinforced plastic (FRP), 130 g of unsaturated polyester resin (UP), and 230 g of epoxy resin (EP), which were thermosetting resins. 200 g of resin polystyrene (PS) and 3 of polypropylene (PP)
10 mm of mixed waste plastic mixed at a rate of 00 g
It was crushed into the following sizes and supplied to the storage tank 1.

【0029】まず、ボール弁10が制御機201により
開かれ、混合廃プラスチックが貯留槽1から溶解炉7に
供給されたのちボール弁10が閉じられる。さらに、制
御機200の信号を受けてストップ弁14、15が開か
れ、移送ポンプ6が作動されて溶媒が所定量溶解炉7に
供給される。溶媒にはクレオソート油を用い、その添加
量は混合廃プラスチック1090gに対して溶媒200
gの割合とした。
First, the ball valve 10 is opened by the controller 201, the mixed waste plastic is supplied from the storage tank 1 to the melting furnace 7, and then the ball valve 10 is closed. Further, in response to the signal from the controller 200, the stop valves 14 and 15 are opened, the transfer pump 6 is operated, and a predetermined amount of the solvent is supplied to the melting furnace 7. Creosote oil was used as the solvent, and the addition amount was 200
The ratio was g.

【0030】溶解炉7が溶解温度まで加熱される過程に
おいて、初期加熱状態では低沸点の溶媒が蒸発され溶解
炉7内が溶解圧力まで加圧されると同時に混合廃プラス
チックの一部が溶解される。本実施例では、溶解炉7の
温度を300℃に設定し、圧力をゲージ圧8気圧に設定
した。溶解炉7内の圧力は圧力検知器103によって監
視され、溶解過程において、溶解炉7内の圧力がゲージ
圧8気圧を越えたら制御機200によりストップ弁17
を開き、炉内圧力が低下したら再びストップ弁を閉じる
ことを繰り返すことにより、溶解炉7内の圧力をほぼゲ
ージ圧8気圧に維持する。
In the process of heating the melting furnace 7 to the melting temperature, in the initial heating state, the low boiling point solvent is evaporated and the melting furnace 7 is pressurized to the melting pressure and at the same time a part of the mixed waste plastic is melted. It In this example, the temperature of the melting furnace 7 was set to 300 ° C. and the pressure was set to a gauge pressure of 8 atm. The pressure in the melting furnace 7 is monitored by the pressure detector 103, and when the pressure in the melting furnace 7 exceeds a gauge pressure of 8 atm in the melting process, the stop valve 17 is controlled by the controller 200.
Is opened, and the stop valve is closed again when the pressure in the furnace is lowered, so that the pressure in the melting furnace 7 is maintained at about 8 atm.

【0031】ストップ弁17を通った溶媒及び熱分解ガ
スは触媒軽質化炉3に導入される。触媒軽質化炉3は、
所定の温度に加熱されたゼオライト系触媒やマンガン系
触媒との接触反応によって溶媒及び熱分解ガスを軽質化
する。軽質化ガスは冷却器4において凝縮・液化され、
液化油質分が油貯留槽5に貯留される。次いで、制御機
201は予め設定しておいた時間経過後に圧力検知器1
03によって溶解炉7内の圧力がゲージ圧8気圧を越え
ていないことを確認するとボール弁16を開き、溶解炉
7からガス化・排出しないで残留した溶媒と溶解及び不
溶解混合廃プラスチックを溶解熱分解炉2に移送・供給
する。溶解熱分解炉2の温度は500℃に設定され、圧
力はゲージ圧8気圧に設定されている。
The solvent and the pyrolysis gas that have passed through the stop valve 17 are introduced into the catalyst lightening furnace 3. The catalyst lightening furnace 3
The catalytic reaction with a zeolite-based catalyst or manganese-based catalyst heated to a predetermined temperature lightens the solvent and pyrolysis gas. The lightening gas is condensed and liquefied in the cooler 4,
The liquefied oil component is stored in the oil storage tank 5. Next, the controller 201 controls the pressure detector 1 after a preset time elapses.
When it is confirmed by 03 that the pressure in the melting furnace 7 does not exceed the gauge pressure of 8 atm, the ball valve 16 is opened to dissolve the remaining solvent and the dissolved and undissolved mixed waste plastic from the melting furnace 7 without gasifying and discharging. Transfer and supply to the pyrolysis furnace 2. The temperature of the melting pyrolysis furnace 2 is set to 500 ° C., and the pressure is set to a gauge pressure of 8 atm.

【0032】溶解熱分解炉2では、前記実施例1と同様
にして、移送・供給された溶媒と溶解及び不溶解混合廃
プラスチックの熱分解ガス化が行われる。溶解熱分解炉
2が熱分解温度まで加熱される過程において、初期加熱
状態では低沸点の溶媒が蒸発され、溶解熱分解炉2内が
熱分解圧力まで加圧されるにしたがい混合廃プラスチッ
クの一部が溶解される。
In the melting and pyrolysis furnace 2, the solvent and the melted and undissolved mixed waste plastic transferred and supplied are pyrolyzed and gasified in the same manner as in the first embodiment. During the process in which the melting pyrolysis furnace 2 is heated to the pyrolysis temperature, the solvent with a low boiling point is evaporated in the initial heating state, and one of the mixed waste plastics is heated as the interior of the melting pyrolysis furnace 2 is pressurized to the pyrolysis pressure. Parts are dissolved.

【0033】溶解加熱分解炉2内の圧力は圧力検知器1
01によって監視される。混合廃プラスチックの熱分解
ガス化によって溶解熱分解炉2内の圧力が上昇し、ゲー
ジ圧8気圧を越えると、制御機200はストップ弁12
を開き、熱分解ガスを触媒軽質化炉3に導入する。熱分
解ガスが流出し、炉内の圧力がゲージ圧8気圧以下に低
下すると、制御機200はストップ弁12を閉じる。こ
のようにして加熱分解中、図2に示すように、溶解熱分
解炉2内の圧力はほぼゲージ圧8気圧に維持され、溶媒
と溶解及び不溶解混合廃プラスチックの熱分解ガス化が
促進される。
The pressure in the melting heating decomposition furnace 2 is the pressure detector 1.
Monitored by 01. When the pressure in the melting pyrolysis furnace 2 rises due to the pyrolysis gasification of the mixed waste plastic, and the gauge pressure exceeds 8 atm, the controller 200 causes the stop valve 12
Is opened and the pyrolysis gas is introduced into the catalyst lightening furnace 3. When the pyrolysis gas flows out and the pressure inside the furnace falls below the gauge pressure of 8 atm, the controller 200 closes the stop valve 12. Thus, during the thermal decomposition, as shown in FIG. 2, the pressure in the melting thermal decomposition furnace 2 is maintained at about 8 atm gauge pressure, and the thermal decomposition gasification of the solvent and the dissolved and insoluble mixed waste plastic is promoted. It

【0034】熱分解ガス化終了時点においては、溶解熱
分解炉2内の圧力が一定となり、圧力検知器101の検
知圧力に基づくストップ弁12の開閉動作が休止する。
制御機200は、ストップ弁12の動作休止時間が5分
間を越えるとストップ弁12を開き、炉内の圧力をゲー
ジ圧6気圧まで下げる。その状態で5分間待機し、炉内
圧力が上昇しないこと、すなわち熱分解が完全に終了し
たことを確認すると、再びストップ弁12を開いて、炉
内圧力を大気圧まで降下させる。
At the end of pyrolysis gasification, the pressure in the melting pyrolysis furnace 2 becomes constant, and the opening / closing operation of the stop valve 12 based on the pressure detected by the pressure detector 101 is stopped.
The controller 200 opens the stop valve 12 when the operation stop time of the stop valve 12 exceeds 5 minutes, and reduces the pressure inside the furnace to a gauge pressure of 6 atm. After waiting for 5 minutes in that state, and confirming that the furnace pressure does not rise, that is, the pyrolysis is completely completed, the stop valve 12 is opened again to lower the furnace pressure to the atmospheric pressure.

【0035】溶解熱分解炉2内が大気圧力まで降下した
時点において、溶解熱分解炉2の底部より図示しない手
段により窒素ガスを所定量供給し、溶解熱分解炉2内の
残留熱分解ガスを排出して触媒軽質化炉3に導入する。
残留熱分解ガスの排出が終了したのち、ストップ弁12
を閉じ、次いでボール弁11を開いて未分解の混合廃プ
ラスチック(残渣)を系外に排出する。この時点におい
て予め貯留槽1に貯留されている混合廃プラスチックを
ボール弁10を開いて溶解炉7に供給し、前記作動を繰
り返して連続的に混合廃プラスチックが熱分解処理され
る。
When the inside of the melting pyrolysis furnace 2 is lowered to the atmospheric pressure, a predetermined amount of nitrogen gas is supplied from the bottom of the melting pyrolysis furnace 2 by means not shown to remove the residual pyrolysis gas in the melting pyrolysis furnace 2. It is discharged and introduced into the catalyst lightening furnace 3.
After exhausting the residual pyrolysis gas, stop valve 12
Is closed, and then the ball valve 11 is opened to discharge the undecomposed mixed waste plastic (residue) to the outside of the system. At this point, the mixed waste plastic stored in advance in the storage tank 1 is supplied to the melting furnace 7 by opening the ball valve 10, and the above operation is repeated to continuously pyrolyze the mixed waste plastic.

【0036】本実施例においても、混合廃プラスチック
中の熱硬化性樹脂処理重量に対して分解ガス化率は7
6.0Wt%(この内訳は排ガス32.2Wt%、油回
収率43.8Wt%)となり、残渣率は24.0Wt%
となった。このように、連続式の処理方法においても溶
媒と混合廃プラスチックとを混合し、高圧力下で熱分解
し溶解することにより一部の混合廃プラスチックを溶解
することにより、比較的低炭素数含有量の多い油が回収
でき、かつ、油回収率の増加が図れる効果があることが
分かる。
Also in this example, the decomposition gasification rate was 7 with respect to the weight of the thermosetting resin treated in the mixed waste plastic.
6.0 Wt% (The breakdown is exhaust gas 32.2 Wt%, oil recovery rate 43.8 Wt%) and the residue rate is 24.0 Wt%
Became. As described above, even in the continuous treatment method, the solvent and the mixed waste plastic are mixed, and a part of the mixed waste plastic is dissolved by thermally decomposing and dissolving under a high pressure, so that a relatively low carbon number is contained. It can be seen that a large amount of oil can be recovered and the oil recovery rate can be increased.

【0037】[0037]

【発明の効果】本発明によれば、廃プラスチック中から
熱硬化性樹脂廃棄物を除去することなく、熱硬化性樹脂
と熱可塑性樹脂とを混合したままの処理で比較的熱分解
ガス化し難い熱硬化性樹脂の分解率を高めることがで
き、比較的低炭素数含有量の多い油を回収でき、かつ、
油回収率の増加を図ることができる。
EFFECTS OF THE INVENTION According to the present invention, the thermosetting resin and the thermoplastic resin are relatively hard to be pyrolyzed and gasified by the treatment while the thermosetting resin and the thermoplastic resin are mixed without removing the thermosetting resin waste from the waste plastic. The decomposition rate of the thermosetting resin can be increased, oil with a relatively low carbon content can be recovered, and
The oil recovery rate can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】回分式による混合廃プラスチック処理装置の模
式図。
FIG. 1 is a schematic view of a batch type mixed waste plastic processing device.

【図2】溶解熱分解炉内の圧力を表す模式図。FIG. 2 is a schematic diagram showing the pressure in a melting pyrolysis furnace.

【図3】連続式による混合廃プラスチック処理装置の模
式図。
FIG. 3 is a schematic diagram of a continuous waste plastic processing device.

【符号の説明】[Explanation of symbols]

1…貯留槽、2…溶解熱分解炉、3…触媒軽質化炉、4
…冷却器、5…油貯留槽、6…移送ポンプ、7…溶解
炉、10,11,16…ボール弁、12,14,15,
17…ストップ弁、101,103…圧力検知器、20
0,201…制御機
1 ... Storage tank, 2 ... Melting / pyrolysis furnace, 3 ... Catalyst lightening furnace, 4
... Cooler, 5 ... Oil storage tank, 6 ... Transfer pump, 7 ... Melting furnace, 10, 11, 16 ... Ball valve, 12, 14, 15,
17 ... Stop valve, 101, 103 ... Pressure detector, 20
0,201 ... Controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮寺 博 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Miyadera 1-1-1, Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 密閉容器内で熱硬化性樹脂と熱可塑性樹
脂との混合廃プラスチックを溶媒と混合し、加熱によっ
て溶媒をガス化して圧力を上昇させ、上昇した圧力下に
おいて前記混合廃プラスチックを溶解させると共に前記
溶媒と溶解及び不溶解混合廃プラスチックを熱分解ガス
化することを特徴とする混合廃プラスチックの処理方
法。
1. A mixed waste plastic of a thermosetting resin and a thermoplastic resin is mixed with a solvent in a closed container, the solvent is gasified by heating to increase the pressure, and the mixed waste plastic is mixed under the increased pressure. A method for treating mixed waste plastics, characterized in that the waste plastics are dissolved and the dissolved and insoluble mixed waste plastics are pyrolyzed and gasified.
【請求項2】 ゲージ圧2気圧以上の圧力下で前記混合
廃プラスチックを溶解させると共に溶媒と溶解及び不溶
解混合廃プラスチックを熱分解ガス化することを特徴と
する請求項1記載の混合廃プラスチックの処理方法。
2. The mixed waste plastic according to claim 1, wherein the mixed waste plastic is dissolved under a pressure of 2 atm or more of a gauge pressure, and the solvent and the dissolved and insoluble mixed waste plastic are pyrolyzed and gasified. Processing method.
【請求項3】 第1の密閉容器内で熱硬化性樹脂と熱可
塑性樹脂との混合廃プラスチックを溶媒と混合し、加熱
によって溶媒をガス化して第1の密閉容器内の圧力を上
昇させ、所定の圧力に維持された第1の密閉容器内で前
記混合廃プラスチックを溶解させ、その後第1の密閉容
器内の溶媒と溶解及び不溶解混合廃プラスチックを第2
の密閉容器に移送し、第2の密閉容器内で溶媒と溶解及
び不溶解混合廃プラスチックを加熱し、溶媒のガス化と
溶解及び不溶解混合廃プラスチックの加熱分解ガス化に
よって第2の密閉容器内の圧力を上昇させ、所定の圧力
に維持された第2の密閉容器内の溶媒と溶解及び不溶解
混合廃プラスチックを熱分解ガス化することを特徴とす
る混合廃プラスチックの処理方法。
3. A mixed waste plastic of a thermosetting resin and a thermoplastic resin is mixed with a solvent in a first closed container, and the solvent is gasified by heating to increase the pressure in the first closed container. The mixed waste plastic is dissolved in the first closed container maintained at a predetermined pressure, and then the solvent and the dissolved and insoluble mixed waste plastic in the first closed container are mixed with the second closed plastic.
The second closed container by transferring to a closed container of No. 2 and heating the solvent and the dissolved and insoluble mixed waste plastic in the second closed container, and gasifying the solvent and heating decomposition of the dissolved and insoluble mixed waste plastic gasification A method for treating mixed waste plastics, characterized by increasing the internal pressure and pyrolyzing and gasifying the solvent and the dissolved and insoluble mixed waste plastics in the second closed container maintained at a predetermined pressure.
【請求項4】 第1の密閉容器内の圧力をゲージ圧2気
圧以上に維持し、該圧力下で混合廃プラスチックを溶解
させ、第2の密閉容器内の圧力をゲージ圧2気圧以上に
維持し、該圧力下で溶媒と溶解及び不溶解混合廃プラス
チックを熱分解ガス化することを特徴とする請求項3記
載の混合廃プラスチックの処理方法。
4. The pressure in the first closed container is maintained at a gauge pressure of 2 atm or higher, the mixed waste plastic is melted under the pressure, and the pressure in the second closed container is maintained at a gauge pressure of 2 atm or higher. 4. The method for treating mixed waste plastics according to claim 3, wherein the solvent and the dissolved and insoluble mixed waste plastics are pyrolyzed and gasified under the pressure.
【請求項5】 熱硬化性樹脂と熱可塑性樹脂との混合廃
プラスチックを貯留する貯留手段と、該貯留手段に接続
された混合廃プラスチックの溶解熱分解ガス化手段と、
溶媒貯留手段と、該溶媒貯留手段から溶媒を前記溶解熱
分解ガス化手段に供給する手段と、前記溶解熱分解ガス
化手段内部を所定温度に維持する手段と、前記溶解熱分
解ガス化手段内の圧力をゲージ圧2気圧以上の所定圧力
に維持する圧力維持手段と、前記溶解熱分解ガス化手段
から排出されるガスを軽質化する軽質化手段と、該軽質
化手段で軽質化されたガスを冷却し液化する手段と、該
液化物を貯留する手段と、前記溶解熱分解ガス化手段内
の未分解物を排出する手段とを具備することを特徴とす
る混合廃プラスチックの処理装置。
5. A storage means for storing a waste plastic mixture of a thermosetting resin and a thermoplastic resin, and a dissolution pyrolysis gasification means for the mixed waste plastic connected to the storage means.
Solvent storage means, means for supplying a solvent from the solvent storage means to the dissolution pyrolysis gasification means, means for maintaining the inside of the dissolution pyrolysis gasification means at a predetermined temperature, and inside the dissolution pyrolysis gasification means Pressure maintaining means for maintaining the pressure of 2 to a predetermined pressure of 2 atm or more of gauge pressure, a lightening means for lightening the gas discharged from the melt pyrolysis gasification means, and a gas lightened by the lightening means An apparatus for treating mixed waste plastics, comprising: a means for cooling and liquefying the liquefied material; a means for storing the liquefied material; and a means for discharging undecomposed matter in the melt pyrolysis gasification means.
【請求項6】 前記圧力維持手段は前記溶解熱分解ガス
化手段内の圧力を検知する圧力検知手段と、前記溶解熱
分解ガス化手段と前記軽質化手段の間に設けられた弁手
段と、前記圧力検知手段からの検知信号に基づいて前記
弁手段の開閉を制御する制御手段からなることを特徴と
する請求項5記載の混合廃プラスチックの処理装置。
6. The pressure maintaining means includes a pressure detecting means for detecting a pressure in the melt pyrolysis gasification means, and a valve means provided between the melt pyrolysis gasification means and the lightening means. 6. The treatment apparatus for mixed waste plastics according to claim 5, further comprising control means for controlling opening / closing of the valve means based on a detection signal from the pressure detection means.
【請求項7】 熱硬化性樹脂と熱可塑性樹脂との混合廃
プラスチックを貯留する貯留手段と、該貯留手段に接続
された混合廃プラスチックの溶解手段と、溶媒貯留手段
と、該溶媒貯留手段から溶媒を前記溶解手段に供給する
手段と、前記溶解手段内部を第1の所定温度に維持する
手段と、前記溶解手段内の圧力を2気圧以上の所定圧力
に維持する第1の圧力維持手段と、前記溶解手段に接続
された混合廃プラスチックの溶解熱分解ガス化手段と、
前記溶解熱分解ガス化手段内部を前記第1の温度以上の
第2の所定温度に維持する手段と、前記溶解熱分解ガス
化手段内の圧力をゲージ圧2気圧以上の所定圧力に維持
する第2の圧力維持手段と、前記溶解手段及び溶解熱分
解ガス化手段から排出されるガスを軽質化する軽質化手
段と、該軽質化手段で軽質化されたガスを冷却し液化す
る手段と、該液化物を貯留する手段と、前記溶解熱分解
ガス化手段内の未分解物を排出する手段とを具備するこ
とを特徴とする混合廃プラスチックの処理装置。
7. A storage means for storing a waste plastic mixture of a thermosetting resin and a thermoplastic resin, a dissolving means for the waste plastic mixture connected to the storage means, a solvent storage means, and a solvent storage means. Means for supplying a solvent to the dissolving means, means for maintaining the inside of the dissolving means at a first predetermined temperature, and first pressure maintaining means for maintaining the pressure inside the dissolving means at a predetermined pressure of 2 atm or more. A means for melting and pyrolyzing gasification of mixed waste plastics connected to the melting means,
A means for maintaining the inside of the melt pyrolysis gasification means at a second predetermined temperature equal to or higher than the first temperature; and a means for maintaining the pressure within the melt pyrolysis gasification means at a predetermined pressure of a gauge pressure of 2 atm or more. 2, pressure maintaining means, lightening means for lightening the gas discharged from the melting means and melt pyrolysis gasification means, means for cooling and liquefying the gas lightened by the lightening means, An apparatus for treating mixed waste plastic, comprising: a means for storing a liquefied material and a means for discharging an undecomposed material in the melting pyrolysis gasification means.
【請求項8】 前記第1の圧力維持手段は前記溶解手段
内の圧力を検知する第1の圧力検知手段と、前記溶解手
段と前記軽質化手段の間に設けられた弁手段と、前記第
1の圧力検知手段からの検知信号に基づいて前記弁手段
の開閉を制御する制御手段からなり、前記第2の圧力維
持手段は前記溶解手段内の圧力を検知する第2の圧力検
知手段と、前記溶解手段と前記軽質化手段の間に設けら
れた弁手段と、前記第2の圧力検知手段からの検知信号
に基づいて前記弁手段の開閉を制御する制御手段からな
ることを特徴とする請求項7記載の混合廃プラスチック
の処理装置。
8. The first pressure maintaining means comprises first pressure detecting means for detecting a pressure in the dissolving means, valve means provided between the dissolving means and the lightening means, and the first pressure detecting means. A control means for controlling the opening and closing of the valve means based on a detection signal from the first pressure detection means, and the second pressure maintaining means detects a pressure in the dissolving means; A valve means provided between the dissolving means and the lightening means, and a control means for controlling opening / closing of the valve means based on a detection signal from the second pressure detecting means. Item 7. A mixed waste plastic processing device according to item 7.
JP6078962A 1994-04-18 1994-04-18 Method and apparatus for treating mixed waste plastic Expired - Fee Related JP3004871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6078962A JP3004871B2 (en) 1994-04-18 1994-04-18 Method and apparatus for treating mixed waste plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6078962A JP3004871B2 (en) 1994-04-18 1994-04-18 Method and apparatus for treating mixed waste plastic

Publications (2)

Publication Number Publication Date
JPH07286185A true JPH07286185A (en) 1995-10-31
JP3004871B2 JP3004871B2 (en) 2000-01-31

Family

ID=13676527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6078962A Expired - Fee Related JP3004871B2 (en) 1994-04-18 1994-04-18 Method and apparatus for treating mixed waste plastic

Country Status (1)

Country Link
JP (1) JP3004871B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204376A (en) * 1999-01-13 2000-07-25 Ngk Insulators Ltd Thermal decomposition apparatus for mixed plastic waste
EP1091007A1 (en) * 1999-10-04 2001-04-11 Matsushita Electric Industrial Co., Ltd. Method of recovering and recycling magnetic powder from resin-bonded rare earth metal magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204376A (en) * 1999-01-13 2000-07-25 Ngk Insulators Ltd Thermal decomposition apparatus for mixed plastic waste
EP1091007A1 (en) * 1999-10-04 2001-04-11 Matsushita Electric Industrial Co., Ltd. Method of recovering and recycling magnetic powder from resin-bonded rare earth metal magnet
US6533837B1 (en) 1999-10-04 2003-03-18 Matsushita Electric Industrial Co., Ltd. Method of recovering and recycling magnetic powder from rare earth bond magnet

Also Published As

Publication number Publication date
JP3004871B2 (en) 2000-01-31

Similar Documents

Publication Publication Date Title
Buah et al. Characterization of products from the pyrolysis of municipal solid waste
EP0588814A1 (en) Treatment of automobile shredder residue by vacuum pyrolysis.
US7188571B2 (en) Method and apparatus for the processing of carbon-containing polymeric materials
EP3177698B1 (en) Apparatus and method for the catalytic pressure-free depolymerisation
KR101239519B1 (en) Apparatus for making regenerated oil from waste plastics using waste oil
US20080179257A1 (en) Process for the Thermal Treatment of Pharmaceutical Waste Material
KR100265273B1 (en) Emulsification Method and Apparatus of Waste Plastic
KR20100100366A (en) Oil extraction device from plastics wastematerial
Srogi An overview of current processes for the thermochemical treatment of automobile shredder residue
JPH07286185A (en) Method for treating mixed waste plastics and system therefor
JP2002060757A (en) Regeneration system for waste plastic
WO2006123970A2 (en) Method for recycling rubber- or rubber and polymer mixture-containing wastes and a plant for carrying out said method (variants)
EP1013991B1 (en) A method and apparatus for recovering energy of waste classification incineration
US5846385A (en) Process and apparatus for energy recovering through waste classification and calcination
US5998682A (en) Processes and apparatus for energy recovering through waste classification and calcination
KR100531501B1 (en) Oil making apparatus of useless resin
KR20020072889A (en) the pyrolysis waste recycling method and system
JPH10237460A (en) Simple process for converting waste plastic into oil
KR930011919B1 (en) Thermal cracking process for production of liquid hydrocarbon mixtures from waste tires
KR100508334B1 (en) Manufacturing Device of Alternative Fuel Oil from Non-Catalytic Pyrolysis Process
KR200299240Y1 (en) Oil revival device of dust resin
CA2576355C (en) Treatment of waste using three temperature stages within one chamber
JPH09104873A (en) Pyrolysis and liquefaction of polymer and apparatus therefor
KR102660629B1 (en) Apparatus and method for recycling waste synthetic resin
KR20040076642A (en) Method of manufacturing the solid fuel using thermal cracking wax of waste plastics

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees