JP4398224B2 - Wear resistant parts - Google Patents

Wear resistant parts Download PDF

Info

Publication number
JP4398224B2
JP4398224B2 JP2003376210A JP2003376210A JP4398224B2 JP 4398224 B2 JP4398224 B2 JP 4398224B2 JP 2003376210 A JP2003376210 A JP 2003376210A JP 2003376210 A JP2003376210 A JP 2003376210A JP 4398224 B2 JP4398224 B2 JP 4398224B2
Authority
JP
Japan
Prior art keywords
layer
wear
resistant member
member according
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003376210A
Other languages
Japanese (ja)
Other versions
JP2005138209A (en
Inventor
誠 瀬戸山
治世 福井
直也 大森
晋也 今村
秀樹 森口
圭一 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Original Assignee
Sumitomo Electric Hardmetal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp filed Critical Sumitomo Electric Hardmetal Corp
Priority to JP2003376210A priority Critical patent/JP4398224B2/en
Publication of JP2005138209A publication Critical patent/JP2005138209A/en
Application granted granted Critical
Publication of JP4398224B2 publication Critical patent/JP4398224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、耐摩耗性、耐熱性および耐溶着性、特に高温での耐摩耗性および耐溶着性を向上させ、切削工具、耐摩工具、機械部品、摺動部品、電気、電子部品等に対して好適に用いられる耐摩耗性部材に関する。   The present invention improves wear resistance, heat resistance and welding resistance, particularly at high temperatures, and is suitable for cutting tools, wear-resistant tools, machine parts, sliding parts, electrical and electronic parts, etc. It is related with the wear-resistant member used suitably.

近年、切削工具の耐摩耗性、耐熱性、および潤滑性を向上させるために、基材上にPVD法(物理蒸着法)やCVD法(化学蒸着法)でTiCN、TiAlN、TiSiN、Al23からなる化合物層を1層または複層として形成し、基材表面をこれらの化合物層で被覆することが一般的に行なわれている。 In recent years, in order to improve the wear resistance, heat resistance and lubricity of cutting tools, TiCN, TiAlN, TiSiN, Al 2 O are formed on a substrate by PVD method (physical vapor deposition method) or CVD method (chemical vapor deposition method). In general , a compound layer composed of 3 is formed as one layer or a plurality of layers, and the surface of the substrate is covered with these compound layers.

たとえば、特許文献1においては、チタン−アルミニウム合金の第一の層と、物理蒸着法によって第一の層に直接付着されるアルミナの層とを含むコーティング構成を有する切削工具が提案されている。   For example, Patent Document 1 proposes a cutting tool having a coating configuration including a first layer of a titanium-aluminum alloy and an alumina layer that is directly attached to the first layer by physical vapor deposition.

また、特許文献2においては、Siが10%以上60%以下であるa層と、Alが40%越え75%以下であるb層が、それぞれ1層以上交互に被覆され、さらにTiを主体とする窒化物からなるc層が母材表面直上に形成され、c層直上がb層である硬質皮膜被覆工具が提案されている。これらの硬質皮膜は特に物理蒸着法で形成される。   Further, in Patent Document 2, a layer in which Si is 10% or more and 60% or less, and b layer in which Al is more than 40% and 75% or less are each alternately coated with one or more layers, and Ti is mainly used. There has been proposed a hard coating tool in which a c layer made of nitride is formed directly on the surface of the base material, and the b layer is directly above the c layer. These hard coatings are particularly formed by physical vapor deposition.

しかし、従来のPVD法によって形成させたTiNやTiCNからなる被膜の耐熱性は十分でなく、また、比較的高い耐熱性を有するTiAlNやTiSiNからなる被膜についても、高温環境下や高速切削および高速摺動時における耐熱性は必ずしも十分でないという問題がある。   However, the heat resistance of the film made of TiN or TiCN formed by the conventional PVD method is not sufficient, and the film made of TiAlN or TiSiN having relatively high heat resistance is also used in a high temperature environment, high speed cutting and high speed. There is a problem that the heat resistance during sliding is not always sufficient.

一方、Al23からなる被膜は耐熱性に優れるため、Al23被膜を用いることは、十分な耐熱性および耐摩耗性を有する被膜を得る方法としては最も良いと言える。Al23層は、通常TiCN−Al23の複層として用いられる場合が多いが、Al23層を形成するためには、熱CVD法においては1000℃以上、PVD法においても500〜800℃という基材温度が必要とされる。基材温度が高い場合、Al23層を形成させるための酸素がTiCN層等の下地層をも通過して、基材表面または基材と被膜との界面に達する場合がある。基材表面または基材と被膜との界面が酸素によって酸化されると脆い酸化物層が形成され、基材と被膜との密着力が低下するために、十分な耐摩耗性および耐熱性が得られないという問題が生じる。 On the other hand, since a coating made of Al 2 O 3 is excellent in heat resistance, it can be said that using an Al 2 O 3 coating is the best method for obtaining a coating having sufficient heat resistance and wear resistance. The Al 2 O 3 layer is usually often used as a multilayer of TiCN—Al 2 O 3 , but in order to form the Al 2 O 3 layer, the thermal CVD method is 1000 ° C. or higher, and the PVD method is also used. A substrate temperature of 500-800 ° C is required. When the substrate temperature is high, oxygen for forming the Al 2 O 3 layer may pass through the underlayer such as the TiCN layer and reach the substrate surface or the interface between the substrate and the coating. When the surface of the substrate or the interface between the substrate and the coating is oxidized by oxygen, a brittle oxide layer is formed and the adhesion between the substrate and the coating is reduced, so that sufficient wear resistance and heat resistance are obtained. The problem of not being able to occur.

より低温でAl23層を形成する方法として、特許文献3には、中間層としてAl23層と同じコランダム構造を有する酸化物被膜を形成させることによって、300〜700℃の低温でコランダム構造のAl23層を形成させる方法が提案されている。しかし、被膜形成を低温で行なうことによって成膜時の基材の酸化は抑制できたとしても、切削時等の使用時には、耐摩耗性被膜の刃先が高温になることによって大気中の酸素が基材に達し、基材の酸化が生じるため、基材と被膜との間の密着力低下によって十分な耐摩耗性および耐熱性が得られないという問題は依然解決されていない。
特開平9−192906号公報 特開2000−326107号公報 特開2002−53946号公報
As a method of forming an Al 2 O 3 layer at a lower temperature, Patent Document 3 discloses that an oxide film having the same corundum structure as the Al 2 O 3 layer is formed as an intermediate layer at a low temperature of 300 to 700 ° C. A method of forming an Al 2 O 3 layer having a corundum structure has been proposed. However, even if the film formation is performed at a low temperature, the oxidation of the substrate during film formation can be suppressed. Since the material reaches the base material and the base material is oxidized, the problem that sufficient wear resistance and heat resistance cannot be obtained due to a decrease in adhesion between the base material and the coating has not been solved.
JP-A-9-192906 JP 2000-326107 A JP 2002-53946 A

本発明は、上記の課題を解決し、特に高温での耐摩耗性を向上させ、切削工具、耐摩工具、機械部品、摺動部品、電気、電子部品等に対して好適に用いることができる耐摩耗性部材を提供することを目的とする。   The present invention solves the above-mentioned problems, improves the wear resistance particularly at high temperatures, and can be suitably used for cutting tools, wear-resistant tools, machine parts, sliding parts, electricity, electronic parts and the like. An object is to provide a wearable member.

本発明は、単層または複層のAl23層と単層または複層の(TixSi1-x)(Cy1-y)層(但し、0<x<1、かつ0≦y<1、以下同じ)とを含む耐摩耗性被膜、および基材を含み、該(TixSi1-x)(Cy1-y)層が該Al23層と該基材との間に形成されている耐摩耗性部材に関する。 The present invention relates to a single layer or multilayer Al 2 O 3 layer and a single layer or multilayer (Ti x Si 1-x ) (C y N 1-y ) layer (where 0 <x <1 and 0 ≦ y <1, the same shall apply hereinafter), and a substrate, and the (Ti x Si 1-x ) (C y N 1-y ) layer and the Al 2 O 3 layer The present invention relates to a wear-resistant member formed between materials.

本発明において基材とAl23層との間に形成される(TixSi1-x)(Cy1-y)層は、非晶質構造、または、非晶質相の中に1〜50nmの範囲内の結晶質相を有するナノコンポジット構造を有することが好ましい。また結晶質相が、特に粒径が1〜50nmの範囲内の柱状組織からなることも好ましい。 In the present invention, the (Ti x Si 1-x ) (C y N 1-y ) layer formed between the substrate and the Al 2 O 3 layer has an amorphous structure or an amorphous phase. It is preferable to have a nanocomposite structure having a crystalline phase in the range of 1 to 50 nm. It is also preferable that the crystalline phase is composed of a columnar structure having a particle diameter in the range of 1 to 50 nm.

(TixSi1-x)(Cy1-y)層のうち少なくとも1層は、x=0.6〜0.95、y=0〜0.6の範囲内となるものであることが好ましい。 At least one of the (Ti x Si 1-x ) (C y N 1-y ) layers is in the range of x = 0.6 to 0.95 and y = 0 to 0.6. Is preferred.

