JPH07285001A - Coated cutting tool - Google Patents

Coated cutting tool

Info

Publication number
JPH07285001A
JPH07285001A JP6081445A JP8144594A JPH07285001A JP H07285001 A JPH07285001 A JP H07285001A JP 6081445 A JP6081445 A JP 6081445A JP 8144594 A JP8144594 A JP 8144594A JP H07285001 A JPH07285001 A JP H07285001A
Authority
JP
Japan
Prior art keywords
layer
film
coating
base material
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6081445A
Other languages
Japanese (ja)
Other versions
JP3353449B2 (en
Inventor
Hisanori Ohara
久典 大原
Masuo Nakado
益男 中堂
Akinori Kobayashi
晄徳 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP08144594A priority Critical patent/JP3353449B2/en
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to EP94916435A priority patent/EP0653499B1/en
Priority to US08/379,624 priority patent/US5915162A/en
Priority to PCT/JP1994/000882 priority patent/WO1994028191A1/en
Priority to KR1019950700369A priority patent/KR0165923B1/en
Priority to DE69431032T priority patent/DE69431032T2/en
Priority to AT94916435T priority patent/ATE221142T1/en
Priority to TW083105374A priority patent/TW293037B/zh
Publication of JPH07285001A publication Critical patent/JPH07285001A/en
Application granted granted Critical
Publication of JP3353449B2 publication Critical patent/JP3353449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a coated cutting tool on which a strong and highly abrasion resistant coating is formed. CONSTITUTION:A surface of a base material made of tungsten carbide based carbide alloy is coated by a coating layer comprising an inner layer, which is constructed of a multiple layer consisting of the first layer touching the base material and made of titanium carbide nitride, the second layer formed on the first layer and made of titanium carbide nitride having hardness of 1600-2400kg/mm<2>, and a coating made of titanium carbide, titanium nitride, or the like, and an outer layer, which is constructed of a monolayer or a multiple layer made of one kind or more material selected from aluminum oxide, zirconium oxide, hafnium oxide, titanium carbide, titanium carbide nitride, and titanium nitride. In this way, not only high abrasion resistance in the whole of the coating layer but also strong adhesion between the coating layer and the base material can be provided, while good peeling resistance in cutting is also provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は強靱且つ耐摩耗性に優れ
た皮膜を形成した被覆切削工具に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coated cutting tool having a coating film which is tough and has excellent wear resistance.

【0002】[0002]

【従来の技術】切削工具の使用される環境がますます過
酷になるのに伴い、炭化タングステン基超硬合金母材の
表面に化学蒸着法(CVD法)や物理蒸着法(PVD
法)等の手段によって各種のセラミックス皮膜を形成し
た、いわゆる被覆切削工具が広く活用されるようになっ
てきている。このような皮膜の例としては、炭化チタン
(TiC)、窒化チタン(TiN)及びアルミナ(Al
2 3 )皮膜がある。これらの単層または複層コーティ
ングによって、切削工具の耐摩耗性が向上するだけでな
く、切削時に被削材と切削工具とが反応することを防止
でき、結果的に工具の寿命向上が図れたことは、すでに
公知の通りである。しかし、これらの被覆切削工具を用
いて加工を行った場合、特に高速切削加工のように高温
での被覆層の耐摩耗性が必要な加工、あるいは小物品加
工のように加工数が多く被削材への食いつき回数が多い
加工などで被覆層の耐摩耗性が不足したり、被覆層の損
傷が発生することによる工具寿命の低下が発生してい
た。また、熱CVD法による被覆膜ではPVD法に比べ
て母材との密着性には優れるものの、母材の種類によっ
ては、特に性能に寄与する切り刃稜線部において母材と
の界面に脆化層であるη相が厚く析出し易く、切削中に
このη相とともに被覆層が脱落して摩耗の進行が発生す
ることから、工具寿命のばらつきを引き起こし、被覆層
が十分に寿命の向上に寄与しているとは言えない場合が
あった。
2. Description of the Related Art As the environment in which cutting tools are used becomes more and more severe, chemical vapor deposition (CVD) or physical vapor deposition (PVD) is applied to the surface of a tungsten carbide based cemented carbide base material.
So-called coated cutting tools having various types of ceramic coatings formed by various means such as a method) have been widely used. Examples of such coatings include titanium carbide (TiC), titanium nitride (TiN) and alumina (Al
2 O 3 ) There is a film. These single-layer or multi-layer coatings not only improve the wear resistance of the cutting tool, but also prevent reaction between the work material and the cutting tool during cutting, resulting in a longer tool life. This is already known. However, when these coated cutting tools are used for machining, especially those requiring high wear resistance of the coating layer at high temperatures, such as high-speed cutting, or those requiring large numbers of machining such as small article machining. The wear resistance of the coating layer is insufficient due to processing such as frequent biting of the material, and the tool life is shortened due to damage of the coating layer. Further, the coating film formed by the thermal CVD method is superior in adhesion to the base material as compared with the PVD method, but depending on the type of the base material, the interface between the base material and the cutting edge ridge portion, which particularly contributes to performance, is brittle. The η phase, which is a chemical layer, tends to precipitate thickly, and the coating layer falls off together with this η phase during cutting, which causes wear to progress, leading to variations in tool life, and the coating layer can sufficiently improve the service life. In some cases, it could not be said that it contributed.

【0003】これらの従来から発生していた問題を解決
するために、アセトニトリル(CH 3 CN)等の有機C
N化合物を用いた熱CVD法による炭窒化チタン膜(T
iCN)の形成方法が注目されている(特開昭50−1
17809、昭50−109828号公報など)。この
方法は、従来の熱CVD法に比べて、やや低い温度での
コーティングが可能であることから、一般に中温CVD
法(MT−CVD法)と呼ばれている。従来の熱CVD
法(高温CVD法;HT−CVD法と称する)では、チ
タン系皮膜の形成中に母材から皮膜へと元素(特に炭
素)の移動が生じ、母材表面に変質層(η相と呼ばれる
Co3 3 C等の複炭化物)が生成する。この様にHT
−CVD法において元素が移動する原因としては、被覆
温度が高い(通常1000℃〜1050℃)ことがまず
考えられる。特に炭素の移動については、温度が高いこ
とに加えて、皮膜形成中に気相からの炭素の供給が不十
分であるために、形成中の皮膜と母材表面との間に、炭
素の濃度勾配が生じ、皮膜が母材から炭素を吸うという
現象が生じていることなどが考えられている。これに対
してMT−CVD法は、被覆温度がやや低く(800℃
〜900℃)、気相からのCやNの供給が十分であるた
めに、切り刃稜線部の界面でさえもη相が生じないとさ
れている。
Solving these conventional problems
In order to 3CN) and other organic C
Titanium carbonitride film by thermal CVD method using N compound (T
A method for forming iCN) is drawing attention (Japanese Patent Laid-Open No. 50-1).
17809, Sho 50-109828, etc.). this
The method is performed at a slightly lower temperature than the conventional thermal CVD method.
Generally, medium temperature CVD because coating is possible.
Method (MT-CVD method). Conventional thermal CVD
In the method (high temperature CVD method; referred to as HT-CVD method),
During the formation of the tan-based coating, elements (especially charcoal)
Movement of the base material occurs, and an altered layer (called η phase) on the surface of the base material
Co3W3Double carbides such as C) are produced. HT like this
-The cause of element migration in the CVD method is coating
First of all, the temperature is high (usually 1000 ° C to 1050 ° C).
Conceivable. Especially when transferring carbon, the temperature is high.
In addition to the above, the supply of carbon from the gas phase during film formation was insufficient.
Between the coating being formed and the surface of the base metal,
A concentration gradient of element occurs, and the film absorbs carbon from the base material.
It is considered that a phenomenon has occurred. Against this
The MT-CVD method has a slightly low coating temperature (800 ° C).
Up to 900 ° C), the supply of C and N from the gas phase was sufficient.
Therefore, the η phase should not occur even at the interface of the ridge of the cutting edge.
Has been.

【0004】MT−CVD法を採用した特許はその後多
数出願されている。例えば特開平3−64469号公報
及び特開平3−87368号公報では、いずれも超硬合
金母材表面に直接MT−CVD法を用いてTiCN膜を
形成した上に、HT−CVD法によりアルミナ(Al2
3 )や窒化チタン(TiN)等の多層膜を形成した工
具が提案されている。また、特開昭62−99467公
報には、結晶粒径が0.5μm以下のTiCN膜及び/
又はTiN膜を0.5〜5.0μmの厚みで被覆した単
層あるいは積層皮膜が開示されており、TiCN膜の形
成方法としては蒸着温度700〜900℃におけるMT
−CVD法が開示されている。しかし、この方法におい
ても母材に接する膜はTiCN膜であった。
A number of patents which have adopted the MT-CVD method have been filed thereafter. For example, in JP-A-3-64469 and JP-A-3-87368, in both cases, a TiCN film is formed directly on the surface of a cemented carbide base material by the MT-CVD method, and then an alumina layer is formed by the HT-CVD method. Al 2
Tools having a multilayer film of O 3 ) or titanium nitride (TiN) have been proposed. Further, in JP-A-62-99467, a TiCN film having a crystal grain size of 0.5 μm or less and /
Alternatively, a single-layer or laminated film in which a TiN film is coated with a thickness of 0.5 to 5.0 μm is disclosed. As a method of forming the TiCN film, MT at a deposition temperature of 700 to 900 ° C. is disclosed.
A CVD method is disclosed. However, even in this method, the film in contact with the base material was the TiCN film.

【0005】ところが、本発明者らがTiCN膜で被覆
した超硬合金部材について研究を進める間に、MT−C
VD法によるTiCN膜と超硬合金母材との密着性は、
しばしば不安定になることが明らかとなった。これにつ
いて鋭意分析を進めた中から、その原因が、MT−CV
D法によるTiCN皮膜の形成中に、反応生成物として
生じる塩素ガスによって、超硬合金母材表面の結合相で
あるコバルト(Co)が腐食(エッチング)されている
ことが判明した。またアセトニトリル等の有機CN化合
物の熱分解は、母材表面の化学結合状態に影響を受け易
く、しばしば遊離炭素の生成を生じる。このような遊離
炭素の発生は皮膜と母材との密着性を低下させ、先に述
べた界面変質層の発生と複合することで、MT−CVD
法による被覆切削工具の性能を不安定にしているのであ
った。超硬合金を基体としその表面にTiC、TiN、
TiCNを多層膜に被覆した被覆超硬合金において、基
体に隣接する最内層を0.1〜1.0μmのTiNとし
た被覆超硬合金も開示されているが(特開昭61−17
0559号公報)、これはPVD法による被膜に関する
ものである。更に、皮膜の硬度については、一般的に高
ければ高いほど耐摩耗性に優れていると考えられている
が、単に硬度が高いだけでは皮膜の靱性が低下するため
に欠け易くなり、切削工具においては異常摩耗を起こし
易く、実用に耐えないという問題があった。従って、硬
度と靱性をバランスよく両立させる必要に迫られてい
た。皮膜の微細構造については、特開昭62−9946
7号公報のように、被覆層を構成するTiCN膜及び/
あるいはTiN膜結晶粒の径が0.5μm以下であれば
最適であるとの提案はなされているが、結晶粒の形状と
粒径の評価法に関する記載がなく、現実的ではなかっ
た。
However, while the present inventors proceeded with research on a cemented carbide member coated with a TiCN film, MT-C
The adhesion between the TiCN film by the VD method and the cemented carbide base material is
It became clear that it often became unstable. The cause of this was MT-CV
It was found that during the formation of the TiCN film by the D method, the binding phase cobalt (Co) on the surface of the cemented carbide base material was corroded (etched) by chlorine gas generated as a reaction product. Further, the thermal decomposition of an organic CN compound such as acetonitrile is easily affected by the chemical bonding state on the surface of the base material, and often free carbon is produced. The generation of such free carbon deteriorates the adhesion between the film and the base material, and by combining with the generation of the interface-altered layer described above, MT-CVD
It made the performance of the coated cutting tool by the method unstable. Cemented Carbide as the base material and TiC, TiN,
In a coated cemented carbide in which TiCN is coated on a multilayer film, a coated cemented carbide in which the innermost layer adjacent to the substrate is 0.1 to 1.0 μm TiN is also disclosed (JP-A-61-17).
No. 0559), which relates to a film formed by the PVD method. Further, regarding the hardness of the coating, it is generally considered that the higher the hardness, the better the abrasion resistance, but if the hardness is simply high, the toughness of the coating decreases and the chip tends to chip easily. Had a problem that it was prone to abnormal wear and could not be put to practical use. Therefore, it is necessary to balance hardness and toughness in a well-balanced manner. For the fine structure of the film, see JP-A-62-9946.
No. 7, the TiCN film forming the coating layer and / or
Alternatively, it has been proposed that the TiN film crystal grains having a diameter of 0.5 μm or less is optimal, but it is not realistic because there is no description about the evaluation method of the crystal grain shape and grain size.

【0006】[0006]

【発明が解決しようとする課題】本発明は、前記従来技
術の問題点を解決し、MT−CVD法によるTiCN膜
のメリットを最大限発揮させることで、従来以上に信頼
性の高い被覆切削工具を提供することを目的としてい
る。そしてこの目的を達成するために、被覆形成中にお
ける母材表面の変質を防止するとともに、皮膜と母材と
の界面に好ましくない物質の析出を抑制することのでき
る皮膜構造を有する被覆切削工具を提供するものであ
り,また、マクロな皮膜構造の最適化にとどまらず、微
視的な構造や硬度の観点からみて最適な構造と最適範囲
の機械的強度を有する被覆切削工具を提供するものであ
る。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and maximizes the merits of the TiCN film by the MT-CVD method, thereby making the coated cutting tool more reliable than before. Is intended to provide. And in order to achieve this object, while preventing the deterioration of the base material surface during coating formation, a coated cutting tool having a coating structure capable of suppressing the precipitation of undesired substances at the interface between the coating and the base material. In addition to providing macroscopic coating structure optimization, it also provides a coated cutting tool that has an optimum structure and an optimum range of mechanical strength from the viewpoint of microscopic structure and hardness. is there.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記問題
点を解決するために種々検討を加えた結果、MT−CV
D法によるTiCN膜を母材表面に直接被覆するのでは
なく、まず母材の表面に第1層としてTiN膜を被覆
し、その上に第2層としてTiCN膜を被覆することが
上記問題点の解決に有効であることを見出した。また、
第2層であるTiCN膜については、その微小硬度や結
晶構造と粒子の大きさなどが皮膜の特性に大きく影響す
るすることを見出した。本発明はこれらの知見に基づい
て完成されたものである。
Means for Solving the Problems As a result of various studies conducted by the present inventors to solve the above-mentioned problems, MT-CV
The above problem is that the surface of the base material is first coated with the TiN film as the first layer and then with the TiCN film as the second layer, instead of directly coating the surface of the base material with the TiCN film by the D method. It was found to be effective in solving the problem. Also,
With respect to the TiCN film which is the second layer, it has been found that the microhardness, the crystal structure and the size of the particles have a great influence on the characteristics of the film. The present invention has been completed based on these findings.

【0008】すなわち本発明は、(1)主たる成分とし
て元素周期律表におけるIVa、Va又はVIa族元素
の炭化物、窒化物及び炭窒化物からなる群から選ばれる
1種以上の硬質成分とVIII族金属成分からなる合金
である母材の表面に化学蒸着法により硬質被膜を形成し
てなる被覆切削工具において、前記母材の表面に内層
が、母材と接する第1層が窒化チタンであり、その上の
第2層が硬度が1600〜2400kg/mm2 である
炭窒化チタンであり、更にその上にチタンの炭化物、窒
化物、炭窒化物及びホウ窒化物からなる群から選ばれる
一種以上を被覆した多重層で構成され、外層が、酸化ア
ルミニウム、酸化ジルコニウム、酸化ハフニウム、炭化
チタン、炭窒化チタン及び窒化チタンからなる群から選
ばれる一種以上の単層又は多重層で構成されている被覆
層を被覆してなることを特徴とする被覆切削工具、
(2)主たる成分として元素周期律表におけるIVa、
Va又はVIa族元素の炭化物、窒化物及び炭窒化物か
らなる群から選ばれる1種以上の硬質成分とVIII族
金属成分からなる合金である母材の表面に化学蒸着法に
より硬質被膜を形成してなる被覆切削工具において、前
記母材の表面に母材と接する第1層として厚み0.1〜
2.0μmの窒化チタンが被覆され、その上に第2層と
して硬度が1600〜2400kg/mm2 である炭窒
化チタンが被覆されており、更にその上にチタンの炭化
物、窒化物、炭窒化物及びホウ窒化物からなる群から選
ばれる一種以上からなる単層あるいは多重層を被覆し、
これらの内層の上に外層として、酸化アルミニウム、炭
化チタン、炭窒化チタン及び窒化チタンからなる群から
選ばれる一種以上の単層又は多重層で構成されている被
覆層を被覆してなることを特徴とする被覆切削工具、
(3)第2層の炭窒化チタンが柱状結晶粒から構成さ
れ、該炭窒化チタンの平均結晶粒径が、第2層の膜厚が
4.0μm以下のときには0.1〜1μmの範囲であ
り、第2層の膜厚が4.0μmを越え、20μm以下の
ときには0.5〜3.0μmの範囲にある前記(1)又
は(2)の被覆切削工具である。
That is, according to the present invention, (1) one or more hard components selected from the group consisting of carbides, nitrides and carbonitrides of IVa, Va or VIa group elements in the Periodic Table of Elements as main components and Group VIII. In a coated cutting tool formed by forming a hard coating on the surface of a base material which is an alloy consisting of a metal component by a chemical vapor deposition method, the inner layer on the surface of the base material, the first layer in contact with the base material is titanium nitride, The second layer thereover is titanium carbonitride having a hardness of 1600 to 2400 kg / mm 2 , and one or more selected from the group consisting of carbides, nitrides, carbonitrides and boronitrides of titanium. The outer layer is made up of one or more monolayers selected from the group consisting of aluminum oxide, zirconium oxide, hafnium oxide, titanium carbide, titanium carbonitride, and titanium nitride. Or coated cutting tool characterized by comprising coating the coating layer is composed of multiple layers,
(2) IVa in the Periodic Table of Elements as the main component,
A hard coating is formed on the surface of a base material, which is an alloy of one or more hard components selected from the group consisting of carbides, nitrides and carbonitrides of Va or VIa elements, and a Group VIII metal component, by a chemical vapor deposition method. In the coated cutting tool, the thickness of the first layer on the surface of the base material is 0.1 to 0.1
Titanium nitride having a thickness of 2.0 μm is coated, and titanium carbonitride having a hardness of 1600 to 2400 kg / mm 2 is coated thereon as a second layer. Further, titanium carbide, nitride or carbonitride is further coated thereon. And a single layer or multiple layers consisting of one or more selected from the group consisting of boronitride,
These inner layers are coated with, as an outer layer, a coating layer composed of one or more single layers or multiple layers selected from the group consisting of aluminum oxide, titanium carbide, titanium carbonitride and titanium nitride. Coated cutting tools,
(3) The titanium carbonitride of the second layer is composed of columnar crystal grains, and the average crystal grain size of the titanium carbonitride is in the range of 0.1 to 1 μm when the film thickness of the second layer is 4.0 μm or less. The coated cutting tool according to (1) or (2) above, wherein the thickness of the second layer exceeds 4.0 μm and is 20 μm or less, the range is 0.5 to 3.0 μm.

【0009】[0009]

【作用】本発明の第1のポイントは、MT−CVD法に
よるTiCN皮膜を母材表面に直接被覆するのではな
く、TiN皮膜を介して被覆する点にある。このように
する理由を以下に述べる。前記のように、MT−CVD
法によるTiCN膜と母材との密着性は、しばしば不安
定になる。この原因について鋭意分析を進めた中から、
被覆中の雰囲気に含まれる塩素ガスによって超硬合金表
面の結合相(Co等)が腐食(エッチング)されている
こと、及び母材上での有機CN化合物の分解が不安定で
あるために遊離炭素が生じ易いことが判明した。結合相
の腐食は母材表面の靱性低下を招き、遊離炭素の発生は
皮膜と母材との密着性を低下させ、これらが複合するこ
とで、MT−CVD法による被覆切削工具の性能を低下
させていると考えられる。特に結合相の腐食は従来のH
T−CVD法では発生していなかった現象であり、MT
−CVD法に特有の問題であると考えられる。
The first point of the present invention resides in that the surface of the base material is not directly coated with the TiCN film by the MT-CVD method, but is coated with the TiN film. The reason for doing this is described below. As mentioned above, MT-CVD
The adhesion between the TiCN film and the base material by the method is often unstable. From a thorough analysis of this cause,
Free due to the fact that the binder gas (Co etc.) on the surface of the cemented carbide is corroded (etched) by the chlorine gas contained in the coating atmosphere and the decomposition of the organic CN compound on the base material is unstable. It turned out that carbon is easily generated. Corrosion of the binder phase leads to a decrease in the toughness of the base metal surface, and the generation of free carbon reduces the adhesion between the coating and the base material, and the combination of these reduces the performance of the coated cutting tool by the MT-CVD method. It is thought to have been done. Especially, the corrosion of the binder phase is
This is a phenomenon that has not occurred in the T-CVD method.
-It is considered to be a problem peculiar to the CVD method.

【0010】そこで鋭意検討を重ねた結果、母材の表面
に第1層としてTiN膜を被覆すると、超硬合金母材の
腐食が抑制され、またこの上にMT−CVD法によりT
iCN皮膜を被覆する際に、遊離炭素等の発生も抑制さ
れることがわかった。第1層をTiN膜とすることによ
りこのような効果が得られるのは、母材に接する第1層
のTiN膜が、超硬合金等の母材の腐食に対して保護膜
の働きをするると同時に、MT−CVD法によりTiC
N皮膜を形成する際の表面反応を安定化させるためと推
定される。第1層のTiN皮膜の膜厚は0.1μm以上
であることが好ましい。またこのTiN膜の厚みが2.
0μmを越えると、工具としての耐摩耗性がかえって低
下するため、2.0μm以下であることが好ましい。こ
のTiN膜の形成方法としては窒素ガス、水素ガス、四
塩化チタン等を原料とした公知のCVD法を用いること
ができる。この第1層のTiN膜を中間層として、その
上にMT−CVD法によるTiCN膜を形成する。
As a result of extensive studies, when the surface of the base material is coated with the TiN film as the first layer, the corrosion of the base material of the cemented carbide is suppressed, and the T-film is formed on the surface of the base material by the MT-CVD method.
It was found that the generation of free carbon and the like is suppressed when the iCN film is coated. This effect can be obtained by using the TiN film as the first layer because the TiN film of the first layer in contact with the base material acts as a protective film against corrosion of the base material such as cemented carbide. At the same time as the TiC by the MT-CVD method.
It is presumed to stabilize the surface reaction when forming the N film. The thickness of the TiN coating film of the first layer is preferably 0.1 μm or more. The thickness of this TiN film is 2.
If it exceeds 0 μm, the wear resistance as a tool rather deteriorates, so 2.0 μm or less is preferable. As a method for forming this TiN film, a known CVD method using nitrogen gas, hydrogen gas, titanium tetrachloride or the like as a raw material can be used. The TiN film of the first layer is used as an intermediate layer, and a TiCN film is formed thereon by the MT-CVD method.

【0011】本発明の第2のポイントは、TiN膜の上
に形成するTiCN膜を特定の硬度あるいは特定の硬度
及び構造とする点にある。すなわち、第2層のTiCN
膜の硬度が、1600〜2400kg/mm2 の範囲で
あり、そのTiCNが柱状結晶粒から構成され、該Ti
CNの平均結晶粒径が、第2層の膜厚が4.0μm以下
のときには0.1〜1μmの範囲であり、第2層の膜厚
が4.0μmを越え、20μm以下のときには0.5〜
3.0μmの範囲にある皮膜が最適である。ここで言う
皮膜の硬度とは、マイクロビッカース硬度あるいはヌー
プ硬度のことを指す。具体的には,皮膜表面を母材と平
行あるいは適当な角度をつけて研磨し、この研磨された
面に、例えば荷重25〜50g、荷重時間10〜20秒
でビッカースあるいはヌープの圧痕をつけ、その圧痕の
サイズを計測することにより測定される。工具用薄膜の
硬度測定に際しては、圧子の侵入深さが皮膜厚みを越え
ると、正しい硬度が測定できないため、少なくとも侵入
深さが皮膜厚みの半分以下となるような測定方法及び荷
重を選択する必要がある。ただし、薄膜硬度測定法とし
て開発されたダイナミック硬度測定法(圧子の押し込み
深さと押し込み荷重と関係から硬度を求める方法)は、
得られる測定値とビッカース硬度(あるいはヌープ硬
度)との絶対値での比較が困難なため、被覆切削工具の
硬度測定法としては好ましくない。
The second point of the present invention is that the TiCN film formed on the TiN film has a specific hardness or a specific hardness and structure. That is, the second layer of TiCN
The hardness of the film is in the range of 1600 to 2400 kg / mm 2 , and the TiCN is composed of columnar crystal grains.
The average crystal grain size of CN is in the range of 0.1 to 1 μm when the film thickness of the second layer is 4.0 μm or less, and is 0.1 when the film thickness of the second layer exceeds 4.0 μm and 20 μm or less. 5-
A film in the range of 3.0 μm is most suitable. The hardness of the coating referred to here means micro Vickers hardness or Knoop hardness. Specifically, the coating surface is polished in parallel with the base material or at an appropriate angle, and a Vickers or Knoop impression is made on the polished surface with a load of 25 to 50 g and a load time of 10 to 20 seconds, It is measured by measuring the size of the indentation. When measuring the hardness of a thin film for tools, if the penetration depth of the indenter exceeds the film thickness, the correct hardness cannot be measured.Therefore, it is necessary to select a measurement method and load so that the penetration depth is at least half the film thickness or less. There is. However, the dynamic hardness measurement method developed as a thin film hardness measurement method (a method for obtaining hardness from the relationship between the indenter indentation depth and indentation load) is
Since it is difficult to compare the obtained measured value with the Vickers hardness (or Knoop hardness) in absolute value, it is not preferable as a hardness measuring method for a coated cutting tool.

【0012】一方平均結晶粒径とは、皮膜の厚みを0.
1〜20μmとしたときに皮膜表面から走査電子顕微鏡
等で観察したときの、柱状結晶の先端の結晶粒の大き
さ、すなわち、柱状結晶先端部の太さのことである。平
均結晶粒径の評価は、顕微鏡により撮影された表面写真
において、決まった寸法の視野の中に100個の結晶粒
が見られた時には、一辺の長さ10μmを100の平方
根である10で割ることによって、1μmと評価され
る。このとき、視野からわずかでもはみ出した結晶粒に
ついては、0.5と数えるものとする。しかし積層膜の
場合は、皮膜の成長面を直接観察することができないの
で、平均結晶粒径の評価方法としては、被覆超硬合金部
材の被覆層を母材に対して平行あるいは適当な角度(1
0°以下が好ましい)をつけて研磨し、適当な腐食液
(弗酸と硝酸と蒸留水の混合溶液等)を用いて結晶粒界
を浮き上がらせた後に、走査型電子顕微鏡で観察する方
法や、薄片に加工した試料を透過型電子顕微鏡で観察す
る方法などの方法を使用する。いずれも適切な倍率で撮
影した写真から、結晶粒径を算出する。ただし、X線回
析法による結晶粒径の算出は、計算値が皮膜の残留応力
等に影響され易いため、好ましくない。
On the other hand, the average crystal grain size means that the thickness of the film is 0.
When the thickness is 1 to 20 μm, it refers to the size of the crystal grain at the tip of the columnar crystal, that is, the thickness of the tip of the columnar crystal, when observed from the surface of the film with a scanning electron microscope or the like. The average grain size is evaluated by dividing the length of one side of 10 μm by 10 which is the square root of 100 when 100 grains are seen in the visual field of a predetermined size in a surface photograph taken by a microscope. Therefore, it is estimated to be 1 μm. At this time, the crystal grains that slightly protrude from the visual field are counted as 0.5. However, in the case of a laminated film, it is not possible to directly observe the growth surface of the film, so the evaluation method of the average crystal grain size is that the coating layer of the coated cemented carbide member is parallel to the base metal or at an appropriate angle ( 1
It is preferably 0 ° or less) and polished, and the grain boundaries are lifted by using an appropriate corrosive solution (mixed solution of hydrofluoric acid, nitric acid and distilled water), and then observed with a scanning electron microscope. , A method of observing a sample processed into a thin piece with a transmission electron microscope is used. In each case, the crystal grain size is calculated from a photograph taken at an appropriate magnification. However, the calculation of the crystal grain size by the X-ray diffraction method is not preferable because the calculated value is easily affected by the residual stress of the film.

【0013】前記のような特定の硬度あるいは特定の硬
度及び構造を有するTiCN膜はMT−CVD法により
容易に形成させることができる。この第2層のTiCN
膜の形成はアセトニトリル、水素ガス、四塩化チタン等
を主原料とし、更に窒素あるいはアルゴンを原料ガス中
に添加し、基板温度800〜980℃、反応槽内圧力4
0〜150Torrで実施される。
The TiCN film having the specific hardness or the specific hardness and structure as described above can be easily formed by the MT-CVD method. This second layer of TiCN
The film is formed by using acetonitrile, hydrogen gas, titanium tetrachloride, etc. as the main raw material, and further adding nitrogen or argon to the raw material gas, the substrate temperature is 800 to 980 ° C., and the pressure in the reaction tank is 4
It is carried out at 0 to 150 Torr.

【0014】前記のようにTiCN膜を特定の硬度及び
構造とする理由は以下のとおりである。まず皮膜硬度に
ついては、硬度が高いほど耐摩耗性に優れるとされてい
るが、これはいわゆる擦り摩耗と呼ばれる、室温付近に
おける穏やかな摩耗における傾向である。したがって、
切削工具にチタン系セラミックス、即ちTiN、TiC
N、TiCを適用する場合に、擦り摩耗に対する耐久性
を向上させるためには、TiCが最も優れているとされ
ている。しかし切削工具の様に、衝撃や熱を伴った摩擦
摩耗現象においては、単に硬度が高いだけでは靱性や耐
酸化性に劣るため、しばしば異常な摩耗を生じ、安定し
た寿命を示さない場合が多い。したがって、安定して長
い寿命を得るためには、適当な硬度と併せて、破壊しに
くい、あるいは破壊しても小規模で終わる様な微細構造
を持つとともに、耐酸化性も併せ持つことが望まれる。
このような目的のためには、耐酸化性に優れたTiN
と、高い硬度を持ったTiCの両方の長所を併せ持った
TiCNが最適である。本発明ではこのTiCN皮膜の
硬度および細構造について検討し、最適の範囲を定めて
いる。
The reason why the TiCN film has a specific hardness and structure as described above is as follows. First, regarding the film hardness, it is said that the higher the hardness is, the more excellent the abrasion resistance is, but this is a tendency of so-called rubbing wear, which is mild wear near room temperature. Therefore,
Titanium-based ceramics for cutting tools, namely TiN and TiC
When N and TiC are applied, TiC is said to be the most excellent in order to improve durability against rubbing wear. However, in the case of frictional wear accompanied by shock and heat, such as cutting tools, toughness and oxidation resistance are inferior when the hardness is simply high, so abnormal wear often occurs and stable life is often not exhibited. . Therefore, in order to obtain a stable and long life, it is desirable to have an appropriate hardness as well as a fine structure that is hard to break or that even if it breaks, it ends up on a small scale, and also has oxidation resistance. .
For this purpose, TiN has excellent oxidation resistance.
And TiCN, which has the advantages of both TiC and high hardness, is optimal. In the present invention, the hardness and the fine structure of this TiCN coating are examined to determine the optimum range.

【0015】すなわち、TiCN皮膜の微細構造につい
ては後述するが、皮膜の硬度については1600kg/
mm2 以上、2400kg/mm2 以下であれば本発明
の目的のために最適であることがわかった。チタン系セ
ラミックスは、Ti1 x 1-x (但し0≦x≦1)で
組成を表現したときに、xが大きい程硬度が高くなると
いう性質を持ち、x=0(即ちTiN)のときの200
0kgf/mm2 から、x=1(即ちTiC)のときの
3000kgf/mm2 まで、xの値の増大に伴って、
ほぼ直線的に硬度が上昇するとされる。しかし硬度は、
CとNの比率以外にも、Tiとの比率や不純物、残留応
力、微細構造等によっても左右される。本発明において
TiCNと称する皮膜は、これらの種々の因子のいずれ
かが作用しているのかはさだかではないが、硬度が16
00〜2400kg/mm2 の時に、最も安定した工具
用皮膜が得られることが判明した。硬度が1600kg
/mm2 を下回ると、摩耗が早く進むため、好ましくな
い。一方硬度が2400kg/mm2 を越えると、靱性
が極端に低下し、欠けを生じ易くなるため、好ましくな
い。
That is, although the fine structure of the TiCN coating will be described later, the hardness of the coating is 1600 kg /
It has been found that a value of mm 2 or more and 2400 kg / mm 2 or less is optimal for the purpose of the present invention. Titanium-based ceramics have the property that, when the composition is expressed by Ti 1 C x N 1-x (where 0 ≦ x ≦ 1), the hardness increases as x increases, and when x = 0 (that is, TiN), When 200
From 0 kgf / mm 2 to 3000 kgf / mm 2 when x = 1 (ie TiC), with increasing value of x,
It is said that the hardness increases almost linearly. But the hardness is
In addition to the ratio of C and N, it depends on the ratio of Ti, impurities, residual stress, fine structure, and the like. In the present invention, the film called TiCN has a hardness of 16 although it does not matter whether any of these various factors act.
It was found that the most stable tool coating was obtained when the weight was from 0 to 2400 kg / mm 2 . Hardness is 1600kg
If it is less than / mm 2 , the wear is accelerated, which is not preferable. On the other hand, if the hardness exceeds 2400 kg / mm 2 , the toughness is extremely reduced and chipping easily occurs, which is not preferable.

【0016】さて、TiCN皮膜の硬度が前記範囲内な
らば、比較的寿命の安定した工具を得ることができる
が、次に述べる様に皮膜の微細構造が最適な構造となっ
ていれば、更に好ましい。MT−CVD法により被覆さ
れたTiCN膜は、被覆時の条件によって様々な微細構
造をとる。本発明者らの研究によれば、この様な微細構
造として代表的なものは、次のタイプ1〜3の3通りに
分類できることがわかった。 (タイプ1)ドーム状の一次粒子が集合した二次粒子か
ら皮膜表面が構成されたもの。一次粒子の結晶粒径が
0.1μm未満である場合が多い。皮膜形成雰囲気中で
の原料ガスの濃度が高すぎるために皮膜の成長速度が毎
時2μm以上になっている場合や、蒸着温度が低い場合
に発現する。 (タイプ2)明瞭な多角形からなる一次粒子から皮膜表
面が構成されたもので、柱状の断面構造を持ち、それぞ
れの柱が比較的細いもの。つまり、柱状結晶粒の成長
が、初期にはテーパー状であるが、膜厚が2μmを越え
たあたりから、柱の太さが余り変化しなくなる場合を指
す。蒸着温度が適正であり、原料ガスの濃度や比率が適
正であるときに見られる。具体的な平均結晶粒径と膜厚
との関係は、次の通りとなっている。 ・膜厚が4.0μm以下のとき、粒径が0.1〜1μm ・膜厚が4.0〜20μmのとき、粒径が0.5〜3.
0μm 本発明の目的のためにはこのタイプのものが好ましい性
状を示す。なお、切削工具においては20μmを超える
厚みのTiCN層は、工具の靱性低下を招くため現実的
ではない。 (タイプ3)明瞭な多角形からなる一次粒子から皮膜表
面が構成されたもので、柱状の断面構造を持ち、それぞ
れの柱が皮膜の成長に従い、太くなっていくもの。つま
り、柱状結晶粒の成長がテーパー状であり、タイプ2の
結晶粒径と膜厚との関係には当てはまらずに、膜厚の増
大に伴って柱の太さが増大していく場合を指す。蒸着温
度が高い場合や、原料ガス濃度が低いために皮膜の成長
速度が遅い場合に見られる。
If the hardness of the TiCN coating is within the above range, a tool having a relatively stable life can be obtained. However, if the microstructure of the coating has an optimum structure as described below, further preferable. The TiCN film coated by the MT-CVD method has various fine structures depending on the conditions of coating. According to the research conducted by the present inventors, it has been found that such typical fine structures can be classified into the following three types, types 1-3. (Type 1) A coating surface composed of secondary particles in which dome-shaped primary particles are aggregated. In many cases, the crystal grain size of the primary particles is less than 0.1 μm. This occurs when the growth rate of the film is 2 μm / hour or more because the concentration of the raw material gas in the film forming atmosphere is too high, or when the vapor deposition temperature is low. (Type 2) The coating surface is composed of clear primary particles having a polygonal shape, and has a columnar cross-sectional structure, and each column is relatively thin. In other words, the growth of the columnar crystal grains is initially tapered, but the thickness of the column does not change much after the film thickness exceeds 2 μm. This is observed when the vapor deposition temperature is proper and the concentration and ratio of the source gas are proper. The specific relationship between the average crystal grain size and the film thickness is as follows.・ When the film thickness is 4.0 μm or less, the particle size is 0.1 to 1 μm. ・ When the film thickness is 4.0 to 20 μm, the particle size is 0.5 to 3.
0 μm This type exhibits the preferred properties for the purposes of the present invention. In a cutting tool, a TiCN layer having a thickness of more than 20 μm is not realistic because it causes deterioration of the tool toughness. (Type 3) The surface of the coating is composed of clear primary particles of polygonal shape, and has a columnar cross-sectional structure, and each column becomes thicker as the coating grows. In other words, the growth of the columnar crystal grains is tapered, which does not apply to the relationship between the type 2 crystal grain size and the film thickness, and the column thickness increases as the film thickness increases. . This is observed when the vapor deposition temperature is high or when the film growth rate is slow because the source gas concentration is low.

【0017】前記のように下地中間層としてTiN膜を
形成した母材上に、前記3つのタイプのTiCN皮膜を
形成させて工具を試作し、切削試験における逃げ面摩耗
性を評価した結果、各タイプの皮膜の摩耗挙動にはそれ
ぞれ以下の様な特徴があることが判明した。 (タイプ1)皮膜の耐摩耗性が低く、皮膜の正常摩耗か
ら母材の露出、溶着、異常摩耗と急速に進展する。 (タイプ2)皮膜は正常摩耗を示すが、皮膜の耐摩耗性
が高いために、非常に長い工具寿命を示す。 (タイプ3)タイプ2と同様に皮膜の耐摩耗性が高く、
工具寿命は慨ね長いが、しばしば皮膜が局部的に欠け等
の異常摩耗を生じ、母材の異常損傷を引き起こす。 タイプ1の皮膜は、TiCN皮膜の結晶性が低く、皮膜
を構成する粒子同志の結合が弱いために、皮膜が崩れな
がら摩耗しているものと推定される。一方タイプ3の皮
膜は耐摩耗性に優れるものの、結晶粒径が大きいために
皮膜が大規模に破壊する傾向があり、工具切れ刃のチッ
ピング等の異常摩耗につながっているものと推定され
る。これに対しタイプ2の皮膜は、耐摩耗性に優れると
共に、安定して正常摩耗を示すために、工具の異常摩耗
を生じることがなく、本発明の目的のために極めて好適
な特性を有している。
As described above, a TiN film of the above three types was formed on the base material on which the TiN film was formed as a base intermediate layer, a tool was prototyped, and flank wear resistance in a cutting test was evaluated. It was found that the wear behavior of each type of coating has the following characteristics. (Type 1) The wear resistance of the coating is low, and it progresses rapidly from normal wear of the coating to exposure of the base metal, welding, and abnormal wear. The (Type 2) coating shows normal wear, but because of the high wear resistance of the coating, it exhibits a very long tool life. (Type 3) As with Type 2, the coating has high wear resistance,
Although the tool life is long, the coating often causes localized wear such as chipping, which causes abnormal damage to the base material. It is presumed that the type 1 coating is worn while collapsing because the TiCN coating has low crystallinity and the bonding between the particles forming the coating is weak. On the other hand, although the type 3 coating has excellent wear resistance, the coating tends to be destroyed on a large scale due to the large crystal grain size, which is presumed to lead to abnormal wear such as chipping of the tool cutting edge. On the other hand, the type 2 coating has excellent wear resistance and stably shows normal wear, so that it does not cause abnormal wear of the tool and has extremely suitable characteristics for the purpose of the present invention. ing.

【0018】これらの各皮膜の特性の具体的な内容は実
施例において詳しく説明するが、いずれにしても、特許
請求の範囲に記載した特性を有するTiCN膜は、安定
して優れた切削性能を示す工具を得るために必要なもの
である。また、本明細書においては、母材を炭化タング
ステン基超硬合金についてのみ記したが、炭窒化チタン
基の硬質相を金属結合相で焼結したサーメットにおいて
も、全く同じ効果が得られる。したがって、本発明の工
具における皮膜構造は、超硬合金以外にも炭窒化チタン
基サーメットにも適用可能である。
The specific contents of the characteristics of each of these coatings will be described in detail in the examples. In any case, a TiCN film having the characteristics described in the claims has stable and excellent cutting performance. It is necessary to obtain the tool shown. Further, in the present specification, although the base material is described only for the tungsten carbide-based cemented carbide, the same effect can be obtained even in the cermet in which the titanium carbonitride-based hard phase is sintered with the metal bonding phase. Therefore, the coating structure of the tool of the present invention can be applied to titanium carbonitride-based cermet as well as cemented carbide.

【0019】[0019]

【実施例】以下実施例により本発明をさらに具体的に説
明する。 <実施例1>(内層の構造) CNMG120408の形状の炭化タングステン基超硬
合金(ISO PI0)の表面に、公知の熱CVD法に
より厚み0.6μmのTiN膜を形成した後に、MT−
CVD法によTiCN皮膜を形成した。TiCN膜の形
成条件は、TiCl4 :2%、CH3 CN:1%、
2 :90%、Ar:残(いずれも流量モル比)、総流
量20リットル/分、基板温度900℃、反応槽圧力7
2Torrとした。TiCN膜の厚みは、成膜時間を調
整することにより変化させた。更に第2層のTiCN膜
の上に、公知の熱CVD法によりTiBN膜とAl2
3 膜とをこの順で積層し、本発明の被覆切削工具を得
た。得られたTiCN膜の膜厚と平均結晶粒径、硬度及
び界面腐食層の有無を測定した結果を表1に示す。平均
結晶粒径の測定は、表面のAl2 3 膜とTiBN膜を
除去することも兼ねて皮膜の成長面を研磨して平滑に
し、弗酸と硝酸と蒸留水の混合液を用いてエッチングし
てTiCN膜の結晶粒界を出し、これを走査型電子顕微
鏡を用いて観察し、前記(0012)の段落に記載した
方法により測定した。TiCN膜の硬度は、皮膜の成長
面を研磨して平滑にし、ヌープ硬度計(荷重:25g、
荷重時間:20秒)にて測定した。硬度の単位はkgf
/mm2 である。比較の為に、下地TiNを入れなかっ
た場合(比較例1)と、アルゴン(Ar)を用いないM
T−CVD法によるTiCN膜の場合(比較例2)につ
いても記した。いずれも本発明の被覆切削工具と同様
に、公知の熱CVD法により、TiBN膜とAl2 3
膜とをこの順で積層した。また、得られたTiCx
1-x 膜の組成xは、いずれも約0.6であることが、X
線光電子分光(XPS)法及びX線回析法によって確か
められた。
The present invention will be described in more detail with reference to the following examples. <Example 1> (Structure of Inner Layer) After forming a TiN film having a thickness of 0.6 μm by a known thermal CVD method on the surface of a tungsten carbide based cemented carbide (ISO PI0) having the shape of CNMG120408, MT-
A TiCN film was formed by the CVD method. The TiCN film is formed under the following conditions: TiCl 4 : 2%, CH 3 CN 1%,
H 2 : 90%, Ar: balance (both are flow rate molar ratio), total flow rate 20 liter / min, substrate temperature 900 ° C., reactor pressure 7
It was set to 2 Torr. The thickness of the TiCN film was changed by adjusting the film formation time. Further, a TiBN film and an Al 2 O film are formed on the second layer TiCN film by a known thermal CVD method.
Three films were laminated in this order to obtain the coated cutting tool of the present invention. Table 1 shows the results obtained by measuring the thickness, average crystal grain size, hardness, and presence / absence of the interfacial corrosion layer of the obtained TiCN film. The average grain size is measured by polishing the growth surface of the film to remove the Al 2 O 3 film and the TiBN film on the surface and smoothing it, and then etching using a mixed solution of hydrofluoric acid, nitric acid and distilled water. Then, a grain boundary of the TiCN film was exposed, and this was observed using a scanning electron microscope, and measured by the method described in the paragraph (0012). The hardness of the TiCN film was measured by polishing the growth surface of the film to make it smooth, and using a Knoop hardness tester (load: 25 g,
Load time: 20 seconds). The unit of hardness is kgf
/ Mm 2 . For comparison, when TiN is not used as a base material (Comparative Example 1) and when Ar (Ar) is not used, M
The case of the TiCN film by the T-CVD method (Comparative Example 2) is also described. As in the case of the coated cutting tool of the present invention, both are manufactured by a known thermal CVD method to form a TiBN film and Al 2 O 3
The film was laminated in this order. In addition, the obtained TiC x N
The composition x of the 1-x film is about 0.6 in all cases.
It was confirmed by the line photoelectron spectroscopy (XPS) method and the X-ray diffraction method.

【0020】[0020]

【表1】 [Table 1]

【0021】表1より、下地TiN膜がない比較例1に
おいては、母材と皮膜との界面に腐食層が生じることが
わかる。また、アルゴンを添加せずにMT−CVD法に
より形成した比較例2のTiCN膜は、平均結晶粒径が
大きく、硬度も高いことがわかる。表1の本発明品1〜
5に見られる様に、MT−CVDの原料ガス中へのアル
ゴン添加によって柱状結晶の成長挙動が変化し、皮膜の
成長に伴う平均結晶粒径の増大が抑制されたり、TiC
N膜の硬度が低下する原因は明らかではない。また、こ
こでは詳しくは述べないが、同様の現象がアルゴンの代
わりに窒素ガスを添加したMT−CVDによるTiCN
膜形成においても見られることが、本発明者らによって
確認されている。
From Table 1, it can be seen that in Comparative Example 1 in which there is no underlying TiN film, a corrosion layer is formed at the interface between the base material and the film. Further, it can be seen that the TiCN film of Comparative Example 2 formed by the MT-CVD method without adding argon has a large average crystal grain size and a high hardness. Inventive products 1 to 1 in Table 1
5, the growth behavior of columnar crystals is changed by the addition of argon to the source gas of MT-CVD, the increase of the average crystal grain size due to the growth of the film is suppressed, or the TiC
The cause of the decrease in the hardness of the N film is not clear. Although not described in detail here, a similar phenomenon is caused by TiCN by MT-CVD in which nitrogen gas is added instead of argon.
It has been confirmed by the present inventors that this is also seen in film formation.

【0022】次に表1に示した試料のうち、皮膜厚みの
近似した本発明品3、比較例1、比較例2の試料につい
て、表2に示す条件で切削試験を実施した。結果を表3
に示す。この試験では、TiCN膜の耐摩耗性と、内層
(母材に接するTiN膜とその上のTiCN膜までを指
す)と母材との密着性、皮膜の耐欠損性について評価し
た。
Next, among the samples shown in Table 1, the samples of the present invention product 3 having a similar film thickness, the samples of Comparative Examples 1 and 2 were subjected to a cutting test under the conditions shown in Table 2. The results are shown in Table 3.
Shown in. In this test, the wear resistance of the TiCN film, the adhesion between the inner layer (the TiN film in contact with the base material and the TiCN film on the base material) and the base material, and the fracture resistance of the coating were evaluated.

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】表3からわかる様に、本発明品は、耐摩耗
性に優れると同時に耐剥離性、耐欠損性にもすぐれるこ
とがわかる。一方、下地TiN膜のない場合(比較例
1)は、皮膜の耐剥離性に劣るが、これは母材界面に腐
食層が見られ、皮膜の耐剥離性に劣るためと考えられ
る。次にTiCN膜の平均結晶粒径が大きい場合(比較
例2)は、上で述べたタイプ3のTiCN膜になってお
り、慨ね良好な耐摩耗性と耐剥離性を示したが、刃先部
に欠けが見られ、異常摩耗を生じ易く、寿命がばらつく
ことがわかった。
As can be seen from Table 3, the product of the present invention is excellent in abrasion resistance and at the same time excellent in peeling resistance and chipping resistance. On the other hand, in the case where there is no underlying TiN film (Comparative Example 1), the peeling resistance of the film is inferior, but this is presumably because a corrosion layer is seen at the interface of the base material and the peeling resistance of the film is poor. Next, when the average crystal grain size of the TiCN film was large (Comparative Example 2), the TiCN film of the type 3 described above was obtained, which showed good wear resistance and peeling resistance. It was found that the parts were chipped, abnormal wear was likely to occur, and the life varied.

【0026】<実施例2>(被覆層全体の構造) ISO P30のCNMG120408(チップブレー
カー付き)の形状の超硬合金を母材として用い、この表
面に表4に示す構造の被覆層を形成した。ここで、本発
明品における第1層TiN膜及び第2層TiCN膜の形
成は、実施例1に記載の本発明品の皮膜形成条件にて実
施した。比較例3では、実施例1の比較例1と同様に、
下地TiNを入れずに基材上に直接TiCN膜の形成を
行った。また比較例4におけるTiCN膜の形成は、実
施例1の比較例2と同様に、アルゴン添加を行わないM
T−CVD法により行った。その他の膜については、従
来の熱CVD法により皮膜形成を行い、表4に示す膜厚
及び膜構造の試料を得た。
<Example 2> (Structure of the entire coating layer) A cemented carbide having a shape of CNMG120408 (with a chip breaker) of ISO P30 was used as a base material, and a coating layer having the structure shown in Table 4 was formed on this surface. . Here, the formation of the first layer TiN film and the second layer TiCN film in the product of the present invention was carried out under the film forming conditions of the product of the present invention described in Example 1. In Comparative Example 3, as in Comparative Example 1 of Example 1,
A TiCN film was formed directly on the base material without the TiN base. The formation of the TiCN film in Comparative Example 4 is similar to Comparative Example 2 in Example 1 except that argon is not added.
It was performed by the T-CVD method. Other films were formed by a conventional thermal CVD method to obtain samples having the film thickness and film structure shown in Table 4.

【0027】[0027]

【表4】 [Table 4]

【0028】表4に示した試料について、表5に示す切
削条件にて切削試験を実施した結果を表6に示す。表6
より、本発明品6〜12は、耐摩耗性、耐剥離性共に優
れており、安定した寿命が得られていることがわかる。
これに対して、下地中間層としてTiN膜を入れなかっ
た場合(比較例3)は、実施例1においても確認したよ
うに、母材表面に腐食層が形成されており、耐剥離性に
劣るという結果が得られた。次にTiCN膜を構成する
柱状結晶の平均粒径及び皮膜の硬度が本発明品に該当し
ない場合(比較例4)は、切削中に皮膜が大規模に破壊
し易く、欠けを生じた。これらの比較例3及び4はいず
れも耐摩耗性と耐剥離性を両方満足させておらず、切削
工具としては性能的に劣ることがわかる。
Table 6 shows the results of the cutting test conducted on the samples shown in Table 4 under the cutting conditions shown in Table 5. Table 6
It can be seen from the results that the products 6 to 12 of the present invention are excellent in both wear resistance and peeling resistance and have a stable life.
On the other hand, when the TiN film was not added as the underlying intermediate layer (Comparative Example 3), as confirmed in Example 1, a corrosion layer was formed on the surface of the base material and the peeling resistance was poor. The result was obtained. Next, when the average grain size of the columnar crystals forming the TiCN film and the hardness of the coating did not correspond to the product of the present invention (Comparative Example 4), the coating was easily broken on a large scale during cutting, resulting in chipping. Both Comparative Examples 3 and 4 do not satisfy both wear resistance and peeling resistance, and it is understood that the performance as a cutting tool is poor.

【0029】[0029]

【表5】 [Table 5]

【0030】[0030]

【表6】 [Table 6]

【0031】<実施例3>ISO P01のCNMG1
20408の形状の炭窒化チタン基サーメットを母材と
して用い、この表面に表7に示す構造の被覆層を形成し
た。ここで、本発明品における第1層TiN膜及び第2
層TiCN膜の形成は、実施例1に記載の本発明品の皮
膜形成条件にて実施した。比較例5では、実施例1の比
較例1と同様に、下地TiNを入れずに基材上に直接T
iCN膜の形成を行った。また比較例6におけるTiC
N膜の形成は、実施例1の比較例2と同様に、アルゴン
添加を行わないMT−CVD法により行った。その他の
膜については、従来の熱CVD法により皮膜形成を行
い、表7に示す膜厚及び膜構造の試料を得た。
<Embodiment 3> CNMG1 of ISO P01
A titanium carbonitride-based cermet having a shape of 20408 was used as a base material, and a coating layer having a structure shown in Table 7 was formed on this surface. Here, the first layer TiN film and the second layer in the product of the present invention
The TiCN film was formed under the film forming conditions of the product of the present invention described in Example 1. In Comparative Example 5, as in Comparative Example 1 of Example 1, T was directly applied onto the base material without adding TiN as the base.
The iCN film was formed. In addition, TiC in Comparative Example 6
The N film was formed by the MT-CVD method without adding argon, as in Comparative Example 2 of Example 1. Other films were formed by the conventional thermal CVD method to obtain samples having the film thickness and film structure shown in Table 7.

【0032】[0032]

【表7】 [Table 7]

【0033】表7に示した試料について、表8に示す切
削条件にて切削試験を実施した結果を表9に示す。表9
より、本発明品13〜16は、耐摩耗性、耐剥離性共に
優れており、安定した寿命が得られていることがわか
る。これに対して、下地中間層としてTiN膜を入れな
かった場合(比較例5)は、実施例1においても確認し
たように、母材表面に腐食層が形成されており、耐剥離
性に劣るという結果が得られた。次にTiCN膜を構成
する柱状結晶の平均粒径及び皮膜の硬度が本発明品に該
当しない場合(比較例6)は、切削中に皮膜が大規模に
破壊し易く、欠けを生じた。これらの比較例5及び6は
いずれも耐摩耗性と耐剥離性を両方満足させておらず、
切削工具としては性能的に劣ることがわかる。
Table 9 shows the results of a cutting test conducted on the samples shown in Table 7 under the cutting conditions shown in Table 8. Table 9
From the results, it is understood that the products 13 to 16 of the present invention have excellent wear resistance and peeling resistance, and have a stable life. On the other hand, when the TiN film was not added as the base intermediate layer (Comparative Example 5), as confirmed in Example 1, the corrosion layer was formed on the surface of the base material, and the peeling resistance was poor. The result was obtained. Next, when the average grain size of the columnar crystals constituting the TiCN film and the hardness of the coating did not correspond to the product of the present invention (Comparative Example 6), the coating was liable to be destroyed on a large scale during cutting, resulting in chipping. Neither of these Comparative Examples 5 and 6 satisfied both wear resistance and peel resistance,
It can be seen that the performance is poor as a cutting tool.

【0034】[0034]

【表8】 [Table 8]

【0035】[0035]

【表9】 [Table 9]

【0036】[0036]

【発明の効果】以上記した様に、本発明の被覆切削工具
は、従来の被覆切削工具に比較し、被覆層全体の耐摩耗
性が高いだけでなく、被覆膜と母材との密着性が強固で
あり、切削時の耐剥離性にも優れている。また、従来提
案されていた膜構造ではMT−CVD法によるTiCN
膜の持つ特徴を引き出すことが困難であったのに対し
て、下地中間層TiNを特定の厚みで挿入すること、及
びMT−CVD法による特定の構造を持ったTiCN皮
膜を形成することで、被覆切削工具の性能を安定させる
ことが可能となった。
As described above, the coated cutting tool of the present invention has not only high wear resistance of the entire coating layer but also close adhesion between the coating film and the base material as compared with the conventional coated cutting tool. It has strong properties and has excellent resistance to peeling during cutting. Further, in the film structure which has been conventionally proposed, TiCN formed by the MT-CVD method is used.
While it was difficult to bring out the characteristics of the film, by inserting the underlying intermediate layer TiN with a specific thickness and forming a TiCN film having a specific structure by the MT-CVD method, It has become possible to stabilize the performance of the coated cutting tool.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C23C 16/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C23C 16/40

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 主たる成分として元素周期律表における
IVa、Va又はVIa族元素の炭化物、窒化物及び炭
窒化物からなる群から選ばれる1種以上の硬質成分とV
III族金属成分からなる合金である母材の表面に化学
蒸着法により硬質被膜を形成してなる被覆切削工具にお
いて、前記母材の表面に内層が、母材と接する第1層が
窒化チタンであり、その上の第2層が硬度が1600〜
2400kg/mm2 である炭窒化チタンであり、更に
その上にチタンの炭化物、窒化物、炭窒化物及びホウ窒
化物からなる群から選ばれる一種以上を被覆した多重層
で構成され、外層が、酸化アルミニウム、酸化ジルコニ
ウム、酸化ハフニウム、炭化チタン、炭窒化チタン及び
窒化チタンからなる群から選ばれる一種以上の単層又は
多重層で構成されている被覆層を被覆してなることを特
徴とする被覆切削工具。
1. One or more hard components selected from the group consisting of carbides, nitrides and carbonitrides of IVa, Va or VIa group elements in the Periodic Table of Elements as main components and V.
In a coated cutting tool having a hard coating formed on a surface of a base material, which is an alloy composed of a group III metal component, by a chemical vapor deposition method, an inner layer is formed on the surface of the base material, and a first layer in contact with the base material is titanium nitride. And the second layer on it has a hardness of 1600
It is a titanium carbonitride of 2400 kg / mm 2 , and is composed of multiple layers further coated with one or more selected from the group consisting of titanium carbides, nitrides, carbonitrides and boronitrides, and the outer layer is A coating comprising a coating layer composed of one or more single layers or multiple layers selected from the group consisting of aluminum oxide, zirconium oxide, hafnium oxide, titanium carbide, titanium carbonitride and titanium nitride. Cutting tools.
【請求項2】 主たる成分として元素周期律表における
IVa、Va又はVIa族元素の炭化物、窒化物及び炭
窒化物からなる群から選ばれる1種以上の硬質成分とV
III族金属成分からなる合金である母材の表面に化学
蒸着法により硬質被膜を形成してなる被覆切削工具にお
いて、前記母材の表面に母材と接する第1層として厚み
0.1〜2.0μmの窒化チタンが被覆され、その上に
第2層として硬度が1600〜2400kg/mm2
ある炭窒化チタンが被覆されており、更にその上にチタ
ンの炭化物、窒化物、炭窒化物及びホウ窒化物からなる
群から選ばれる一種以上からなる単層あるいは多重層を
被覆し、これらの内層の上に外層として、酸化アルミニ
ウム、炭化チタン、炭窒化チタン及び窒化チタンからな
る群から選ばれる一種以上の単層又は多重層で構成され
ている被覆層を被覆してなることを特徴とする被覆切削
工具。
2. One or more hard components selected from the group consisting of carbides, nitrides and carbonitrides of IVa, Va or VIa group elements in the Periodic Table of Elements as main components and V.
A coated cutting tool having a hard coating formed on a surface of a base material, which is an alloy composed of a group III metal component, by a chemical vapor deposition method, and has a thickness of 0.1 to 2 as a first layer in contact with the base material on the surface of the base material. 0.0 μm of titanium nitride is coated, and titanium carbonitride having a hardness of 1600 to 2400 kg / mm 2 is coated thereon as the second layer, and titanium carbide, nitride, carbonitride and titanium carbide are further coated thereon. A single layer or multiple layers consisting of one or more selected from the group consisting of boronitrides, and an outer layer on these inner layers, selected from the group consisting of aluminum oxide, titanium carbide, titanium carbonitride and titanium nitride. A coated cutting tool, which is obtained by coating the above-mentioned coating layer composed of a single layer or multiple layers.
【請求項3】 第2層の炭窒化チタンが柱状結晶粒から
構成され、該炭窒化チタンの平均結晶粒径が、第2層の
膜厚が4.0μm以下のときには0.1〜1μmの範囲
であり、第2層の膜厚が4.0μmを越え、20μm以
下のときには0.5〜3.0μmの範囲にあることを特
徴とする請求項1又は2に記載の被覆切削工具。
3. The titanium carbonitride of the second layer is composed of columnar crystal grains, and the average crystal grain size of the titanium carbonitride is 0.1 to 1 μm when the thickness of the second layer is 4.0 μm or less. It is a range, and when the film thickness of the second layer exceeds 4.0 μm and is 20 μm or less, it is in the range of 0.5 to 3.0 μm, and the coated cutting tool according to claim 1 or 2.
JP08144594A 1993-05-31 1994-04-20 Coated cutting tool Expired - Lifetime JP3353449B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP08144594A JP3353449B2 (en) 1994-04-20 1994-04-20 Coated cutting tool
US08/379,624 US5915162A (en) 1993-05-31 1994-05-31 Coated cutting tool and a process for the production of the same
PCT/JP1994/000882 WO1994028191A1 (en) 1993-05-31 1994-05-31 Coated cutting tool and method for producing the same
KR1019950700369A KR0165923B1 (en) 1993-05-31 1994-05-31 Coated cutting tool and production thereof
EP94916435A EP0653499B1 (en) 1993-05-31 1994-05-31 Coated cutting tool and method for producing the same
DE69431032T DE69431032T2 (en) 1993-05-31 1994-05-31 COATED CUTTING TOOL AND METHOD FOR THE PRODUCTION THEREOF
AT94916435T ATE221142T1 (en) 1993-05-31 1994-05-31 COATED CUTTING TOOL AND METHOD FOR PRODUCING SAME
TW083105374A TW293037B (en) 1993-05-31 1994-06-11

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08144594A JP3353449B2 (en) 1994-04-20 1994-04-20 Coated cutting tool

Publications (2)

Publication Number Publication Date
JPH07285001A true JPH07285001A (en) 1995-10-31
JP3353449B2 JP3353449B2 (en) 2002-12-03

Family

ID=13746604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08144594A Expired - Lifetime JP3353449B2 (en) 1993-05-31 1994-04-20 Coated cutting tool

Country Status (1)

Country Link
JP (1) JP3353449B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824823B2 (en) 2000-03-30 2004-11-30 Toshiba Tungaloy Co., Ltd. Coated cutting tool and method for producing the same
WO2006067956A1 (en) * 2004-12-22 2006-06-29 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
JP2006175560A (en) * 2004-12-22 2006-07-06 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
JP2008132547A (en) * 2006-11-27 2008-06-12 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool
JP2009178774A (en) * 2008-01-29 2009-08-13 Kyocera Corp Cutting tool
US9044811B2 (en) 2010-09-07 2015-06-02 Sumitomo Electric Hardmetal Corp. Surface coated cutting tool
CN106670516A (en) * 2016-12-26 2017-05-17 深圳正峰印刷有限公司 Cutter and film coating technology thereof
JP2017530019A (en) * 2014-09-26 2017-10-12 ヴァルター アーゲー Coated cutting tool insert with MT-CVD TiCN on TiAl (C, N)
JP2021094670A (en) * 2019-12-19 2021-06-24 株式会社タンガロイ Coated cutting tool

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824823B2 (en) 2000-03-30 2004-11-30 Toshiba Tungaloy Co., Ltd. Coated cutting tool and method for producing the same
WO2006067956A1 (en) * 2004-12-22 2006-06-29 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
JP2006175560A (en) * 2004-12-22 2006-07-06 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
JP2008132547A (en) * 2006-11-27 2008-06-12 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool
JP2009178774A (en) * 2008-01-29 2009-08-13 Kyocera Corp Cutting tool
US9044811B2 (en) 2010-09-07 2015-06-02 Sumitomo Electric Hardmetal Corp. Surface coated cutting tool
JP5729777B2 (en) * 2010-09-07 2015-06-03 住友電工ハードメタル株式会社 Surface coated cutting tool
JP2017530019A (en) * 2014-09-26 2017-10-12 ヴァルター アーゲー Coated cutting tool insert with MT-CVD TiCN on TiAl (C, N)
CN106670516A (en) * 2016-12-26 2017-05-17 深圳正峰印刷有限公司 Cutter and film coating technology thereof
JP2021094670A (en) * 2019-12-19 2021-06-24 株式会社タンガロイ Coated cutting tool
US11305357B2 (en) 2019-12-19 2022-04-19 Tungaloy Corporation Coated cutting tool

Also Published As

Publication number Publication date
JP3353449B2 (en) 2002-12-03

Similar Documents

Publication Publication Date Title
US10968512B2 (en) CVD composite refractory coatings and applications thereof
KR0165923B1 (en) Coated cutting tool and production thereof
KR100250587B1 (en) Coated hard alloy
JP4966580B2 (en) Coated tool
JP5715570B2 (en) Coated tool
KR960015546B1 (en) Diffusion barrier coating material
JP4782758B2 (en) Coated cutting tool insert
JPH11511078A (en) CVD coated titanium based carbonitride cutting tool insert
JP2008183708A (en) Coated insert for milling and its manufacturing method
JP2006297585A (en) Covered cutting tool insert and its manufacturing method
JPH0615714B2 (en) Sintered hard metal products
JPH08158052A (en) Coated hard alloy
JP3671623B2 (en) Coated cemented carbide
FR2467689A1 (en) SINTERED HARD METAL PRODUCT HAVING A MULTI-LAYERED WEAR RESISTANT COATING
JP4398224B2 (en) Wear resistant parts
JP3384110B2 (en) Coated cutting tool and its manufacturing method
JP3353449B2 (en) Coated cutting tool
KR20100126356A (en) Oxide coated cutting insert
CA2860822A1 (en) Refractory coatings for cutting tools
US20090226715A1 (en) Coated article and method of making the same
JP2001011632A (en) Zirconium-containing film-coated tool
JPH11226805A (en) Cutting tool made of coated cemented carbide
JP4107433B2 (en) α-type aluminum oxide coated member
JP3638332B2 (en) Coated hard alloy
JPH08318406A (en) Covering cutting tool

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070927

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120927

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130927

Year of fee payment: 11

EXPY Cancellation because of completion of term