本発明はまた、形成されるAl23層が結晶性である耐摩耗性部材に関する。特にAl23層がα−Al23構造を有するものが好ましい。 The present invention also relates to a wear resistant member in which the formed Al 2 O 3 layer is crystalline. In particular, the Al 2 O 3 layer preferably has an α-Al 2 O 3 structure.

本発明において、耐摩耗性被膜全体の膜厚は、好ましくは0.5〜15μmの範囲内に設定される。また、Al23層のうち少なくとも1層の膜厚は0.1〜10μmの範囲内、(TixSi1-x)(Cy1-y)層のうち少なくとも1層の膜厚は0.2〜10μmの範囲内に設定されることがそれぞれ好ましい。 In the present invention, the thickness of the entire wear-resistant coating is preferably set in the range of 0.5 to 15 μm. In addition, the film thickness of at least one of the Al 2 O 3 layers is within a range of 0.1 to 10 μm, and the film thickness of at least one of the (Ti x Si 1-x ) (C y N 1-y ) layers. Is preferably set in the range of 0.2 to 10 μm.

本発明はさらに、(TixSi1-x)(Cy1-y)層と基材との間に単層または複層の密着層を形成した耐摩耗性部材に関する。該密着層は、Tiおよび/またはAlの炭化物、窒化物、炭窒化物、窒酸化物、もしくはTiのうち1種以上を含み、密着層全体の膜厚が0.1〜10μmの範囲内となるように形成されることが好ましい。 The present invention further relates to a wear-resistant member in which a single-layer or multi-layer adhesion layer is formed between a (Ti x Si 1-x ) (C y N 1-y ) layer and a substrate. The adhesion layer includes at least one of Ti and / or Al carbides, nitrides, carbonitrides, nitride oxides, or Ti, and the adhesion layer has a thickness of 0.1 to 10 μm. It is preferable to be formed as follows.

本発明はさらに、(TixSi1-x)(Cy1-y)層とAl23層との間に単層または複層の中間層を有する耐摩耗性部材に関する。該中間層は、Ti、Cr、Si、Alから選択される1種以上の元素の炭化物、窒化物、酸化物、炭窒化物、窒酸化物のうち1種以上を含み、中間層全体の膜厚が0.2〜10μmの範囲内であることが好ましい。 The present invention further relates to a wear-resistant member having a single-layer or multi-layer intermediate layer between a (Ti x Si 1-x ) (C y N 1-y ) layer and an Al 2 O 3 layer. The intermediate layer includes one or more of carbides, nitrides, oxides, carbonitrides, and nitrides of one or more elements selected from Ti, Cr, Si, and Al, and is a film of the entire intermediate layer The thickness is preferably in the range of 0.2 to 10 μm.

本発明はさらに、最表面に単層または複層の表面層を形成した耐摩耗性部材に関する。該表面層は、Tiの炭化物、窒化物、炭窒化物、窒酸化物のうち1種以上を含み、表面層全体の膜厚が0.05〜5μmの範囲内であることが好ましい。   The present invention further relates to a wear-resistant member having a single-layer or multi-layer surface layer formed on the outermost surface. The surface layer preferably contains at least one of Ti carbide, nitride, carbonitride, and nitride oxide, and the thickness of the entire surface layer is preferably in the range of 0.05 to 5 μm.

本発明に用いられる耐摩耗性被膜において、各層の形成方法に限定はないが、少なくともAl23層、好ましくは(TixSi1-x)(Cy1-y)層およびAl23層、さらに好ましくは耐摩耗性被膜を構成する層のすべてをPVD法によって形成させる方法が好適である。 In the wear-resistant coating used in the present invention, the formation method of each layer is not limited, but at least an Al 2 O 3 layer, preferably a (Ti x Si 1-x ) (C y N 1-y ) layer and Al 2. A method in which the O 3 layer, more preferably all the layers constituting the abrasion-resistant film, is formed by the PVD method is suitable.

本発明はさらに、基材の少なくとも一部を耐摩耗性被膜で被覆した耐摩耗性部材に関する。基材としては、高速度鋼、超硬合金、サーメット、cBN焼結体、ダイヤ焼結体、TiC−Al23焼結体、Si34焼結体が使用可能であり、特に高速度鋼が好ましく用いられる。 The present invention further relates to an abrasion resistant member in which at least a part of a substrate is coated with an abrasion resistant coating. As the base material, high-speed steel, cemented carbide, cermet, cBN sintered body, diamond sintered body, TiC-Al 2 O 3 sintered body, Si 3 N 4 sintered body can be used. Speed steel is preferably used.

本発明の耐摩耗性部材は、切削工具、耐摩工具、機械部品、摺動部品、電気、電子部品等に対して使用可能であるが、特に切削加工用の切削工具に対して好適に使用できる。   The wear-resistant member of the present invention can be used for cutting tools, wear-resistant tools, machine parts, sliding parts, electricity, electronic parts, and the like, but can be suitably used particularly for cutting tools for cutting work. .

本発明の耐摩耗性部材は、特に高温での耐摩耗性に優れ、切削工具、耐摩工具、機械部品、摺動部品、電気、電子部品等に対して好適に用いることができる。   The wear-resistant member of the present invention is particularly excellent in wear resistance at high temperatures, and can be suitably used for cutting tools, wear-resistant tools, machine parts, sliding parts, electricity, electronic parts, and the like.

本発明における耐摩耗性部材は、耐摩耗性被膜を超硬合金、サーメット、cBN焼結体、ダイヤ焼結体、TiC−Al23焼結体、Si34焼結体、高速度鋼等の基材に被覆することにより提供される。 The wear-resistant member in the present invention comprises a wear-resistant film made of cemented carbide, cermet, cBN sintered body, diamond sintered body, TiC-Al 2 O 3 sintered body, Si 3 N 4 sintered body, high speed. It is provided by coating a substrate such as steel.

図1は、本発明に係る耐摩耗性部材の構成の一例を示す断面図である。本発明の耐摩耗性部材12は、基材13の表面に、(TixSi1-x)(Cy1-y)層15を介在させてAl23層17を形成して得られることを特徴とする。図1は本発明の特に好ましい態様を示しており、基材13と(TixSi1-x)(Cy1-y)層15との間に密着層14、(TixSi1-x)(Cy1-y)層15とAl23層17との間に中間層16、Al23層17の表面に表面層18が、それぞれ形成され、耐摩耗性被膜11が構成されている。このようにして得られた耐摩耗性被膜11を基材13の表面に形成し、耐摩耗性部材12を得る。 FIG. 1 is a cross-sectional view showing an example of the configuration of the wear-resistant member according to the present invention. The wear-resistant member 12 of the present invention is obtained by forming an Al 2 O 3 layer 17 on the surface of a base material 13 with a (Ti x Si 1-x ) (C y N 1-y ) layer 15 interposed therebetween. It is characterized by being able to. FIG. 1 shows a particularly preferred embodiment of the present invention, in which an adhesion layer 14, (Ti x Si 1− ) is formed between a base material 13 and a (Ti x Si 1−x ) (C y N 1−y ) layer 15. x ) A surface layer 18 is formed on the surface of the intermediate layer 16 and the Al 2 O 3 layer 17 between the (C y N 1-y ) layer 15 and the Al 2 O 3 layer 17, respectively. Is configured. The wear-resistant coating film 11 thus obtained is formed on the surface of the base material 13 to obtain the wear-resistant member 12.

本発明の耐摩耗性部材は、単層または複層のAl23層と、Al23層と基材との間に形成される単層または複層の(TixSi1-x)(Cy1-y)層を含むことを特徴とする。 The wear-resistant member of the present invention comprises a single-layer or multilayer Al 2 O 3 layer, and a single-layer or multilayer (Ti x Si 1-x formed between the Al 2 O 3 layer and the substrate. ) (C y N 1-y ) layer.

物理的および化学的に安定で高硬度のAl23の層を存在させると、耐摩耗性部材全体の耐熱性を大きく向上させることができるが、基材上にAl23層を形成した場合、Al23層形成時に酸素原子がAl23層を拡散、透過して基材に拡散し、基材表面に脆い酸化物層が形成されることによって、基材と耐摩耗性被膜との密着力が低下する。特に高温環境下では基材の酸化、および基材と耐摩耗性被膜との密着力低下の発生は顕著であり、耐摩耗性部材として十分な耐摩耗性および耐熱性を維持することが困難である。 The presence of a physically and chemically stable and hard Al 2 O 3 layer can greatly improve the overall heat resistance of the wear-resistant member, but it forms an Al 2 O 3 layer on the substrate. When the Al 2 O 3 layer is formed, oxygen atoms diffuse and permeate the Al 2 O 3 layer and diffuse to the base material, and a brittle oxide layer is formed on the base material surface. Adhesive strength with the adhesive film is reduced. In particular, the oxidation of the base material and the decrease in adhesion between the base material and the wear-resistant coating are remarkable in a high-temperature environment, and it is difficult to maintain sufficient wear resistance and heat resistance as a wear-resistant member. is there.

本発明においては、Al23層と基材との間に(TixSi1-x)(Cy1-y)層を介在させる。TiSiCNは単体で耐酸化性に優れる化合物であり、高温で酸素を共存させても酸化され難い。したがって、Al23層形成時および耐摩耗性部材の使用時には、Al23層と基材との間に存在する(TixSi1-x)(Cy1-y)層によって、Al23層から基材への酸素原子の拡散が抑制される。 In the present invention, a (Ti x Si 1-x ) (C y N 1-y ) layer is interposed between the Al 2 O 3 layer and the substrate. TiSiCN is a single compound having excellent oxidation resistance, and is hardly oxidized even when oxygen is present at a high temperature. Therefore, when the Al 2 O 3 layer is formed and when the wear-resistant member is used, the (Ti x Si 1-x ) (C y N 1-y ) layer existing between the Al 2 O 3 layer and the substrate is used. The diffusion of oxygen atoms from the Al 2 O 3 layer to the substrate is suppressed.

酸素原子が被膜内において拡散する機構としては、被膜に存在する結晶粒内部における被膜の酸化を伴う拡散と、粒界において被膜の酸化とは無関係に生じる拡散とが挙げられる。(TixSi1-x)(Cy1-y)層を形成することで、結晶粒内部における酸素原子の拡散が生じ難くなるため、Al23層から基材への酸素原子の拡散を抑制できるが、(TixSi1-x)(Cy1-y)層内の粒界における酸素原子の拡散を抑制する手段によって、(TixSi1-x)(Cy1-y)層の酸素原子の拡散抑制効果をさらに向上させることができる。 As a mechanism for diffusing oxygen atoms in the coating, there are diffusion accompanied by oxidation of the coating within the crystal grains existing in the coating and diffusion that occurs independently of the oxidation of the coating at the grain boundary. By forming the (Ti x Si 1-x ) (C y N 1-y ) layer, it becomes difficult for oxygen atoms to diffuse inside the crystal grains, so that oxygen atoms from the Al 2 O 3 layer to the base material While diffusion can be suppressed, (Ti x Si 1-x ) (C y N 1-y) by layer for suppressing the diffusion of oxygen atoms at the grain boundary unit, (Ti x Si 1-x ) (C y N 1-y ) The effect of suppressing the diffusion of oxygen atoms in the layer can be further improved.

(TixSi1-x)(Cy1-y)層の結晶粒内部および粒界における酸素原子の拡散を抑制する方法としては、たとえば、TiとSiとの量比、および層の形成条件を調整することによって(TixSi1-x)(Cy1-y)層の膜質を制御する方法が挙げられる。たとえば(TixSi1-x)(Cy1-y)層が非晶質構造を有する場合、粒界が少ないために結晶粒内および粒界における酸素原子の拡散が抑制され好ましい。 Examples of a method for suppressing the diffusion of oxygen atoms in the crystal grains of the (Ti x Si 1-x ) ( Cy N 1-y ) layer and in the grain boundaries include the quantity ratio of Ti and Si and the formation of the layers. There is a method of controlling the film quality of the (Ti x Si 1-x ) (C y N 1-y ) layer by adjusting the conditions. For example, it is preferable that the (Ti x Si 1-x ) ( Cy N 1-y ) layer has an amorphous structure, because the number of grain boundaries is small, so that diffusion of oxygen atoms in the crystal grains and at the grain boundaries is suppressed.

一方、(TixSi1-x)(Cy1-y)層が結晶質相を有する場合、連続した粒界がほとんど存在しないように膜質を制御することによって、(TixSi1-x)(Cy1-y)層における酸素原子の拡散を効果的に抑制できる。具体的には、Si−NまたはSiリッチなTiSiCN相が非晶質の母相を形成し、その中に1〜50nmの粒径を有するTiNまたはTiリッチなTiSiN結晶質相を含有するナノコンポジット構造を形成させる方法等が採用できる。この場合、形成した層の表面側から基材表面へと繋がる連続した粒界がほとんど生成しないため、粒界による酸素原子の拡散を効果的に防止できる。なお、結晶質相の粒径が1nm以上であれば微結晶の存在によって(TixSi1-x)(Cy1-y)層は良好な耐摩耗性および耐熱性を示し、50nm以下であれば粒界が連続して生成しにくく、酸素原子の拡散が防止できる。 On the other hand, when the (Ti x Si 1-x ) (C y N 1-y ) layer has a crystalline phase, by controlling the film quality so that there is almost no continuous grain boundary, (Ti x Si 1- x ) The diffusion of oxygen atoms in the ( CyN1 -y ) layer can be effectively suppressed. Specifically, a nanocomposite containing an Si-N or Si-rich TiSiCN phase forming an amorphous parent phase and a TiN or Ti-rich TiSiN crystalline phase having a particle size of 1 to 50 nm therein A method of forming a structure can be employed. In this case, since the continuous grain boundary connected from the surface side of the formed layer to the substrate surface is hardly generated, diffusion of oxygen atoms by the grain boundary can be effectively prevented. If the grain size of the crystalline phase is 1 nm or more, the (Ti x Si 1-x ) (C y N 1-y ) layer exhibits good wear resistance and heat resistance due to the presence of microcrystals, and is 50 nm or less. If this is the case, it is difficult for the grain boundaries to be continuously generated, and diffusion of oxygen atoms can be prevented.

さらに(TixSi1-x)(Cy1-y)層は、粒径が1〜50nmの範囲内の微細な柱状組織を有しても良い。この場合、(TixSi1-x)(Cy1-y)層は良好な機械的特性を有するとともに、緻密な粒界が存在することにより酸素原子の拡散防止効果に優れる。 Furthermore, the (Ti x Si 1-x ) (C y N 1-y ) layer may have a fine columnar structure having a particle size in the range of 1 to 50 nm. In this case, the (Ti x Si 1-x ) (C y N 1-y ) layer has good mechanical properties and is excellent in the effect of preventing oxygen atom diffusion due to the presence of dense grain boundaries.

(TixSi1-x)(Cy1-y)層の結晶質/非晶質構造、結晶質相の粒径、柱状組織の形成等の膜質は、Tiに対するSiの組成比、成膜温度、成膜圧力、基材温度、バイアス電圧、反応ガス等につき、(TixSi1-x)(Cy1-y)層形成時に最適条件を選択することによって制御できる。 The crystalline / amorphous structure of the (Ti x Si 1-x ) ( Cy N 1-y ) layer, the grain size of the crystalline phase, the formation of columnar structures, etc. The film temperature, film forming pressure, substrate temperature, bias voltage, reaction gas, and the like can be controlled by selecting optimum conditions when forming the (Ti x Si 1-x ) (C y N 1-y ) layer.

本発明に用いる(TixSi1-x)(Cy1-y)層においては、組成と成膜条件の制御によって所望の物性および耐熱性を確保することができる。したがって組成は成膜条件との関係で調整されるが、(TixSi1-x)(Cy1-y)層の少なくとも1層が、x=0.6〜0.95、さらにx=0.7〜0.9の範囲内となるようにSiを含有することが好ましい。xが0.6以上である場合、TiとSiとが適正な組成比で存在することによって所望の膜硬度が得られ、高温条件下での酸化の進行を防止できる。またxが0.95以下である場合、Siを一定量以上含有することによって(TixSi1-x)(Cy1-y)層としての良好な耐熱性が得られる。 In the (Ti x Si 1-x ) (C y N 1-y ) layer used in the present invention, desired physical properties and heat resistance can be ensured by controlling the composition and film forming conditions. Therefore, although the composition is adjusted in relation to the film formation conditions, at least one of the (Ti x Si 1-x ) (C y N 1-y ) layers has x = 0.6 to 0.95, and x It is preferable to contain Si so that it may become in the range of = 0.7-0.9. When x is 0.6 or more, the desired film hardness can be obtained by the presence of Ti and Si at an appropriate composition ratio, and the progress of oxidation under high temperature conditions can be prevented. When x is 0.95 or less, good heat resistance as a (Ti x Si 1-x ) (C y N 1-y ) layer can be obtained by containing a certain amount or more of Si.

なお、組成式(TixSi1-x)(Cy1-y)において、y=0〜0.6、さらにy=0〜0.3の範囲内である場合、Nを一定量以上含有することにより(TixSi1-x)(Cy1-y)層の耐熱性が確保されるため好ましい。 In the composition formula (Ti x Si 1-x ) (C y N 1-y ), when y = 0 to 0.6, and further y = 0 to 0.3, N is a certain amount or more. By containing, the heat resistance of the (Ti x Si 1-x ) (C y N 1-y ) layer is secured, which is preferable.

特に、組成式(TixSi1-x)(Cy1-y)において、x=0.7〜0.9、かつy=0〜0.3の範囲内となる組成とした場合には、比較的広範な成膜条件で良好な耐摩耗性および耐熱性を有する(TixSi1-x)(Cy1-y)層が得られる。 In particular, in the composition formula (Ti x Si 1-x) (C y N 1-y), x = 0.7~0.9, and when the composition falls within a range of y = 0 to 0.3 Can obtain a (Ti x Si 1-x ) (C y N 1-y ) layer having good wear resistance and heat resistance under a relatively wide range of film forming conditions.

単層または複層の(TixSi1-x)(Cy1-y)層において、少なくとも1層の厚みは0.4〜10μm、さらに0.5〜5μmの範囲内であることが好ましい。0.4μm以上であれば酸素原子の拡散抑制効果が十分得られる一方、10μm以下であれば他層との密着性を確保でき、剥離が防止できる。 In the single-layer or multi-layer (Ti x Si 1-x ) (C y N 1-y ) layer, the thickness of at least one layer may be in the range of 0.4 to 10 μm, and further 0.5 to 5 μm. preferable. If it is 0.4 μm or more, the effect of suppressing the diffusion of oxygen atoms is sufficiently obtained, while if it is 10 μm or less, adhesion with other layers can be ensured and peeling can be prevented.

本発明の耐摩耗性部材には、単層または複層のAl23層を形成する。Al23層は、特に高い面負荷がかかり、高温環境になる切削工具の刃先部分、機械部品、摺動部品においては結晶性であることが好ましい。この場合Al23層はα−Al23あるいはγ−Al23の結晶構造を有するが、α−Al23の結晶構造は熱的に安定であるため好ましい。Al23層が結晶性である場合、非晶質の場合と比べて高温安定性および硬度の点で優れるため、耐摩耗性部材の耐熱性、耐摩耗性を向上させることができる。 A single layer or a multilayer Al 2 O 3 layer is formed on the wear resistant member of the present invention. The Al 2 O 3 layer is preferably crystalline in the cutting edge portion, machine part, and sliding part of a cutting tool that is subjected to a particularly high surface load and becomes a high temperature environment. In this case, the Al 2 O 3 layer has a crystal structure of α-Al 2 O 3 or γ-Al 2 O 3 , but the crystal structure of α-Al 2 O 3 is preferable because it is thermally stable. When the Al 2 O 3 layer is crystalline, the heat resistance and wear resistance of the wear-resistant member can be improved because the Al 2 O 3 layer is superior in terms of high-temperature stability and hardness as compared with the amorphous case.

単層または複層のAl23層において、少なくとも1層の厚みは0.1〜10μm、さらに0.2〜5μmの範囲内に設定されることが好ましい。厚みが0.1μm以上であればAl23層は耐熱性を十分に発揮でき、10μm以下であれば他層との密着性および耐摩耗性に優れる。 In the single-layer or multi-layer Al 2 O 3 layer, the thickness of at least one layer is preferably set in the range of 0.1 to 10 μm, more preferably 0.2 to 5 μm. If the thickness is 0.1 μm or more, the Al 2 O 3 layer can sufficiently exhibit heat resistance, and if it is 10 μm or less, the adhesion to other layers and the wear resistance are excellent.

Al23層の結晶構造は、成膜時の圧力、基材温度、スパッタ電力、酸素流量を最適条件に調整することで制御できる。 The crystal structure of the Al 2 O 3 layer can be controlled by adjusting the pressure during film formation, the substrate temperature, the sputtering power, and the oxygen flow rate to optimum conditions.

本発明の耐摩耗性部材において、基材と(TixSi1-x)(Cy1-y)層との間には、単層または複層の密着層を形成させても良い。特に、密着層が、Tiおよび/またはAlの炭化物、窒化物、炭窒化物、窒酸化物、もしくはTiのうちいずれか1種以上を含む場合、基材と(TixSi1-x)(Cy1-y)層との密着性が向上し、耐剥離性が良好になるため好ましい。密着層の厚みは、密着層全体で0.1〜10μm、さらに0.2〜5μmの範囲内となることが好ましい。膜厚が0.1μm以上であれば十分な密着性向上の効果が得られ、10μm以下であれば耐摩耗性部材全体としての耐摩耗性が低下したり剥離が発生する危険性が少ない。 In the wear-resistant member of the present invention, a single-layer or multi-layer adhesion layer may be formed between the base material and the (Ti x Si 1-x ) (C y N 1-y ) layer. In particular, when the adhesion layer contains any one or more of Ti and / or Al carbide, nitride, carbonitride, nitride oxide, or Ti, the substrate and (Ti x Si 1-x ) ( C y N 1-y) can improve adhesion between the layers is preferable because peel resistance is improved. The thickness of the adhesion layer is preferably in the range of 0.1 to 10 μm, more preferably 0.2 to 5 μm in the entire adhesion layer. When the film thickness is 0.1 μm or more, a sufficient adhesion improvement effect is obtained, and when the film thickness is 10 μm or less, the wear resistance of the wear-resistant member as a whole is reduced and there is little risk of peeling.

本発明においては、(TixSi1-x)(Cy1-y)層とAl23層との間に単層または複層の中間層を配置しても良い。中間層は、(TixSi1-x)(Cy1-y)層とAl23層との密着力を強化して両層の界面における層間剥離を防止したり、中間層に耐摩耗性の高い層を選択した場合には、耐摩耗性部材全体としての耐摩耗性の向上に寄与するという効果を有する。 In the present invention, a single-layer or multi-layer intermediate layer may be disposed between the (Ti x Si 1-x ) (C y N 1-y ) layer and the Al 2 O 3 layer. The intermediate layer strengthens the adhesion between the (Ti x Si 1-x ) (C y N 1-y ) layer and the Al 2 O 3 layer to prevent delamination at the interface between the two layers, When a layer with high wear resistance is selected, it has an effect of contributing to improvement of wear resistance of the wear resistant member as a whole.

中間層を形成するための材料としては、Tiを主成分とする元素の炭化物、窒化物、炭窒化物等が好ましく、これらを用いることによって密着力の高い向上効果が得られる。特に、Al、Cr、Siを含むTiの炭化物、窒化物、炭窒化物は、高硬度で耐摩耗性の向上効果にも優れるため好ましい。   As the material for forming the intermediate layer, carbides, nitrides, carbonitrides, and the like of elements containing Ti as a main component are preferable. By using these, an improvement effect with high adhesion can be obtained. In particular, Ti carbides, nitrides, and carbonitrides containing Al, Cr, and Si are preferable because of their high hardness and excellent wear resistance improvement effect.

一方、Alおよび/またはSiを主成分とする元素の窒化物、および各種元素の窒酸化物も、(TixSi1-x)(Cy1-y)層およびAl23層に対する密着性が高い点で良好である。窒酸化物とする元素は、特にTi、Cr、Al、Siのいずれかを主成分とすることができる。 On the other hand, nitrides of elements mainly composed of Al and / or Si, and nitrides of various elements are also used for the (Ti x Si 1-x ) (C y N 1-y ) layer and the Al 2 O 3 layer. Good in terms of high adhesion. In particular, the element used as the nitride oxide can contain any of Ti, Cr, Al, and Si as a main component.

また各種元素の酸化物を用いた場合には、Al23層との密着性の向上効果が高い上、耐熱性も向上させることができる。この場合、特にAlおよび/またはSiを主成分とする元素の酸化物は好適である。 When oxides of various elements are used, the effect of improving the adhesion with the Al 2 O 3 layer is high, and the heat resistance can be improved. In this case, an oxide of an element mainly composed of Al and / or Si is particularly preferable.

中間層を形成するためのこれらの材料は単独で用いても良いが、これらを適宜組み合わせて複層とすることによって(TixSi1-x)(Cy1-y)層とAl23層との密着性をより向上させることが可能である。 These materials for forming the intermediate layer may be used alone, but by combining them appropriately to form a multilayer, the (Ti x Si 1-x ) (C y N 1-y ) layer and Al 2 It is possible to further improve the adhesion with the O 3 layer.

中間層の膜厚は、全体で0.001〜10μm、さらに0.1〜5μmの範囲内であることが好ましい。0.001μm以上であれば密着性向上の効果が十分得られ、10μm以下であれば中間層内での剥離による密着力低下を防止できる。   The total thickness of the intermediate layer is preferably in the range of 0.001 to 10 μm, more preferably 0.1 to 5 μm. If it is 0.001 μm or more, the effect of improving adhesion is sufficiently obtained, and if it is 10 μm or less, it is possible to prevent a decrease in adhesion due to peeling in the intermediate layer.

この他、本発明の耐摩耗性被膜の最表面には、たとえば表面の潤滑性を向上させる目的で表面層を形成させても良い。表面層に用いられ得る材料としては、DLC(ダイヤモンドライクカーボン)やMoS2、WC(炭化タングステン)等の潤滑性の高いものが好適である。これらの材料からなる表面層を形成させることにより、初期の摺動特性を向上させることができる。また、Tiの炭化物、窒化物、炭窒化物、窒酸化物のうち少なくとも1種からなる単層または複層の表面層を配置すれば、耐摩耗性を維持しつつ潤滑性を向上させることができる。 In addition, a surface layer may be formed on the outermost surface of the wear-resistant coating of the present invention, for example, for the purpose of improving the surface lubricity. As the material that can be used for the surface layer, materials having high lubricity such as DLC (diamond-like carbon), MoS 2 , and WC (tungsten carbide) are suitable. By forming a surface layer made of these materials, the initial sliding characteristics can be improved. Further, if a single-layer or multi-layer surface layer composed of at least one of Ti carbide, nitride, carbonitride, and nitride oxide is disposed, lubricity can be improved while maintaining wear resistance. it can.

表面層の膜厚は、表面層全体で0.05〜5μm、さらに0.1〜2μmの範囲内であることが好ましい。0.05μm以上であれば最表面を十分に被覆することができるため潤滑性向上の効果が発揮でき、5μm以下であれば表面層自体の剥離を防止できる。   The film thickness of the surface layer is preferably in the range of 0.05 to 5 μm, more preferably 0.1 to 2 μm for the entire surface layer. If it is 0.05 μm or more, the outermost surface can be sufficiently covered, so that the effect of improving the lubricity can be exhibited. If it is 5 μm or less, peeling of the surface layer itself can be prevented.

本発明のAl23層は、CVD法(化学蒸着法)、PVD法(物理蒸着法)のいずれによっても形成可能であるが、CVD法を用いる場合には、基板温度を1000〜1100℃程度に保持する必要がある。一方PVD法では、基板温度を500〜800℃の比較的低温に保持すれば良い。したがって、基材表面または基材と耐摩耗性被膜との界面における酸化を抑制できる点では、より低温での形成が可能なPVD法が有利である。また、PVD法で形成されたAl23膜は膜内に圧縮残留応力を有する。したがって、切削工具や機械部品等において、衝撃が加わることにより万一亀裂が生じても、亀裂が伸展し難く、耐欠損性、耐チッピング性において優れるという利点も有する。 The Al 2 O 3 layer of the present invention can be formed by either the CVD method (chemical vapor deposition method) or the PVD method (physical vapor deposition method), but when the CVD method is used, the substrate temperature is 1000 to 1100 ° C. It is necessary to hold to the extent. On the other hand, in the PVD method, the substrate temperature may be kept at a relatively low temperature of 500 to 800 ° C. Therefore, the PVD method that can be formed at a lower temperature is advantageous in that oxidation at the substrate surface or the interface between the substrate and the wear-resistant coating can be suppressed. Moreover, the Al 2 O 3 film formed by the PVD method has compressive residual stress in the film. Therefore, even if a crack is generated by applying an impact to a cutting tool, a machine part or the like, the crack is difficult to extend, and there is an advantage that the chipping resistance and chipping resistance are excellent.

本発明においては、Al23層のみをPVD法で形成しても良いが、(TixSi1-x)(Cy1-y)層およびAl23層、さらに耐摩耗性被膜を構成する層のすべてをPVD法で形成した場合、基材表面または基材と耐摩耗性被膜との界面における酸化の抑制効果、耐欠損性および耐チッピング性の向上効果がさらに顕著なものとなる。 In the present invention, only the Al 2 O 3 layer may be formed by the PVD method, but the (Ti x Si 1-x ) (C y N 1-y ) layer and the Al 2 O 3 layer, and further the wear resistance When all of the layers that make up the coating are formed by the PVD method, the effect of suppressing oxidation, chipping resistance and chipping resistance at the substrate surface or the interface between the substrate and the wear-resistant coating is even more pronounced It becomes.

本発明に適用されるPVD法の詳細は限定されるものではないが、イオンプレーティング法、スパッタリング法等は好適に用いられ得る。特に、冷陰極アーク式のイオンプレーティング法、アンバランストマグネトロンスパッタ法、デュアルマグネトロンスパッタ法等により(TixSi1-x)(Cy1-y)層、Al23層を形成する場合、より高いエネルギーを持つ粒子によって緻密な層が形成されるため好ましい。 Although the details of the PVD method applied to the present invention are not limited, an ion plating method, a sputtering method and the like can be suitably used. In particular, (Ti x Si 1-x ) ( Cy N 1-y ) layer and Al 2 O 3 layer are formed by cold cathode arc type ion plating method, unbalanced magnetron sputtering method, dual magnetron sputtering method, etc. In this case, a dense layer is formed by particles having higher energy, which is preferable.

また、密着層、中間層、表面層としてのTiN層およびTiCN層を、比較的低い基材温度で層の形成が可能なMT−CVD法で形成した場合にも、基材表面または基材と耐摩耗性被膜との界面における酸化を抑制し、耐摩耗性および耐熱性を向上させることは可能である。   In addition, even when the adhesion layer, the intermediate layer, the TiN layer and the TiCN layer as the surface layer are formed by the MT-CVD method capable of forming a layer at a relatively low substrate temperature, It is possible to suppress oxidation at the interface with the wear-resistant coating and improve wear resistance and heat resistance.

本発明の耐摩耗性部材の典型的な構成としては、基材上に密着層、(TixSi1-x)(Cy1-y)層、中間層、Al23層、表面層がこの順に積層されたものが挙げられる。各層は単層または複層とすることができるが、各々の層の層間、または複層の場合には層内に、さらに別の層を形成させても良い。また、基材上、または基材上に形成した密着層上に、(TixSi1-x)(Cy1-y)層とAl23層とを複数回繰り返して形成する方法等によって、基材表面または基材とAl23層との界面の酸化を防止して耐摩耗性を向上させつつ、より優れた耐熱性を有する耐摩耗性部材を得ることができる。 As a typical structure of the wear-resistant member of the present invention, an adhesion layer, (Ti x Si 1-x ) (C y N 1-y ) layer, intermediate layer, Al 2 O 3 layer, surface on the substrate One in which the layers are laminated in this order is mentioned. Each layer may be a single layer or a plurality of layers, but another layer may be formed between the layers or in the case of a plurality of layers. Further, a method of repeatedly forming a (Ti x Si 1-x ) (C y N 1-y ) layer and an Al 2 O 3 layer on a base material or an adhesion layer formed on the base material a plurality of times. Thus, it is possible to obtain a wear-resistant member having better heat resistance while preventing the oxidation of the substrate surface or the interface between the substrate and the Al 2 O 3 layer to improve the wear resistance.

本発明の耐摩耗性部材は以上のような構成を有することができるが、耐摩耗性被膜全体としての膜厚は0.5〜15μmの範囲内であることが好ましい。膜厚が0.5μm以上であれば耐摩耗性が十分得られ、15μm以下であれば基材と耐摩耗性被膜との密着性低下による剥離を効果的に防止することができる。さらに、より環境の厳しい切削工具や摺動部品においては、耐摩耗性被膜全体の膜厚が1〜5μmの範囲内であることが特に好ましい。   The wear-resistant member of the present invention can have the above-described configuration, but the film thickness of the entire wear-resistant film is preferably in the range of 0.5 to 15 μm. If the film thickness is 0.5 μm or more, sufficient wear resistance can be obtained, and if it is 15 μm or less, peeling due to a decrease in adhesion between the substrate and the wear-resistant coating can be effectively prevented. Furthermore, in a cutting tool or a sliding part having a more severe environment, it is particularly preferable that the film thickness of the entire wear-resistant coating is in the range of 1 to 5 μm.

なお、本発明において形成される各々の層の膜厚は、CVD法またはPVD法を用いた場合、蒸着条件の調整によって制御できる。すなわち蒸発源の放電による成膜時の圧力、放電時間等の蒸着条件は、材料組成および所望の膜厚に応じて最適な条件を選択すれば良い。   Note that the film thickness of each layer formed in the present invention can be controlled by adjusting the deposition conditions when the CVD method or the PVD method is used. That is, the deposition conditions such as the pressure at the time of film formation by the discharge of the evaporation source and the discharge time may be selected according to the material composition and the desired film thickness.

形成された層の層厚および膜構造は、断面のSEM観察およびTEM観察によって評価することができる。また結晶構造は、X線入射角を1°に固定した薄膜法によって得られるX線回折パターン、およびTEM装置を用いた電子線回折パターンによって評価することができる。   The layer thickness and film structure of the formed layer can be evaluated by SEM observation and TEM observation of the cross section. The crystal structure can be evaluated by an X-ray diffraction pattern obtained by a thin film method in which an X-ray incident angle is fixed at 1 ° and an electron beam diffraction pattern using a TEM apparatus.

<実施例>
以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
<Example>
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.

(実施例1〜12)
基材として、組成がJIS規格P30、形状がJIS−SNG432である超硬合金製切削チップを用い、基材表面に冷陰極アーク式のイオンプレーティングおよびアンバランストマグネトロンスパッタ、または、デュアルマグネトロンスパッタ法を用いて耐摩耗性被膜を形成した。
(Examples 1-12)
A cemented carbide cutting tip having a composition of JIS standard P30 and a shape of JIS-SNG432 is used as the substrate, and cold cathode arc type ion plating and unbalanced magnetron sputtering or dual magnetron sputtering is used on the substrate surface. A wear-resistant coating was formed using this method.

図2は、本発明に好適に適用されるデュアルマグネトロンスパッタ法について説明する図である。成膜装置には、アーク蒸発源21、22およびスパッタ蒸発源23、24を配置し、蒸発源間の中心点を中心として、これらの蒸発源間で回転する基材保持具25に、基材26として切削チップを装着した。   FIG. 2 is a diagram for explaining a dual magnetron sputtering method preferably applied to the present invention. In the film forming apparatus, arc evaporation sources 21 and 22 and sputter evaporation sources 23 and 24 are arranged, and a base material holder 25 that rotates between these evaporation sources around a central point between the evaporation sources is attached to a base material. A cutting tip was mounted as 26.

アーク蒸発源21に密着層の材料である金属材料またはセラミックス材料、アーク蒸発源22に(TixSi1-x)(Cy1-y)層の材料であるTiSi(チタンシリコン)、スパッタ源23に中間層の材料である金属材料またはセラミックス材料、スパッタ源24にAl23層の材料であるAl(アルミニウム)を、それぞれセットした。 The arc evaporation source 21 is made of a metal or ceramic material as a material for the adhesion layer, the arc evaporation source 22 is made of TiSi (titanium silicon) as a material for the (Ti x Si 1-x ) (C y N 1-y ) layer, sputter A metal material or ceramics material as an intermediate layer material was set in the source 23, and Al (aluminum) as an Al 2 O 3 layer material was set in the sputtering source 24, respectively.

成膜装置内を真空度1×10-3Pa以下に真空引きし、ガス導入口27からAr(アルゴン)ガスを導入した。真空度を3Paに保持し、基材を500℃まで加熱して1時間保持した。切削チップに1000Vの電圧を印加し、Arガス中でグロー放電させて、Arイオンによる基材表面のクリーニングを行なった後、Arガスを排気した。 The inside of the film forming apparatus was evacuated to a vacuum degree of 1 × 10 −3 Pa or less, and Ar (argon) gas was introduced from the gas inlet 27. The degree of vacuum was maintained at 3 Pa, and the substrate was heated to 500 ° C. and held for 1 hour. A voltage of 1000 V was applied to the cutting tip, glow discharge was performed in Ar gas, the substrate surface was cleaned with Ar ions, and then Ar gas was exhausted.

次に、所定の反応ガスを成膜装置に導入し、切削チップに対して所定の基板バイアス電圧を印加した後に、アーク蒸発源21を真空アーク放電させて、金属材料またはセラミックス材料の蒸発源をイオン化させることにより、切削チップ上に密着層を形成した。   Next, after a predetermined reaction gas is introduced into the film forming apparatus and a predetermined substrate bias voltage is applied to the cutting tip, the arc evaporation source 21 is subjected to a vacuum arc discharge so that an evaporation source of a metal material or a ceramic material is used. An adhesion layer was formed on the cutting tip by ionization.

続いて、所定の反応ガスを成膜装置内に導入し、アーク蒸発源22を放電させて(TixSi1-x)(Cy1-y)層を形成させた。 Subsequently, a predetermined reaction gas was introduced into the film forming apparatus, and the arc evaporation source 22 was discharged to form a (Ti x Si 1-x ) (C y N 1-y ) layer.

次に、Arおよび所定の反応ガスを成膜装置内に導入し、スパッタ源23を放電させて切削チップ上に中間層を形成した。同様に、ArガスおよびO2ガスを成膜装置内に導入し、基材を所定の成膜温度にした後、スパッタ源24を放電させてAl23層を形成した。最後に、成膜装置内に所定の反応ガスを導入し、アーク蒸発源21を再び放電させて表面層を形成し、表面被覆切削チップ試料を得た。 Next, Ar and a predetermined reaction gas were introduced into the film forming apparatus, and the sputtering source 23 was discharged to form an intermediate layer on the cutting tip. Similarly, Ar gas and O 2 gas were introduced into the film forming apparatus to bring the base material to a predetermined film forming temperature, and then the sputtering source 24 was discharged to form an Al 2 O 3 layer. Finally, a predetermined reaction gas was introduced into the film forming apparatus, the arc evaporation source 21 was discharged again to form a surface layer, and a surface-coated cutting tip sample was obtained.

なお、本発明の実施例および比較例を通じ、反応ガスとしては、炭化物、窒化物、炭窒化物の形成にはN2ガスおよびCH4ガス、炭窒化物の形成にはN2ガス、CH4ガスおよびCO2ガス、窒酸化物の形成にはN2ガスおよびO2ガスを用いた。 Incidentally, throughout the Examples and Comparative Examples of the present invention, as the reaction gas, carbide, nitride, N 2 gas and CH 4 gas for the formation of carbonitrides, N 2 gas for the formation of carbonitrides, CH 4 N 2 gas and O 2 gas were used for forming the gas, CO 2 gas, and nitrogen oxide.

蒸着源の放電条件、放電時の圧力、基材温度、反応ガスの導入流量等は、形成させる層の組成、層厚によって最も適した条件を採用した。代表的な成膜条件として、実施例1についての成膜条件を表1に示す。   The discharge conditions of the vapor deposition source, the pressure at the time of discharge, the substrate temperature, the introduction flow rate of the reaction gas, etc., adopted the most suitable conditions depending on the composition of the layer to be formed and the layer thickness. Table 1 shows film formation conditions for Example 1 as typical film formation conditions.

Figure 0004398224
Figure 0004398224

Figure 0004398224
Figure 0004398224

Figure 0004398224
Figure 0004398224

形成させた各層の組成、膜厚および膜構造を表1〜表3に示す。各層の組成はXPS(X線光電子分光法)によって測定した。また膜厚、組織構造、結晶質相の粒径は、断面のSEM観察およびTEM観察によって評価し、結晶構造は、X線入射角を1°に固定した薄膜法によって得られるX線回折パターン、およびTEM装置を用いた電子線回折パターンによって評価した。   Tables 1 to 3 show the composition, film thickness, and film structure of each layer formed. The composition of each layer was measured by XPS (X-ray photoelectron spectroscopy). The film thickness, texture structure, and crystalline phase particle size are evaluated by SEM observation and TEM observation of the cross section. And an electron beam diffraction pattern using a TEM apparatus.

(TixSi1-x)(Cy1-y)層の結晶構造については、非晶質のものを「amo.」、ナノコンポジット構造のものを「nc」、柱状組織を有するものを「柱状」と表記し、結晶質相を有するものについては該結晶質相の粒径を示した。 Regarding the crystal structure of the (Ti x Si 1-x ) (C y N 1-y ) layer, the amorphous structure is “amo.”, The nanocomposite structure is “nc”, and the crystal structure has a columnar structure. For those having a crystalline phase and expressed as “columnar”, the grain size of the crystalline phase is shown.

Al23層の結晶構造については、非晶質のものを「amo.」、α−Al23構造のものを「α」、γ−Al23構造のものを「γ」と表記した。 Regarding the crystal structure of the Al 2 O 3 layer, the amorphous structure is “amo.”, The α-Al 2 O 3 structure is “α”, and the γ-Al 2 O 3 structure is “γ”. Indicated.

(比較例1)
(TixSi1-x)(Cy1-y)層を形成せず、従来法である熱CVD法によって耐摩耗性被膜を形成し、表面被覆切削チップ試料を得た。形成させた各層の組成、膜厚および膜構造を表4に示す。
(Comparative Example 1)
A (Ti x Si 1-x ) ( Cy N 1-y ) layer was not formed, and a wear-resistant coating film was formed by a conventional thermal CVD method to obtain a surface-coated cutting tip sample. Table 4 shows the composition, film thickness, and film structure of each layer formed.

(比較例2)
Al23層を形成せず、従来法である冷陰極アーク式のイオンプレーティング法でTiAlN層を形成し、耐摩耗性被膜を切削チップ上に被覆し、表面被覆切削チップ試料を得た。形成させた各層の組成、膜厚および膜構造を表4に示す。
(Comparative Example 2)
An Al 2 O 3 layer was not formed, a TiAlN layer was formed by the conventional cold cathode arc type ion plating method, and a wear-resistant coating was coated on the cutting tip to obtain a surface-coated cutting tip sample. . Table 4 shows the composition, film thickness, and film structure of each layer formed.

Figure 0004398224
Figure 0004398224

(比較例3)
基材上にAl23層を形成し、その上に(TixSi1-x)(Cy1-y)層を形成して得られた耐摩耗性被膜を、切削チップ上に被覆した。なお密着層と(TixSi1-x)(Cy1-y)層は冷陰極アーク法、Al23層はアンバランストスパッタ法で、それぞれ形成し、表面被覆切削チップ試料を得た。形成させた各層の組成、膜厚および膜構造を表4に示す。
(Comparative Example 3)
An abrasion-resistant film obtained by forming an Al 2 O 3 layer on a substrate and forming a (Ti x Si 1-x ) ( Cy N 1-y ) layer thereon is formed on a cutting tip. Covered. The adhesion layer and the (Ti x Si 1-x ) (C y N 1-y ) layer were formed by the cold cathode arc method, and the Al 2 O 3 layer was formed by the unbalanced sputtering method. Obtained. Table 4 shows the composition, film thickness, and film structure of each layer formed.

形成した表面被覆切削チップ試料について、被覆材としてSCM435を用い、表5の切削条件にて連続切削試験と断続切削試験をそれぞれ行ない、切れ刃のニゲ面摩耗幅を測定した。結果を表6に示す。   With respect to the formed surface-coated cutting chip sample, SCM435 was used as a coating material, and a continuous cutting test and an intermittent cutting test were performed under the cutting conditions shown in Table 5 to measure the wear width of the cutting edge. The results are shown in Table 6.

Figure 0004398224
Figure 0004398224

Figure 0004398224
Figure 0004398224

表6の結果より、本発明に係る実施例1〜12では、比較例1〜3と比べて、連続切削試験と断続切削試験の少なくとも一方についてニゲ面摩耗幅が小さく、特に実施例5、8〜11に関しては、連続切削試験および断続切削試験の両方でニゲ面摩耗幅が小さい。よって、本発明の耐摩耗性部材が良好な耐摩耗性および耐熱性を有することが分かる。   From the result of Table 6, in Examples 1-12 which concern on this invention, compared with Comparative Examples 1-3, the uneven | corrugated surface wear width is small about at least one of a continuous cutting test and an intermittent cutting test. As for ˜11, the uneven wear width is small in both the continuous cutting test and the intermittent cutting test. Therefore, it turns out that the abrasion-resistant member of this invention has favorable abrasion resistance and heat resistance.

(実施例13〜18)
基材となる市販の切削チップとして、サーメットまたは立方晶窒化ホウ素焼結体をセットし、成膜装置のアーク蒸発源を3基、アンバランストマグネトロンスパッタ源を3基とし、実施例1〜12と同様の方法で表面被覆切削チップ試料を得た。なお中間層1、2および(TixSi1-x)(Cy1-y)層はアーク蒸着源を用い、密着層1、2およびAl23層はアンバランストマグネトロンスパッタ源を用いてそれぞれ形成した。形成させた層の組成、膜厚および膜構造を表7および表8に示す。
(Examples 13 to 18)
As a commercially available cutting tip to be a base material, a cermet or cubic boron nitride sintered body is set, and three arc evaporation sources and three unbalanced magnetron sputtering sources of a film forming apparatus are used. A surface-coated cutting tip sample was obtained in the same manner as above. The intermediate layers 1 and 2 and the (Ti x Si 1-x ) (C y N 1-y ) layer use an arc evaporation source, and the adhesion layers 1 and 2 and the Al 2 O 3 layer use an unbalanced magnetron sputtering source. Each was formed using. Tables 7 and 8 show the composition, film thickness, and film structure of the formed layers.

Figure 0004398224
Figure 0004398224

Figure 0004398224
Figure 0004398224

(比較例4)
実施例13〜18と同様の基材を用いた他は比較例1と同様の方法で、表面被覆切削チップ試料を得た。形成させた各層の組成、膜厚および膜構造を表9に示す。
(Comparative Example 4)
Surface-coated cutting tip samples were obtained in the same manner as in Comparative Example 1 except that the same substrates as in Examples 13 to 18 were used. Table 9 shows the composition, film thickness, and film structure of each layer formed.

(比較例5)
実施例13〜18と同様の基材を用いた他は比較例2と同様の方法で、表面被覆切削チップ試料を得た。形成させた各層の組成、膜厚および膜構造を表9に示す。
(Comparative Example 5)
A surface-coated cutting tip sample was obtained in the same manner as in Comparative Example 2 except that the same substrate as in Examples 13 to 18 was used. Table 9 shows the composition, film thickness, and film structure of each layer formed.

(比較例6)
実施例13〜18と同様の基材を用いた他は比較例3と同様の方法で、表面被覆切削チップ試料を得た。形成させた各層の組成、膜厚および膜構造を表9に示す。
(Comparative Example 6)
A surface-coated cutting tip sample was obtained in the same manner as in Comparative Example 3 except that the same substrate as in Examples 13 to 18 was used. Table 9 shows the composition, film thickness, and film structure of each layer formed.

Figure 0004398224
Figure 0004398224

形成した表面被覆切削チップ試料について、被覆材としてSCM435を用い、表10の切削条件にて連続切削試験と溝を有する丸棒切削試験をそれぞれ行ない、切れ刃のニゲ面摩耗幅を測定した。結果を表11に示す。   With respect to the formed surface-coated cutting tip sample, SCM435 was used as a coating material, and a continuous cutting test and a round bar cutting test with a groove were respectively performed under the cutting conditions shown in Table 10, and the wear width of the cut edge was measured. The results are shown in Table 11.

Figure 0004398224
Figure 0004398224

Figure 0004398224
Figure 0004398224

表11の結果より、比較例4〜6では、連続切削試験および溝を有する丸棒切削試験の両方でニゲ面摩耗幅が大きいのに対し、本発明に係る実施例13〜18では、連続切削試験および溝を有する丸棒切削試験の少なくとも一方でニゲ面摩耗幅が小さく、特に実施例16〜18では連続切削試験および溝を有する丸棒切削試験の両方におけるニゲ面摩耗幅が小さい。よって、本発明の耐摩耗性部材は良好な耐摩耗性と耐欠損性を示すことが分かる。   From the results of Table 11, in Comparative Examples 4 to 6, the Nige surface wear width was large in both the continuous cutting test and the round bar cutting test having grooves, whereas in Examples 13 to 18 according to the present invention, continuous cutting was performed. At least one of the test and the round bar cutting test having a groove has a small uneven surface wear width. In particular, in Examples 16 to 18, the uneven surface wear width is small in both the continuous cutting test and the round bar cutting test having a groove. Therefore, it can be seen that the wear-resistant member of the present invention exhibits good wear resistance and fracture resistance.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明によれば、超硬合金、サーメット、cBN焼結体、ダイヤ焼結体、TiC−Al23焼結体、Si34焼結体等の基材の表面に、単層または複層の(TixSi1-x)(Cy1-y)層を介在させ、さらに単層または複層のAl23層を形成することにより、優れた耐摩耗性、耐熱性、耐剥離性、耐欠損性を有する耐摩耗性部材が得られる。本発明の耐摩耗性部材を切削工具や機械部品等として用いた場合、良好な耐摩耗性、耐熱性などの特性を長期にわたって維持することが可能である。 According to the present invention, on the surface of a substrate such as cemented carbide, cermet, cBN sintered body, diamond sintered body, TiC-Al 2 O 3 sintered body, Si 3 N 4 sintered body, a single layer or Excellent wear resistance and heat resistance by interposing multiple (Ti x Si 1-x ) (C y N 1-y ) layers and forming a single layer or multiple layers of Al 2 O 3 Thus, a wear-resistant member having peeling resistance and chipping resistance is obtained. When the wear-resistant member of the present invention is used as a cutting tool, a machine part, or the like, it is possible to maintain good wear resistance, heat resistance, and other characteristics over a long period of time.

本発明に係る耐摩耗性部材の構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of the abrasion-resistant member which concerns on this invention. 本発明に好適に適用されるデュアルマグネトロンスパッタ法について説明する図である。It is a figure explaining the dual magnetron sputtering method applied suitably for this invention.

符号の説明Explanation of symbols

11 耐摩耗性被膜、12 耐摩耗性部材、13 基材、14 密着層、15 (TixSi1-x)(Cy1-y)層、16 中間層、17 Al23層、18 表面層、21,22 アーク蒸着源、23,24 スパッタ源、25 基材保持具、26 基材、27 ガス導入口。 11 wear-resistant coating, 12 wear resistant member, 13 substrate, 14 adhesion layer, 15 (Ti x Si 1- x) (C y N 1-y) layer, 16 an intermediate layer, 17 Al 2 O 3 layer, 18 Surface layer, 21, 22 Arc evaporation source, 23, 24 Sputter source, 25 Base material holder, 26 Base material, 27 Gas inlet.

Claims (16)

単層または複層のAl23層と、単層または複層の(TixSi1-x)(Cy1-y)層(但し、0<x<1、かつ0≦y<1)とを含む耐摩耗性被膜、および基材を含み、前記(TixSi1-x)(Cy1-y)層が前記Al23層と前記基材との間に配置された耐摩耗性部材であって、
前記Al23層および前記(TixSi1-x)(Cy1-y)層は、物理蒸着膜であり、かつ
前記(Ti x Si 1-x )(C y 1-y )層は、該層の表面側から基材表面側へと繋がる連続した粒界が存在しない耐摩耗性部材。
Single layer or multilayer Al 2 O 3 layer and single layer or multilayer (Ti x Si 1-x ) (C y N 1-y ) layer (where 0 <x <1 and 0 ≦ y < 1) and a base material, wherein the (Ti x Si 1-x ) (C y N 1-y ) layer is disposed between the Al 2 O 3 layer and the base material A wear-resistant member,
Wherein the Al 2 O 3 layer and the (Ti x Si 1-x) (C y N 1-y) layer, Ri physical vapor deposition film der, and
The (Ti x Si 1-x ) (C y N 1-y ) layer is a wear-resistant member in which there is no continuous grain boundary connected from the surface side of the layer to the substrate surface side .
前記(TixSi1-x)(Cy1-y)層(但し、0<x<1、かつ0≦y<1)のうち少なくとも1層が非晶質構造を有する、請求項1に記載の耐摩耗性部材。 2. The (Ti x Si 1-x ) (C y N 1-y ) layer (where 0 <x <1 and 0 ≦ y <1) has at least one layer having an amorphous structure. A wear-resistant member as described in 1. 前記(TixSi1-x)(Cy1-y)層(但し、0<x<1、かつ0≦y<1)のうち少なくとも1層が、非晶質相の中に粒径が1〜50nmの範囲内である結晶質相を有するナノコンポジット構造からなる、請求項1に記載の耐摩耗性部材。 At least one of the (Ti x Si 1-x ) (C y N 1-y ) layers (where 0 <x <1 and 0 ≦ y <1) has a grain size in the amorphous phase. The wear-resistant member according to claim 1, comprising a nanocomposite structure having a crystalline phase in a range of 1 to 50 nm. 前記(TixSi1-x)(Cy1-y)層(但し、0<x<1、かつ0≦y<1)のうち少なくとも1層が、粒径が1〜50nmの範囲内である柱状組織を有する、請求項1に記載の耐摩耗性部材。 At least one of the (Ti x Si 1-x ) (C y N 1-y ) layers (where 0 <x <1 and 0 ≦ y <1) has a particle size in the range of 1 to 50 nm. The wear-resistant member according to claim 1, which has a columnar structure. 前記(TixSi1-x)(Cy1-y)層(但し、0<x<1、かつ0≦y<1)のうち少なくとも1層において、x=0.6〜0.95、かつy=0〜0.6の範囲内である、請求項1に記載の耐摩耗性部材。 In at least one of the (Ti x Si 1-x ) (C y N 1-y ) layers (where 0 <x <1 and 0 ≦ y <1), x = 0.6 to 0.95 And the abrasion-resistant member of Claim 1 which exists in the range of y = 0-0.6. 前記Al23層のうち少なくとも1層がα−Al23構造またはγ−Al23構造を有する結晶性のAl23層である、請求項1に記載の耐摩耗性部材。 A crystalline the Al 2 O 3 layer having at least one layer α-Al 2 O 3 structure or γ-Al 2 O 3 structure of the the Al 2 O 3 layer, wear resistant member according to claim 1 . 前記(TixSi1-x)(Cy1-y)層(但し、0<x<1、かつ0≦y<1)と基材との間に単層または複層の密着層を有する、請求項1に記載の耐摩耗性部材。 A single-layer or multi-layer adhesive layer is provided between the (Ti x Si 1-x ) (C y N 1-y ) layer (where 0 <x <1 and 0 ≦ y <1) and the substrate. The wear-resistant member according to claim 1. 前記密着層のうち少なくとも1層が、Tiおよび/またはAlの炭化物、窒化物、炭窒化物、窒酸化物、もしくはTiのうち1種以上を含み、前記密着層全体の膜厚が0.1〜10μmの範囲内である、請求項7に記載の耐摩耗性部材。   At least one of the adhesion layers contains one or more of Ti and / or Al carbide, nitride, carbonitride, nitride oxide, or Ti, and the film thickness of the entire adhesion layer is 0.1. The wear-resistant member according to claim 7, which is in a range of −10 μm. 前記(TixSi1-x)(Cy1-y)層(但し、0<x<1、かつ0≦y<1)と前記Al23層との間に単層または複層の中間層を有する、請求項1に記載の耐摩耗性部材。 A single layer or a multilayer between the (Ti x Si 1-x ) (C y N 1-y ) layer (where 0 <x <1 and 0 ≦ y <1) and the Al 2 O 3 layer The wear-resistant member according to claim 1, which has an intermediate layer. 前記中間層のうち少なくとも1層が、Ti、Cr、Si、Alから選択される1種以上の元素の炭化物、窒化物、酸化物、炭窒化物、窒酸化物のうち1種以上を含み、前記中間層全体の膜厚が0.2〜10μmの範囲内である、請求項9に記載の耐摩耗性部材。   At least one of the intermediate layers includes one or more of carbides, nitrides, oxides, carbonitrides, and nitrides of one or more elements selected from Ti, Cr, Si, and Al. The wear-resistant member according to claim 9, wherein the film thickness of the entire intermediate layer is in the range of 0.2 to 10 µm. 最表面に表面層を有する、請求項1に記載の耐摩耗性部材。   The wear-resistant member according to claim 1, which has a surface layer on the outermost surface. 前記表面層のうち少なくとも1層は、Tiの炭化物、窒化物、炭窒化物、窒酸化物のうち1種以上を含み、前記表面層全体の膜厚が0.05〜5μmの範囲内である、請求項11に記載の耐摩耗性部材。   At least one of the surface layers includes at least one of Ti carbide, nitride, carbonitride, and nitride oxide, and the film thickness of the entire surface layer is in the range of 0.05 to 5 μm. The wear-resistant member according to claim 11. 前記基材の少なくとも一部が前記耐摩耗性被膜で被覆されてなる、請求項1に記載の耐摩耗性部材。   The wear-resistant member according to claim 1, wherein at least a part of the substrate is coated with the wear-resistant coating. 前記基材が、超硬合金、サーメット、cBN焼結体、ダイヤ焼結体、TiC−Al23焼結体、Si34焼結体から選択される、請求項1に記載の耐摩耗性部材。 Said substrate, a cemented carbide, cermet, cBN sintered, diamond sintered body, TiC-Al 2 O 3 sintered body is selected from Si 3 N 4 sintered body, resistance of Claim 1 Abrasive material. 前記基材が高速度鋼である、請求項1に記載の耐摩耗性部材。   The wear-resistant member according to claim 1, wherein the base material is high-speed steel. 切削工具に対して用いられる、請求項1に記載の耐摩耗性部材。   The wear-resistant member according to claim 1, which is used for a cutting tool.
JP2003376210A 2003-11-05 2003-11-05 Wear resistant parts Expired - Fee Related JP4398224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003376210A JP4398224B2 (en) 2003-11-05 2003-11-05 Wear resistant parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003376210A JP4398224B2 (en) 2003-11-05 2003-11-05 Wear resistant parts

Publications (2)

Publication Number Publication Date
JP2005138209A JP2005138209A (en) 2005-06-02
JP4398224B2 true JP4398224B2 (en) 2010-01-13

Family

ID=34687351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003376210A Expired - Fee Related JP4398224B2 (en) 2003-11-05 2003-11-05 Wear resistant parts

Country Status (1)

Country Link
JP (1) JP4398224B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260806A (en) * 2006-03-28 2007-10-11 Sumitomo Metal Ind Ltd Cutting tool
WO2007111293A1 (en) * 2006-03-28 2007-10-04 Sumitomo Metal Industries, Ltd. Cutting tool and process for manufacturing the same
JP5093917B2 (en) * 2007-01-30 2012-12-12 住友電工ハードメタル株式会社 Surface coated cutting tool
KR101257375B1 (en) * 2007-02-22 2013-04-23 미츠비시 쥬고교 가부시키가이샤 Surface film member, process for producing the surface covering member, cutting tool, and machine tool
EP2147132B1 (en) * 2007-04-18 2017-03-01 Sandvik Intellectual Property AB A coated cutting tool
JP5261981B2 (en) * 2007-05-17 2013-08-14 日立ツール株式会社 Coated cutting tool
DE102008013965A1 (en) * 2008-03-12 2009-09-17 Kennametal Inc. Hard material coated body
DE102011087715A1 (en) * 2011-12-05 2013-07-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. HARDWARE-COATED METAL, HARD-METAL, CERMET OR CERAMIC BODIES AND METHOD FOR THE PRODUCTION OF SUCH BODIES
CN104203466A (en) 2012-04-02 2014-12-10 Osg株式会社 Hard coating film for cutting tool and cutting tool coated with hard coating film
WO2013153614A1 (en) 2012-04-09 2013-10-17 オーエスジー株式会社 Hard coating for cutting tool, and cutting tool coated with hard coating
CN107488043B (en) * 2016-06-12 2022-10-25 中国科学院宁波材料技术与工程研究所 Multilayer composite film, preparation method thereof and application of multilayer composite film as silicon carbide and composite material connecting material thereof
CN109112500B (en) 2017-06-22 2022-01-28 肯纳金属公司 CVD composite refractory coating and application thereof
CN116963861A (en) * 2021-04-30 2023-10-27 住友电气工业株式会社 Cutting tool
WO2022230360A1 (en) * 2021-04-30 2022-11-03 住友電気工業株式会社 Cutting tool
EP4331756A1 (en) * 2021-04-30 2024-03-06 Sumitomo Electric Industries, Ltd. Cutting tool
JP7332048B1 (en) 2022-01-25 2023-08-23 住友電気工業株式会社 Cutting tool and its manufacturing method

Also Published As

Publication number Publication date
JP2005138209A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP6222675B2 (en) Surface-coated cutting tool and method for manufacturing the same
JP4398224B2 (en) Wear resistant parts
JP5321975B2 (en) Surface coated cutting tool
JP4388582B2 (en) Hard coating layer and method for forming the same
JPWO2010150335A1 (en) Coated cubic boron nitride sintered body tool
JP2009034781A (en) Surface-coated cutting tool
JP2006192545A (en) Surface-coated cutting tool and its manufacturing method
JP2008240079A (en) Coated member
JP5640242B2 (en) Surface coated cutting tool
JP2010099769A (en) Surface-coated tool
JP5395454B2 (en) Surface coated cutting tool
JP3460288B2 (en) Surface coating member with excellent wear resistance
JP4155641B2 (en) Abrasion resistant coating, method for producing the same, and abrasion resistant member
JP4398287B2 (en) Surface coated cutting tool
JP5234357B2 (en) Wear-resistant tool material with excellent lubricity
WO2019239654A1 (en) Surface-coated cutting tool and process for producing same
JP2010188460A (en) Surface coated cutting tool
JP5668262B2 (en) Surface coated cutting tool
JP5267365B2 (en) Surface coated cutting tool
JP6583763B1 (en) Surface-coated cutting tool and manufacturing method thereof
JP5094348B2 (en) Surface coating tool
JPH10317123A (en) Crystalline oriented hard coated member
JP5640243B2 (en) Surface coated cutting tool
JP2006192544A (en) Surface-coated cutting tool and its manufacturing method
JP4936742B2 (en) Surface coating tools and cutting tools

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20050622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080508

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080617

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4398224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees