JP4398287B2 - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP4398287B2
JP4398287B2 JP2004076028A JP2004076028A JP4398287B2 JP 4398287 B2 JP4398287 B2 JP 4398287B2 JP 2004076028 A JP2004076028 A JP 2004076028A JP 2004076028 A JP2004076028 A JP 2004076028A JP 4398287 B2 JP4398287 B2 JP 4398287B2
Authority
JP
Japan
Prior art keywords
cutting tool
cutting
coated cutting
oxide layer
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004076028A
Other languages
Japanese (ja)
Other versions
JP2005262356A (en
Inventor
直也 大森
治世 福井
秀樹 森口
圭一 津田
晋也 今村
誠 瀬戸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Original Assignee
Sumitomo Electric Hardmetal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp filed Critical Sumitomo Electric Hardmetal Corp
Priority to JP2004076028A priority Critical patent/JP4398287B2/en
Publication of JP2005262356A publication Critical patent/JP2005262356A/en
Application granted granted Critical
Publication of JP4398287B2 publication Critical patent/JP4398287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、基材表面に被覆層を具える表面被覆切削工具に関する。特に、断続切削、重切削、高速切削に代表される高能率切削やドライ加工などの刃先温度が非常に高温となる切削条件においても、靭性及び耐摩耗性の双方に優れる表面被覆切削工具に関するものである。   The present invention relates to a surface-coated cutting tool having a coating layer on a substrate surface. In particular, it relates to a surface-coated cutting tool that excels in both toughness and wear resistance even under cutting conditions where the cutting edge temperature is extremely high, such as high-efficiency cutting and dry machining represented by intermittent cutting, heavy cutting, and high-speed cutting. It is.

最近の切削工具の動向として、地球環境保全の観点から切削油剤を用いないドライ加工が求められていること、被削材が多様化していること、加工能率を一層向上させるために切削速度がより高速になってきていることなどから、工具の刃先温度はますます高温になる傾向にある。その結果、工具寿命が短くなるため、工具材料に要求される特性は厳しくなる一方である。   Recent trends in cutting tools include the need for dry machining that does not require cutting fluids from the viewpoint of global environmental conservation, the diversification of work materials, and the cutting speed has been increased to further improve machining efficiency. The tool tip temperature tends to be higher due to the higher speed. As a result, the tool life is shortened, and the characteristics required for the tool material are becoming stricter.

そこで、耐摩耗性及び表面保護機能を改善するため、切削工具や耐摩耗工具として、WC基超硬合金、サーメット、立方晶型窒化硼素焼結体、高速度鋼などからなる基材表面にAlTiSi系の窒化物や炭窒化物からなる被覆層を具えたものが知られている(特許文献1参照)。このAlTiSi系化合物からなる被覆層は、従来のTiNやTiCNに比べて高耐熱性を有する。しかし、現在求められている高速、高能率な切削の場合、切削点での温度が900℃近くまで達する。このような非常に高温となる環境下では、上記AlTiSi系化合物膜であっても、酸化されて硬度及び強度が劣化してしまうことがある。   Therefore, in order to improve wear resistance and surface protection function, AlTiSi is applied to the base material surface made of WC-based cemented carbide, cermet, cubic boron nitride sintered body, high-speed steel, etc. as a cutting tool or wear-resistant tool. Those having a coating layer made of a system nitride or carbonitride are known (see Patent Document 1). The coating layer made of this AlTiSi compound has higher heat resistance than conventional TiN or TiCN. However, in the case of high-speed and high-efficiency cutting that is currently required, the temperature at the cutting point reaches nearly 900 ° C. Under such an extremely high temperature environment, even the above-described AlTiSi-based compound film may be oxidized and deteriorate in hardness and strength.

上記のような極めて高温となる環境下に対応するために、化学的蒸着法(CVD法)によってα型アルミナ(酸化アルミニウム)を基材表面に被覆した工具が提案されている(例えば、特許文献2参照)。α型アルミナは、1000℃以上の温度においても結晶構造が安定であるため、耐熱性に優れる。しかし、CVD法は、(1)1000℃近い温度環境下で成膜が行われるため、基材に対するダメージが大きい(基材の強度が極端に劣化する)、(2)被膜に引っ張りの残留応力が残るため、膜強度及び破壊靭性値が低くチッピングや欠損が生じやすい、などといった問題がある。このような工具は、特に、大きな衝撃が繰り返し与えられる断続切削には不向きである。   In order to cope with the extremely high temperature environment as described above, a tool in which α-type alumina (aluminum oxide) is coated on the substrate surface by a chemical vapor deposition method (CVD method) has been proposed (for example, Patent Documents). 2). Since α-type alumina has a stable crystal structure even at a temperature of 1000 ° C. or higher, it has excellent heat resistance. However, in the CVD method, film formation is performed in a temperature environment close to 1000 ° C, so the damage to the substrate is large (the strength of the substrate is extremely deteriorated), and (2) the tensile residual stress in the film Therefore, there is a problem that the film strength and fracture toughness value are low and chipping and chipping are likely to occur. Such a tool is particularly unsuitable for intermittent cutting in which a large impact is repeatedly applied.

上記問題に対して、被膜に圧縮の残留応力を付与できるPVD法によってアルミナを成膜することが考えられる(例えば、特許文献3参照)。特許文献3実施例では、成膜温度を780℃以上としており、成膜温度を1000℃以上とするCVD法と比較して成膜温度が低いため、基材へのダメージを低減できると共に、圧縮の残留応力を付与するため、チッピングや欠損の発生も低減できる。   In order to solve the above problem, it is conceivable to form an alumina film by a PVD method capable of imparting compressive residual stress to the coating (see, for example, Patent Document 3). In the example of Patent Document 3, the film forming temperature is set to 780 ° C. or higher, and the film forming temperature is lower than the CVD method in which the film forming temperature is set to 1000 ° C. or higher. Therefore, the occurrence of chipping and chipping can be reduced.

特開平7-310174号公報Japanese Unexamined Patent Publication No. 7-310174 欧州特許出願公開第693574号明細書European Patent Application No. 693574 特開平7-41963号公報Japanese Unexamined Patent Publication No. 7-41963

上記のように特許文献3に開示される技術は、PVD法でアルミナを被覆することで、耐熱性に優れると共に、基材へのダメージや靭性の低下などもある程度低減することができる。しかし、近年、切削条件がますます厳しくなってきており、上記従来の技術では、市場要求に十分応えられておらず、更なる向上が望まれている。   As described above, the technique disclosed in Patent Document 3 is excellent in heat resistance by covering alumina by the PVD method, and can also reduce damage to the base material and decrease in toughness to some extent. However, in recent years, cutting conditions have become increasingly severe, and the above-described conventional technology does not sufficiently meet market demands, and further improvements are desired.

そこで、本発明の主目的は、高速切削やドライ加工、重切削加工などの過酷な切削条件であっても、靭性と耐摩耗性とをバランスよく有し、高発熱切削においても優れた切削性能を有する表面被覆切削工具を提供することにある。   Therefore, the main object of the present invention is to have a good balance between toughness and wear resistance even under severe cutting conditions such as high-speed cutting, dry processing, and heavy cutting, and excellent cutting performance even in high heat generation cutting. It is an object of the present invention to provide a surface-coated cutting tool.

即ち、本発明は、基材上に被覆層を具える表面被覆切削工具であって、前記被覆層として、固体蒸発源を用いて成膜された酸素原子を含有する酸化物層を一層以上具える。そして、この酸化物層のうち、少なくとも一層は、基材から離れる側の表面において、基準長さを30μmとしたとき、この基準長さ内の面粗度がRmaxで0.3μm未満であることを特徴とする。   That is, the present invention is a surface-coated cutting tool comprising a coating layer on a substrate, and the coating layer further comprises one or more oxide layers containing oxygen atoms formed using a solid evaporation source. Yeah. And at least one of the oxide layers has a surface roughness within the reference length of Rmax of less than 0.3 μm when the reference length is 30 μm on the surface away from the substrate. Features.

発明者らが種々検討した結果、固体蒸発源を用いて酸化物被膜を設けると共に、この酸化物被膜の基材から離れる側の表面極微視的な凹凸が存在した場合、膜剥離を促進し、結果として刃先の欠損を抑制して、鋼などの被削材に対して、高速切削やドライ加工、重切削加工などといった過酷な切削条件で切削を行っても切削性能、特に耐摩耗性に優れる、との知見を得た。具体的には、例えば、旋削加工で汎用されている切削速度200m/min以上250m/min以下でドライ加工や断続加工といった切削条件において、靭性と耐摩耗性とをバランスよく発揮することができる、との知見を得た。この知見に基づき、本発明は、耐摩耗性と靭性とのバランスに優れる切削工具を提供する。 As a result of various investigations by the inventors, when an oxide film is provided using a solid evaporation source and there is microscopic unevenness on the surface of the oxide film away from the base material, film peeling is promoted. As a result, cutting edge damage is suppressed, and cutting performance, especially wear resistance, can be achieved even when cutting materials such as steel under severe cutting conditions such as high-speed cutting, dry machining, and heavy cutting. The knowledge that it is excellent was obtained. Specifically, for example, in cutting conditions such as dry machining and intermittent machining at a cutting speed of 200 m / min or more and 250 m / min or less commonly used in turning, toughness and wear resistance can be exhibited in a balanced manner. And gained knowledge. Based on this knowledge, the present invention provides a cutting tool having an excellent balance between wear resistance and toughness.

上記の正確な理由は不明であるが、以下のように推測している。酸素原子を含有した酸化物被膜、例えば、アルミナ膜は、耐熱性に優れ、被削材に多く用いられている鉄との反応性が極めて低いため、被覆層として有効に機能する。しかし、CVD法のように気相合成した場合と比較して、固体蒸発源を用いて被覆した被膜は、成膜温度が低いため、基材や他の被膜との密着力の点で劣る。そこで、上記酸化物被膜において基材から離れる側の表面に微視的凹凸を存在させ、被削材との切削抵抗を低減させたり、凹凸により密着作用を高めたりすることを検討した。ところが、上記微視的な凹凸が過度に存在すると、密着強度が高まり過ぎて、被膜自体に衝撃が加わって亀裂が発生した場合、切欠き効果として作用し、刃先に欠損が生じることがあった。そこで、上記微視的な凹凸を特定範囲内とすると、切欠き効果を発生する前に被膜が剥離して、結果的に刃先の欠損を抑制することができたと考えられる。   The exact reason for the above is unknown, but is presumed as follows. An oxide film containing oxygen atoms, such as an alumina film, is excellent in heat resistance and has an extremely low reactivity with iron often used for a work material, and thus functions effectively as a coating layer. However, compared with the case of vapor phase synthesis as in the CVD method, a film coated with a solid evaporation source is inferior in terms of adhesion to a substrate or another film because the film forming temperature is low. In view of this, the present inventors have studied to make microscopic unevenness on the surface of the oxide film away from the base material to reduce the cutting resistance with the work material and to increase the adhesion effect by the unevenness. However, if the microscopic irregularities are excessively present, the adhesion strength becomes too high, and when the coating itself is impacted and cracks occur, it acts as a notch effect, and the cutting edge may be damaged. . Therefore, if the microscopic unevenness is within a specific range, it is considered that the coating peeled off before the notch effect was generated, and as a result, chipping of the blade edge could be suppressed.

以下、本発明をより詳しく説明する。
(被覆層)
<酸化物層>
基材上に具える被覆層には、酸素原子を含有する酸化物層を一層以上具える。即ち、被覆層は、酸化物層を一層のみ具える単層としてもよいし、酸化物層を複数具える複数層としてもよい。また、後述するように酸化物層に加えて酸化物層以外の被膜を具えた複数層としてもよい。
Hereinafter, the present invention will be described in more detail.
(Coating layer)
<Oxide layer>
The coating layer provided on the substrate includes one or more oxide layers containing oxygen atoms. That is, the coating layer may be a single layer including only one oxide layer or a plurality of layers including a plurality of oxide layers. Moreover, it is good also as a multiple layer which provided the film other than an oxide layer in addition to an oxide layer so that it may mention later.

そして、本発明では、上記酸化物層のうち、少なくとも一層は、基材から離れる側の表面において、基準長さを30μmとしたとき、この基準長さ内の面粗度がRmaxで0.3μm未満とする。本発明者らは、酸化物層において種々の凹凸状態を形成して調べたところ、上記面粗度を満たすとき、鋼(被削材)の高速切削やドライ加工などの刃先が高温になるような切削条件において、刃先の欠損を起こしにくく、優れた耐摩耗性を示すことを見出した。   In the present invention, at least one of the oxide layers on the surface away from the substrate has a reference length of 30 μm, and the surface roughness within the reference length is less than 0.3 μm in Rmax. And The present inventors have investigated by forming various uneven states in the oxide layer, and when the surface roughness is satisfied, the cutting edge of the steel (work material) such as high-speed cutting or dry processing becomes hot. It was found that the cutting edge was not easily damaged under excellent cutting conditions and showed excellent wear resistance.

上記面粗度は、ダイヤモンド砥石やダイヤモンド砥粒による表面処理(傷つけ処理)などにて形成される巨視的な凹凸ではなく、微小区間内における微細な凹凸を測定したものである。Rmaxの観察方法としては、例えば、被覆後、被覆層の断面をラッピング観察して写真撮影を行い、酸化物層が最外層のときはその表面において、酸化物層が内層のときは酸化物層の上に被覆されたその他の被膜と酸化物層との境界面において、面粗度計算を行うことが挙げられる。このとき、巨視的なうねりは、直線近似して計算してもよい。また、酸化物層が最外層のとき、擬似的に酸化物層の上にTiN被膜を低温で被覆してから、上記酸化物層が内層のときと同様にして面粗度を算出してもよい。   The surface roughness is not a macro unevenness formed by a surface treatment (scratching treatment) with a diamond grindstone or diamond abrasive grains, but a fine unevenness in a minute section. As a method of observing Rmax, for example, after coating, a cross-section of the coating layer is observed by wrapping observation, and a photograph is taken. When the oxide layer is the outermost layer, on the surface, and when the oxide layer is the inner layer, the oxide layer It is possible to calculate the surface roughness at the boundary surface between the other film coated on the oxide layer and the oxide layer. At this time, the macroscopic swell may be calculated by linear approximation. Also, when the oxide layer is the outermost layer, the surface roughness can be calculated in the same manner as when the oxide layer is the inner layer after the TiN film is artificially coated on the oxide layer at a low temperature. Good.

上記面粗度は、例えば、被覆層(特に、酸化物層)の膜厚や、被覆層(特に、酸化物層)の成膜条件、具体的には、成膜温度やバイアス電圧、サンプル(基材)とターゲット(固体蒸発源)間の距離などを変化させることで制御することができる。面粗度を0.3μm未満にするには、例えば、膜厚をより薄くしたり、成膜温度をより低めにしたり、サンプルとターゲット間の距離をより長くすることが挙げられる。本発明では、極微視的な凹凸が存在するものとする。従って、面粗度は、Rmaxで0μm超とする。また、面粗度は小さいほど、靭性に優れる。   The surface roughness is, for example, the film thickness of the coating layer (especially the oxide layer), the film formation conditions of the coating layer (particularly the oxide layer), specifically, the film formation temperature, bias voltage, sample ( It can be controlled by changing the distance between the base material) and the target (solid evaporation source). In order to make the surface roughness less than 0.3 μm, for example, the film thickness can be made thinner, the film formation temperature can be made lower, or the distance between the sample and the target can be made longer. In the present invention, it is assumed that there are microscopic irregularities. Accordingly, the surface roughness is Rmax exceeding 0 μm. Moreover, the smaller the surface roughness, the better the toughness.

酸化物層が一層のみの場合、その層が上記面粗度を満たせばよい。また、酸化物層が複数存在する場合、酸化物層のうち少なくとも一層が上記面粗度を満たしていればよく、全ての酸化物層が上記面粗度を満たす場合、切削性能をより向上できて好ましい。   When there is only one oxide layer, it is sufficient that the layer satisfies the surface roughness. Further, when there are a plurality of oxide layers, it is sufficient that at least one of the oxide layers satisfies the surface roughness. When all the oxide layers satisfy the surface roughness, cutting performance can be further improved. It is preferable.

本発明において上記酸化物層は、固体蒸発源を用いて成膜する。固体蒸発源を用いた成膜方法は、CVD法などの気相合成と比較して成膜温度を低くすることができるため、基材へのダメージを低減することができる。より具体的な成膜方法としては、高強度な被膜、特に、酸素を含有した被膜を形成可能な成膜プロセスを具える方法、例えば、物理的蒸着法(PVD法)を用いることが好適である。PVD法には、スパッタリング法、イオンプレーティング法などがあるが、特に、原料元素のイオン率が高いアンバランスドマグネトロンスパッタ法(神戸製鋼所技報 Vol.50 No.2(Sep.2000)参照、以下、UBMスパッタ法と呼ぶ)、デュアルマグネトロンスパッタ法やカソードアークイオンプレーティングが適していることがわかった。なお、PVD法による被膜は、例えば、膜表面のモフォロジーを調べたり、X線回折により判別することが可能である。   In the present invention, the oxide layer is formed using a solid evaporation source. Since the film formation method using a solid evaporation source can lower the film formation temperature as compared with the vapor phase synthesis such as the CVD method, damage to the substrate can be reduced. As a more specific film formation method, it is preferable to use a method including a film formation process capable of forming a high-strength film, particularly a film containing oxygen, for example, a physical vapor deposition method (PVD method). is there. PVD methods include sputtering and ion plating, but especially unbalanced magnetron sputtering with high ion ratio of raw material elements (see Kobe Steel Technical Report Vol.50 No.2 (Sep.2000)). (Hereinafter referred to as UBM sputtering method), dual magnetron sputtering method and cathode arc ion plating were found to be suitable. Note that the coating by the PVD method can be identified by, for example, examining the morphology of the film surface or by X-ray diffraction.

酸化物層は、Al、Zr、Si、Cr、Ti、及びBの少なくとも1種を含むことが好ましい。このとき、特に優れた切削性能を示すことがわかった。この理由は、下記のように推測している。Zrを含む場合、Zr酸化物は、熱伝導性が悪いため、被膜の耐熱遮断性が向上して、高温での基材変形が抑制されると考えられる。Si、Tiを含む場合、被膜硬度が向上し、その結果、耐摩耗性が向上すると考えられる。Cr、Bを含む場合、被膜の耐溶着性能が向上すると共に、特に被膜の剥離性が向上すると考えられる。そして、Alを含む場合、Al酸化物(アルミナ)は、耐熱性に優れるため、高発熱環境下であっても、優れた耐摩耗性を有すると考えられる。   The oxide layer preferably contains at least one of Al, Zr, Si, Cr, Ti, and B. At this time, it turned out that the especially outstanding cutting performance is shown. The reason is presumed as follows. When Zr is included, it is considered that the Zr oxide has poor thermal conductivity, so that the heat blocking property of the coating is improved, and deformation of the substrate at high temperature is suppressed. When Si and Ti are included, the coating hardness is improved, and as a result, the wear resistance is considered to be improved. In the case where Cr and B are contained, it is considered that the welding resistance of the coating is improved, and in particular, the peelability of the coating is improved. And when Al is included, since Al oxide (alumina) is excellent in heat resistance, it is thought that it has the outstanding abrasion resistance even in the high heat generation environment.

上記酸化物層の組織構造は、α型構造でもよいが、γ型構造や非晶質構造の方が靭性に優れて好ましい。特に、γ型アルミナや非晶質アルミナを酸化物層の一部に含有した場合、非常に優れた靭性を有する。γ型アルミナ、非晶質アルミナの含有は、一層の酸化物層において部分的に含んでいてもよいし、一層全てをγ型アルミナ又は非晶質アルミナとしてもよい。前者の場合、例えば、γ型アルミナと非晶質アルミナとの混合、γ型アルミナと非晶質アルミナとの混合としてもよい。従って、被覆層に酸化物層を複数具える場合、全ての酸化物層をγ型アルミナ又は非晶質アルミナとしてもよいし、全ての酸化物層において部分的にγ型アルミナ又は非晶質アルミナを含んでいてもよいし、一部の酸化物層をγ型アルミナ又は非晶質アルミナとしてもよいし、一部の酸化物層において部分的にγ型アルミナ又は非晶質アルミナを含んでいてもよい。上記組織構造は、公知の方法によって形成することができる。なお、組織構造は、例えば、TEM観察、X線回折により測定することができる。   The structure of the oxide layer may be an α-type structure, but a γ-type structure or an amorphous structure is preferable because of excellent toughness. In particular, when γ-type alumina or amorphous alumina is contained in a part of the oxide layer, it has very excellent toughness. The inclusion of γ-type alumina or amorphous alumina may be partially included in one oxide layer, or all of the layers may be γ-type alumina or amorphous alumina. In the former case, for example, a mixture of γ-type alumina and amorphous alumina or a mixture of γ-type alumina and amorphous alumina may be used. Accordingly, when the coating layer includes a plurality of oxide layers, all the oxide layers may be γ-type alumina or amorphous alumina, or γ-type alumina or amorphous alumina may be partially formed in all oxide layers. Some oxide layers may be γ-type alumina or amorphous alumina, and some oxide layers may partially contain γ-type alumina or amorphous alumina. Also good. The tissue structure can be formed by a known method. The tissue structure can be measured by, for example, TEM observation or X-ray diffraction.

上記面粗度を満たす酸化物層の厚みは、0.01〜5μmが好ましい。厚みが0.01μm未満では、耐摩耗性の向上が得られにくく、5μmを越えると被膜中の残留応力が大きくなり過ぎて、切削初期に酸化物層が剥離して、所望の効果が得られにくくなる。特に好ましくは、0.2μm以上である。厚みは、成膜時間を変化させることで制御することができる。なお、上記面粗度を満たす酸化物層が複数存在する場合、合計厚さが上記範囲(0.01〜5μm)を満たすようにすることが好ましい。   The thickness of the oxide layer that satisfies the surface roughness is preferably 0.01 to 5 μm. If the thickness is less than 0.01 μm, it is difficult to improve the wear resistance, and if it exceeds 5 μm, the residual stress in the coating becomes too large, and the oxide layer peels off at the beginning of cutting, making it difficult to obtain the desired effect. Become. Particularly preferably, it is 0.2 μm or more. The thickness can be controlled by changing the film formation time. In addition, when there are a plurality of oxide layers that satisfy the surface roughness, it is preferable that the total thickness satisfies the above range (0.01 to 5 μm).

<化合物膜>
被覆層は、上記酸化物層に加えて、その他の被膜を具えていてもよい。具体的には、周期律表IVa、Va、VIa、Al、Si、及びBの少なくとも1種の元素の窒化物、周期律表IVa、Va、VIa、Al、Si、及びBの少なくとも1種の元素の炭化物、及び周期律表IVa、Va、VIa、Al、Si、及びBの少なくとも1種の元素の炭窒化物のいずれかからなる化合物膜が挙げられる。特に、Tiを含む化合物膜は、耐摩耗性に優れて好ましい。具体的には、TiAlSiN、TiSiN、TiCN、TiAlN、TiAlCN、TiSiCrN、TiZrN、TiNなどが挙げられる。
<Compound membrane>
The coating layer may include other coatings in addition to the oxide layer. Specifically, nitrides of at least one element of periodic table IVa, Va, VIa, Al, Si, and B, at least one of periodic table IVa, Va, VIa, Al, Si, and B Examples thereof include a compound film made of any of elemental carbides and carbonitrides of at least one element of periodic table IVa, Va, VIa, Al, Si, and B. In particular, a compound film containing Ti is preferable because of excellent wear resistance. Specific examples include TiAlSiN, TiSiN, TiCN, TiAlN, TiAlCN, TiSiCrN, TiZrN, and TiN.

上記化合物膜は、硬度が高いものの上記酸化物層に比較して高温での耐酸化特性が劣るが、基材と酸化物層との間に設けた場合、酸化物層の結晶粒が成長して結晶粒の粗大化による面粗度の劣化を抑制することができ、酸化物層を内層として酸化物層の上に設けた場合、例えば、最外層とした場合、化合物膜表面からの酸素の拡散が抑制され、高温においても優れた耐摩耗性を維持することができて好ましい。基材と酸化物層との間、及び酸化物層の上の双方に上記化合物膜を形成してももちろんよい。   Although the above compound film has high hardness, the oxidation resistance at high temperature is inferior to that of the above oxide layer, but when it is provided between the base material and the oxide layer, the crystal grains of the oxide layer grow. Therefore, when the oxide layer is provided on the oxide layer as an inner layer, for example, when the outermost layer is used, oxygen from the surface of the compound film can be suppressed. Diffusion is suppressed, and excellent wear resistance can be maintained even at high temperatures, which is preferable. Of course, the compound film may be formed both between the base material and the oxide layer and on the oxide layer.

これら化合物膜も上記酸化物層と同様にPVD法、特に、アンバランスドマグネトロンスパッタ法又はアーク式イオンプレーティング法により形成することが好ましい。化合物膜の厚みは、成膜時間を変化させることで制御することができる。   These compound films are also preferably formed by the PVD method, in particular, the unbalanced magnetron sputtering method or the arc ion plating method, like the oxide layer. The thickness of the compound film can be controlled by changing the film formation time.

被覆層の合計厚みは、0.01〜15μmが好ましい。特に、被覆層が上記酸化物層及び化合物膜を具える場合、その合計厚みは、0.1〜15μm以下が好ましい。0.1μm未満では、化合物膜を具えた効果、具体的には耐摩耗性の向上が得られにくく、15μmを超えると被覆層中の残留応力が大きくなり過ぎて、基材との密着強度が低下し、切削初期に被覆層が剥離し易くなる。特に好ましくは、1μm以上5μm以下である。   The total thickness of the coating layer is preferably 0.01 to 15 μm. In particular, when the coating layer includes the oxide layer and the compound film, the total thickness is preferably 0.1 to 15 μm or less. If it is less than 0.1 μm, it is difficult to obtain the effect provided with the compound film, specifically, improvement in wear resistance, and if it exceeds 15 μm, the residual stress in the coating layer becomes too large and the adhesion strength to the substrate is reduced. In addition, the coating layer is easily peeled off at the beginning of cutting. Particularly preferably, it is 1 μm or more and 5 μm or less.

(基材)
基材は、WC基超硬合金、サーメット、高速度鋼、セラミックス、立方晶型窒化硼素焼結体、ダイヤモンド焼結体、窒化硅素焼結体、酸化アルミニウムと炭化チタンとを含む焼結体のいずれかから構成されたものが好ましい。公知の組成のものを利用してもよい。セラミックスとしては、例えば、炭化硅素、窒化硅素、窒化アルミニウム、酸化アルミニウムなどが挙げられる。
(Base material)
The base material is a WC base cemented carbide, cermet, high speed steel, ceramics, cubic boron nitride sintered body, diamond sintered body, silicon nitride sintered body, sintered body containing aluminum oxide and titanium carbide. Those composed of either are preferred. You may utilize the thing of a well-known composition. Examples of the ceramic include silicon carbide, silicon nitride, aluminum nitride, and aluminum oxide.

本発明工具は、ドリル、エンドミル、フライス加工用刃先交換型チップ、旋削用刃先交換型チップ、メタルソー、歯切工具、リーマ及びタップから選択された1種に使用することが適する。   The tool of the present invention is suitable for use in one type selected from a drill, an end mill, a cutting edge replacement type tip for milling, a cutting edge replacement type tip for turning, a metal saw, a gear cutting tool, a reamer, and a tap.

上記構成を具える本発明表面被覆切削工具は、基材強度の低下を低減すると共に耐熱特性及び靭性に優れた被覆層を具えることで、切削性能、特に高い耐摩耗性を有することができるという特有の効果を奏する。そのため、本発明切削工具は、断続切削、重切削、高速切削やドライ加工などといった刃先温度が非常に高温となる切削条件においても、靭性と耐摩耗性との双方に優れ、長時間加工することができる。   The surface-coated cutting tool of the present invention having the above-described configuration can have a cutting performance, particularly high wear resistance, by providing a coating layer having excellent heat resistance and toughness while reducing a decrease in base material strength. There is a unique effect. Therefore, the cutting tool of the present invention is excellent in both toughness and wear resistance and can be processed for a long time even in cutting conditions where the cutting edge temperature becomes very high, such as interrupted cutting, heavy cutting, high speed cutting and dry processing. Can do.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

JIS規格:SNG432形状、JIS規格:P30超硬合金製の切削チップ(住友電工ハードメタル(株) A30N)を用意し、このチップ基材の表面に表1に示す被覆層を具える刃先交換型チップを作製した。   JIS standard: SNG432 shape, JIS standard: P30 cemented carbide cutting tip (Sumitomo Electric Hardmetal Co., Ltd. A30N) is prepared, and the tip replacement type with the coating layer shown in Table 1 on the surface of this chip substrate A chip was produced.

Figure 0004398287
Figure 0004398287

本例において、被覆層の形成は、アンバランスマグネトロンスパッタ法(UBMスパッタ法)にて行ったが、冷陰極アーク式のイオンプレーティング法やデュアルマグネトロンスパッタ法などでもよい。具体的な形成手順には、以下の通りである。 In this example, the formation of the coating layer is conducted by unbalanced magnetron sputtering (UBM sputtering), or the like may be a cold cathode arc ion plating method or a dual magnetron sputtering method. The specific formation procedure is as follows.

図1は、成膜装置の概略構成を示す模式図である。図1に示す成膜装置5内に複数のアーク蒸発源1、2及びアンバランスドマグネトロンスパッタ蒸発源(以下、UBMスパッタ源と呼ぶ)3、4を配置し、蒸発源1〜4間の中心点Cを中心としてこれら蒸発源1〜4間で回転可能な基材保持具8に基材9(上記切削チップ)を装着する。本例では、アーク蒸発源1、2に所定の金属材料(例えば、Ti、Cr、Alなど)をセットし、UBMスパッタ源3にAl(アルミニウム)、UBMスパッタ源4に所定の金属材料(例えば、Al、Zr、Si、Cr、Ti、TiB2など)をセットした。 FIG. 1 is a schematic diagram showing a schematic configuration of a film forming apparatus. A plurality of arc evaporation sources 1 and 2 and unbalanced magnetron sputtering evaporation sources (hereinafter referred to as UBM sputtering sources) 3 and 4 are arranged in the film forming apparatus 5 shown in FIG. The base material 9 (the above-mentioned cutting tip) is mounted on the base material holder 8 that can rotate between the evaporation sources 1 to 4 around the point C. In this example, a predetermined metal material (e.g., Ti, Cr, Al, etc.) is set in the arc evaporation sources 1 and 2, Al (aluminum) is set in the UBM sputter source 3, and a predetermined metal material (e.g., in the UBM sputter source 4 is used). , Al, Zr, Si, Cr, Ti, TiB 2 etc.) were set.

ヒータ6にて基材9を480℃まで加熱させながら成膜装置5内を真空度1×10-3Pa以下に真空引きする。その後、ガス導入口7aからAr(アルゴン)ガスを導入して成膜装置5内を3Paの真空度に保ちながら基材9に−1100Vの電圧をかけ、Arガス中でグロー放電を発生させてArイオンによる基材9表面のクリーニング処理を行う。その後、Arガスを排気し、引き続き基材9に−40Vのバイアス電圧をかけながら、N2(窒素)ガス、CH4(メタン)ガス、及びO2(酸素)ガスの少なくとも1種の反応ガスをガス導入口7bから導入した状態で、アーク電流100Aにてアーク蒸発源1、2を真空アーク放電させて、所定の金属材料をイオン化させ、適宜基材9上に内層(試料No.20では外層)を形成する。内層を設けていない試料では、Arガス排気後、内層形成工程を行っていない。 While heating the substrate 9 to 480 ° C. with the heater 6, the inside of the film forming apparatus 5 is evacuated to a vacuum degree of 1 × 10 −3 Pa or less. Thereafter, Ar (argon) gas was introduced from the gas introduction port 7a, and a voltage of −1100 V was applied to the base material 9 while keeping the inside of the film forming apparatus 5 at a vacuum of 3 Pa, and glow discharge was generated in the Ar gas. The surface of the substrate 9 is cleaned with Ar ions. Thereafter, Ar gas is exhausted, and a bias voltage of −40 V is continuously applied to the substrate 9 while at least one reaction gas of N 2 (nitrogen) gas, CH 4 (methane) gas, and O 2 (oxygen) gas is applied. In a state where the gas is introduced from the gas inlet 7b, the arc evaporation sources 1 and 2 are subjected to vacuum arc discharge at an arc current of 100 A to ionize a predetermined metal material, and an inner layer (in the case of sample No. 20 Outer layer). In the sample without the inner layer, the inner layer forming step is not performed after Ar gas exhaust.

次に、表1に示す成膜温度環境下で酸化物層の成膜を行う。基材バイアスとして−100VのパルスDC(パルス周波数250kHz、ON時間及びOFF時間とも2μsec.)を印加した状態で、55SCCMのO2ガス及び380SCCMのArガスを成膜装置5内に導入し、成膜装置5内の圧力を1.2Paにした状態で、UBMスパッタ源3、4の少なくとも一方を放電させて表1に示す酸化物層を形成する。UBMスパッタ源の電源は、パルスDC(パルス周波数100kHz、ON時間:8μsec.及びOFF時間:2μsec.)を用い、スパッタ電力を2.8kWとした。 Next, an oxide layer is formed under the film formation temperature environment shown in Table 1. Pulsed DC of -100V as a substrate bias (pulse frequency 250 kHz, with ON time and OFF time 2 .mu.sec.) While applying a, O 2 gas is introduced and 380SCCM Ar gas of 55SCCM the film forming apparatus 5, formed In a state where the pressure in the film apparatus 5 is 1.2 Pa, at least one of the UBM sputtering sources 3 and 4 is discharged to form an oxide layer shown in Table 1. The power source of the UBM sputtering source was pulse DC (pulse frequency 100 kHz, ON time: 8 μsec. And OFF time: 2 μsec.), And the sputtering power was 2.8 kW.

更に、外層を設けた試料は、上記酸化物層形成後、上記内層形成工程と同様に、基材9に−40Vのバイアス電圧をかけながら、N2(窒素)ガス、及びCH4(メタン)ガスの少なくとも1種の反応ガスをガス導入口7bから導入した状態で、アーク電流100Aにてアーク蒸発源1、2を真空アーク放電させて、所定の金属材料をイオン化させ、適宜基材9上に外層を形成した。上記成膜工程により、基材上に被覆層を具える被覆チップを得た。 Furthermore, the samples provided with the outer layer, after the oxide layer formed, similarly to the inner layer forming step, while applying a bias voltage of -40V to the substrate 9, N 2 (nitrogen) gas, and CH 4 (methane) In a state in which at least one kind of reaction gas is introduced from the gas inlet 7b, the arc evaporation sources 1 and 2 are subjected to vacuum arc discharge at an arc current of 100 A to ionize a predetermined metal material, and appropriately on the substrate 9 An outer layer was formed. By the film forming step, a coated chip having a coating layer on the substrate was obtained.

得られた各被覆チップについて、被覆層を構成する各層の厚さ及び組成を調べた。また、各被覆チップの酸化物層について、基材から離れる側の面粗度(Rmax)、組織構造を調べた。その結果を表1に示す。各層の厚さは、断面を顕微鏡写真で観察することで求めた。各層の組成は、XPSによって測定した。本例において酸化物層の組織構造は、X線回折装置を用いてX線入射角を1°に固定した薄膜法によりX線回折パターンを得て同定したが、TEM装置を用いて、電子線回折パターンを得て同定してもよい。表1において、非晶質構造のものは「非晶質」、α型構造のものは「α型」、γ型構造のものは「γ型」、α型構造とγ型構造とが混在する構造のものは「α+γ型」、非晶質構造とγ型構造とが混在する構造のものは「非晶質+γ型」と示す。酸化物層の面粗度は、各被覆チップを切断後、鏡面ラッピングを行い、基材から離れる側の表面において、基準長さを30μmとし、この基準長さ内の微小な凹凸のRmaxを測定して得た。なお、巨視的なうねりは、無視した。   About each obtained covering chip | tip, the thickness and composition of each layer which comprise a coating layer were investigated. Further, the surface roughness (Rmax) and the structure of the oxide layer of each coated chip on the side away from the substrate were examined. The results are shown in Table 1. The thickness of each layer was determined by observing the cross section with a micrograph. The composition of each layer was measured by XPS. In this example, the microstructure of the oxide layer was identified by obtaining an X-ray diffraction pattern by a thin film method using an X-ray diffractometer and fixing the X-ray incident angle at 1 °. A diffraction pattern may be obtained and identified. In Table 1, the amorphous structure is “amorphous”, the α-type structure is “α-type”, the γ-type structure is “γ-type”, and the α-type structure and the γ-type structure are mixed. A structure having a structure in which an amorphous structure and a γ-type structure are mixed is referred to as “amorphous + γ type”. For the surface roughness of the oxide layer, after cutting each coated chip, mirror lapping is performed, and the reference length is set to 30 μm on the surface away from the substrate, and the Rmax of minute irregularities within this reference length is measured. I got it. The macroscopic swell was ignored.

各試料の被覆層を構成する各層の厚さは、成膜時間(放電時間)を変化させることで変えた。また、酸化物層において組織構造は、成膜温度を変化させることで、基材から離れる側にある表面の面粗度は、膜厚、成膜温度を変化させることで変化させた。   The thickness of each layer constituting the coating layer of each sample was changed by changing the film formation time (discharge time). In the oxide layer, the structure of the surface was changed by changing the film formation temperature, and the surface roughness of the surface on the side away from the substrate was changed by changing the film thickness and the film formation temperature.

(試験例1)
上記被覆チップを一般的に用いられているホルダに取り付け、これら工具の切削評価を行った。評価は、下記の切削条件にて連続切削試験及び断続切削試験を行い、連続切削試験において刃先の逃げ面摩耗幅(摩耗量)、断続切削試験において刃先の欠損率を測定することで行った。切削条件を表2に、逃げ面摩耗幅及び欠損率を表3に示す。なお、欠損率は、表1に示す各被覆層を具える被覆チップをそれぞれ10本ずつ用意し、これら10本についてそれぞれ欠損の有無を調べ、その平均とした。
(Test Example 1)
The coated chip was attached to a commonly used holder, and cutting evaluation of these tools was performed. The evaluation was performed by performing a continuous cutting test and an intermittent cutting test under the following cutting conditions, and measuring the flank wear width (wear amount) of the cutting edge in the continuous cutting test and the chipping rate of the cutting edge in the intermittent cutting test. Table 2 shows cutting conditions, and Table 3 shows flank wear width and defect rate. Note that the defect rate was determined by preparing 10 coated chips each having the respective coating layers shown in Table 1, and examining the presence or absence of defects for each of these 10 chips, and calculating the average.

Figure 0004398287
Figure 0004398287

Figure 0004398287
Figure 0004398287

表3から明らかなように、酸化物層が所定の面粗度である試料No.1〜16の被覆チップは、ドライ加工や断続切削といった高発熱切削であっても、耐欠損性に優れ、高い耐摩耗性を有することがわかる。従って、試料No.1〜16は、耐摩耗性と靭性とをバランスよく有するものであることが確認された。また、これらの試料は、成膜温度が比較的低温であるため、基材へのダメージも低減することができた。更に、酸化物層は、γ型構造や非晶質構造であるとより靭性に優れることがわかる。   As is clear from Table 3, the coated tips of Sample Nos. 1 to 16 whose oxide layer has a predetermined surface roughness are excellent in fracture resistance even in high heat generation cutting such as dry processing and interrupted cutting. It can be seen that it has high wear resistance. Therefore, it was confirmed that sample Nos. 1 to 16 have a good balance between wear resistance and toughness. Moreover, since these samples had a relatively low film formation temperature, damage to the substrate could be reduced. Further, it can be seen that the oxide layer is more excellent in toughness when it has a γ-type structure or an amorphous structure.

(試験例2)
基材を下記に変えて、表1と同様の被覆層を形成して被覆チップを作製し、試験例1と同様の切削条件で切削試験を実施した。
1 JIS規格:P20サーメット製の切削チップ(住友電工ハードメタル(株) T1200A)
2 アルミナ-TiC焼結体製の切削チップ(住友電工ハードメタル(株) NB90S)
3 アルミナ製の切削チップ(住友電工ハードメタル(株) W80)
4 窒化珪素製の切削チップ(住友電工ハードメタル(株) NS260)
その結果、酸化物層の面粗度が0.3μm未満である被覆チップは、同0.3μm以上の被覆チップと比較して、ドライ加工や断続切削といった過酷な切削条件において、靭性及び耐摩耗性の双方をバランスよく有することが確認できた。このことから、上記と同様に工具寿命の向上を実現できることがわかる。
(Test Example 2)
The base material was changed to the following, a coating layer similar to that in Table 1 was formed to produce a coated chip, and a cutting test was performed under the same cutting conditions as in Test Example 1.
1 JIS standard: P20 cermet cutting tip (Sumitomo Electric Hardmetal Co., Ltd. T1200A)
2 Cutting tip made of alumina-TiC sintered body (Sumitomo Electric Hardmetal Corporation NB90S)
3 Cutting tip made of alumina (Sumitomo Electric Hardmetal Co., Ltd. W80)
4 Cutting tips made of silicon nitride (Sumitomo Electric Hardmetal Corp. NS260)
As a result, coated chips with an oxide layer with a surface roughness of less than 0.3 μm have toughness and wear resistance under severe cutting conditions such as dry machining and interrupted cutting, compared to coated chips of 0.3 μm or more. It was confirmed that both had a good balance. From this, it can be seen that the tool life can be improved as described above.

(試験例3)
基材をダイヤモンド焼結体製の切削チップ(住友電工ハードメタル(株) DA2200)に変えて、表1と同様の被覆層を形成して被覆チップを作製し、切削試験を実施した。切削条件は、被削材をアルミシリコン合金(A390)に変更した以外は、試験例1と同様の条件とした。そして、試験例1と同様に刃先の逃げ面摩耗幅を測定した。その結果、上記試験例1、2と同様に、酸化物層の面粗度が0.3μm未満である被覆チップは、同0.3μm以上の被覆チップと比較して、ドライ加工や断続切削といった過酷な切削条件であっても、靭性及び耐摩耗性の双方をバランスよく有することが確認できた。このことから、上記と同様に工具寿命の向上を実現できることがわかる。
(Test Example 3)
The base material was changed to a cutting tip made of a diamond sintered body (Sumitomo Electric Hardmetal Co., Ltd. DA2200), and the same coating layer as in Table 1 was formed to produce a coated tip, and a cutting test was performed. The cutting conditions were the same as in Test Example 1 except that the work material was changed to an aluminum silicon alloy (A390). Then, the flank wear width of the cutting edge was measured in the same manner as in Test Example 1. As a result, similar to Test Examples 1 and 2 above, the coated tip whose surface roughness of the oxide layer is less than 0.3 μm is more severe than dry coated and interrupted cutting compared to the coated tip of 0.3 μm or more. Even under the cutting conditions, it was confirmed that both toughness and wear resistance were well balanced. From this, it can be seen that the tool life can be improved as described above.

(試験例4)
基材を立方晶型窒化硼素焼結体製の切削チップ(住友電工ハードメタル(株) BN250)に変えて、表1と同様の被覆層を形成して被覆チップを作製し、切削試験を実施した。切削条件を以下に示す。
被削材:焼入鋼の1種であるSUJ2の丸棒(HRC62)の外周切削
切削速度:200m/min
送り0.1mm/rev.
切り込み:0.18mm
切削時間:50分
切削油:なし(乾式)
そして、試験例1と同様に刃先の逃げ面摩耗幅を測定した。その結果、上記試験例1〜3と同様に、酸化物層の面粗度が0.3μm未満である被覆チップは、同0.3μm以上の被覆チップと比較して、ドライ加工であっても、靭性及び耐摩耗性の双方に優れることが確認できた。このことから、上記と同様に工具寿命の向上を実現できることがわかる。
(Test Example 4)
Change the substrate to a cutting tip made of cubic boron nitride sintered body (Sumitomo Electric Hardmetal Co., Ltd., BN250), form a coating layer similar to Table 1 and make a coated tip, and perform a cutting test did. The cutting conditions are shown below.
Work material: Peripheral cutting of SUJ2 round bar (HRC62), a kind of hardened steel Cutting speed: 200m / min
Feed 0.1mm / rev.
Cutting depth: 0.18mm
Cutting time: 50 minutes Cutting oil: None (dry type)
Then, the flank wear width of the cutting edge was measured in the same manner as in Test Example 1. As a result, as in Test Examples 1 to 3 above, the coated chip whose surface roughness of the oxide layer is less than 0.3 μm is more tough than the coated chip of 0.3 μm or more even in dry processing. In addition, it was confirmed that it was excellent in both wear resistance. From this, it can be seen that the tool life can be improved as described above.

実施例1と同様の製造方法により、ドリル(JISK10超硬合金)の基材上に表1に示す被覆層を形成し、被覆ドリルを作製した。これら被覆ドリルのそれぞれについて、炭素鋼(S50C)の穴開け加工を行い、その切削評価を行なった。切削条件は、ドリル径12mm、切削速度100m/min、送り0.3mm/刃、切り込み25mm、ウェット加工(切削油(水溶性エマルジョン)有り)とした。評価は、100穴加工完了時点の逃げ面刃先摩耗量、被削材を10゜傾けて最大100穴加工を行った場合のドリル折損率を求めた。ドリル折損率は、各被覆ドリルについて10本用意し、その平均を求めた。   By the same manufacturing method as in Example 1, the coating layer shown in Table 1 was formed on the base material of the drill (JISK10 cemented carbide) to produce a coated drill. For each of these coated drills, carbon steel (S50C) was drilled and the cutting was evaluated. Cutting conditions were a drill diameter of 12 mm, a cutting speed of 100 m / min, a feed of 0.3 mm / blade, a cutting depth of 25 mm, and wet processing (with cutting oil (water-soluble emulsion)). In the evaluation, the amount of flank cutting edge wear at the time of completion of 100 hole drilling and the drill breakage rate when drilling a maximum of 100 holes by tilting the work material by 10 ° were obtained. Ten drill breakage rates were prepared for each coated drill, and the average was obtained.

その結果、酸化物層の面粗度が0.3μm未満である被覆ドリルは、同0.3μm以上の被覆ドリルと比較して、靭性及び耐摩耗性の双方に優れることが確認できた。具体的には、酸化物層の面粗度が0.3μm未満である被覆ドリルの折損率が同0.3μm以上の被覆ドリルの3/5以下であった。このことから、上記と同様に工具寿命の向上を実現できることがわかる。   As a result, it was confirmed that the coated drill whose surface roughness of the oxide layer was less than 0.3 μm was excellent in both toughness and wear resistance as compared with the coated drill having the same thickness of 0.3 μm or more. Specifically, the breakage rate of the coated drill in which the surface roughness of the oxide layer was less than 0.3 μm was 3/5 or less of that of the coated drill having the same 0.3 μm or more. From this, it can be seen that the tool life can be improved as described above.

本発明は、特に、高速、ドライ加工、断続切削、重切削といった刃先温度が高温となるような切削条件での切削加工に適する。特に、本発明は、例えば、旋削加工で汎用されている切削速度250m/min以下でのドライ加工や断続切削において、耐摩耗性と靭性とをバランスよく発揮する。   The present invention is particularly suitable for cutting under cutting conditions in which the cutting edge temperature is high, such as high speed, dry machining, interrupted cutting, and heavy cutting. In particular, the present invention exhibits a good balance between wear resistance and toughness in, for example, dry machining and intermittent cutting at a cutting speed of 250 m / min or less, which is widely used in turning.

成膜装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the film-forming apparatus.

符号の説明Explanation of symbols

1,2 アーク蒸発源 3,4 UBMスパッタ源 5 成膜装置 6 ヒータ
7a,7b ガス導入口 8 基材保持具 9 基材
1,2 Arc evaporation source 3,4 UBM sputtering source 5 Deposition system 6 Heater
7a, 7b Gas inlet 8 Base material holder 9 Base material

Claims (10)

基材上に被覆層を具える表面被覆切削工具であって、
前記被覆層は、
固体蒸発源を用いた物理的蒸着法により成膜された酸素原子を含有する酸化物層を一層以上具え、
前記酸化物層のうち、少なくとも一層は、
基材から離れる側の表面において、基準長さを30μmとしたとき、この基準長さ内の面粗度がRmaxで0.3μm未満であり、
この酸化物層は、γ型構造、非晶質構造、及びγ型構造と非晶質構造との混合構造のいずれかからなり、アルミナと、Zr、Si、Cr、Ti、及びBの少なくとも1種の酸化物とを含むことを特徴とする表面被覆切削工具。
A surface-coated cutting tool comprising a coating layer on a substrate,
The coating layer is
Including one or more oxide layers containing oxygen atoms formed by physical vapor deposition using a solid evaporation source;
At least one of the oxide layers is
On the surface away from the substrate, when the reference length is 30 μm, the surface roughness within this reference length is less than 0.3 μm in Rmax,
This oxide layer has any one of a γ-type structure, an amorphous structure, and a mixed structure of a γ-type structure and an amorphous structure, and is composed of at least one of alumina, Zr, Si, Cr, Ti, and B. A surface-coated cutting tool comprising a seed oxide .
酸化物層は、Al、Zr、Si、Cr、Ti、及びBの少なくとも1種を含むことを特徴とする請求項1に記載の表面被覆切削工具。   2. The surface-coated cutting tool according to claim 1, wherein the oxide layer contains at least one of Al, Zr, Si, Cr, Ti, and B. 前記面粗度を満たす酸化物層の厚みが0.01〜5μmであることを特徴とする請求項1又は2に記載の表面被覆切削工具。 The surface-coated cutting tool according to claim 1 or 2 thickness of the oxide layer satisfying the surface roughness is characterized by a 0.01 to 5 [mu] m. 被覆層は、周期律表IVa、Va、VIa、Al、Si、及びBの少なくとも1種の元素の窒化物、同元素の炭化物、及び同元素の炭窒化物のいずれかからなる化合物膜を具え、
前記化合物膜は、基材と酸化物層との間に被覆されていることを特徴とする請求項1〜3のいずれかに記載の表面被覆切削工具。
The coating layer includes a compound film made of any one of nitrides of the elements of the periodic tables IVa, Va, VIa, Al, Si, and B, carbides of the same elements, and carbonitrides of the same elements. ,
The surface-coated cutting tool according to any one of claims 1 to 3 , wherein the compound film is coated between a base material and an oxide layer.
化合物膜は、酸化物層の上に被覆されていることを特徴とする請求項4に記載の表面被覆切削工具。 5. The surface-coated cutting tool according to claim 4 , wherein the compound film is coated on the oxide layer. 被覆層の合計厚みが0.01〜15μmであることを特徴とする請求項1〜5のいずれかに記載の表面被覆切削工具。 The surface-coated cutting tool according to any one of claims 1 to 5, the total thickness of the coating layer is characterized by a 0.01 to 15 micrometers. 基材は、WC基超硬合金、サーメット、高速度鋼、セラミックス、立方晶型窒化硼素焼結体、ダイヤモンド焼結体、窒化硅素焼結体、及び酸化アルミニウムと炭化チタンとを含む焼結体から選択された1種であることを特徴とする請求項1〜6のいずれかに記載の表面被覆切削工具。 The base material is a WC-based cemented carbide, cermet, high speed steel, ceramics, cubic boron nitride sintered body, diamond sintered body, silicon nitride sintered body, and sintered body containing aluminum oxide and titanium carbide. The surface-coated cutting tool according to any one of claims 1 to 6 , wherein the surface-coated cutting tool is one selected from the group consisting of: 表面被覆切削工具は、ドリル、エンドミル、フライス加工用刃先交換型チップ、旋削用刃先交換型チップ、メタルソー、歯切工具、リーマ、及びタップから選択された1種であることを特徴とする請求項1〜7のいずれかに記載の表面被覆切削工具。 The surface-coated cutting tool is one type selected from a drill, an end mill, a milling blade-exchangeable tip, a turning blade-tip-changing tip, a metal saw, a gear cutting tool, a reamer, and a tap. The surface-coated cutting tool according to any one of 1 to 7 . 物理的蒸着法がアンバランスドマグネトロンスパッタ法又はアーク式イオンプレーティング法であることを特徴とする請求項1〜8のいずれかに記載の表面被覆切削工具。 The surface-coated cutting tool according to any one of claims 1 to 8, physical vapor deposition is characterized by a unbalanced magnetron sputtering or arc ion plating method. 前記面粗度を満たす酸化物層は、基材バイアス及び前記固体蒸発源の電源にパルスDCを用いて成膜されていることを特徴とする請求項1〜9のいずれかに記載の表面被覆切削工具。 Oxide layer satisfying the surface roughness, the surface coating according to any one of claims 1 to 9, characterized in that it is deposited by pulsed DC to the power of the substrate bias and the solid evaporation source Cutting tools.
JP2004076028A 2004-03-17 2004-03-17 Surface coated cutting tool Expired - Fee Related JP4398287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004076028A JP4398287B2 (en) 2004-03-17 2004-03-17 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004076028A JP4398287B2 (en) 2004-03-17 2004-03-17 Surface coated cutting tool

Publications (2)

Publication Number Publication Date
JP2005262356A JP2005262356A (en) 2005-09-29
JP4398287B2 true JP4398287B2 (en) 2010-01-13

Family

ID=35087424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004076028A Expired - Fee Related JP4398287B2 (en) 2004-03-17 2004-03-17 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP4398287B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019092009A1 (en) * 2017-11-07 2019-05-16 Walter Ag Pvd process for the deposition of al2o3 and a coated cutting tool with at least one layer of al2o3

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007196364A (en) * 2005-12-28 2007-08-09 Sumitomo Electric Ind Ltd Surface-coated cutting tool and its manufacturing method
JP4970886B2 (en) * 2006-03-24 2012-07-11 住友電気工業株式会社 Surface coated cutting tool
JP2007307652A (en) * 2006-05-18 2007-11-29 Hitachi Tool Engineering Ltd Coated tool and manufacturing method thereof
JP5172687B2 (en) 2006-10-02 2013-03-27 住友電気工業株式会社 Surface coated cutting tool
JP5027491B2 (en) * 2006-12-06 2012-09-19 住友電気工業株式会社 Surface coated cutting tool
DE102009001675A1 (en) * 2009-03-19 2010-09-23 Eberhard-Karls-Universität Tübingen cutting tool
JP5190971B2 (en) * 2009-12-16 2013-04-24 住友電気工業株式会社 Coating, cutting tool, and manufacturing method of coating
JP5229826B2 (en) * 2009-12-16 2013-07-03 住友電気工業株式会社 Coating, cutting tool, and manufacturing method of coating
JP5713872B2 (en) * 2011-10-28 2015-05-07 株式会社神戸製鋼所 Film forming apparatus and film forming method
WO2014101517A1 (en) * 2012-12-26 2014-07-03 Wu Shanghua Method for preparing al2o3 coating on surface of silicon-nitride cutting tool by using pvd, and composite coating method
US9028953B2 (en) 2013-01-11 2015-05-12 Kennametal Inc. CVD coated polycrystalline c-BN cutting tools
EP3722461A1 (en) * 2019-04-12 2020-10-14 Walter Ag A coated cutting tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019092009A1 (en) * 2017-11-07 2019-05-16 Walter Ag Pvd process for the deposition of al2o3 and a coated cutting tool with at least one layer of al2o3
US11326248B2 (en) 2017-11-07 2022-05-10 Walter Ag PVD process for the deposition of Al2O3 and a coated cutting tool with at least one layer of Al2O3

Also Published As

Publication number Publication date
JP2005262356A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
JP5297388B2 (en) Surface coated cutting tool
JP2005271190A (en) Surface coated cutting tool
JP5261018B2 (en) Surface coated cutting tool
JP5382580B2 (en) Surface coated cutting tool
JP5382581B2 (en) Surface coated cutting tool
JP4072155B2 (en) Surface-coated cutting tool and manufacturing method thereof
JP4398287B2 (en) Surface coated cutting tool
JP4268558B2 (en) Coated cutting tool
JP4405835B2 (en) Surface coated cutting tool
JP3914686B2 (en) Cutting tool and manufacturing method thereof
JP4753144B2 (en) Surface coated cutting tool
JP6641610B1 (en) Cutting tool and manufacturing method thereof
JP4340579B2 (en) Surface coated cutting tool
JP2006192543A (en) Surface-coated cutting tool and its manufacturing method
JP2006192531A (en) Surface-coated cutting tool and its manufacturing method
JP2005262355A (en) Surface-coated cutting tool
JP2005262389A (en) Surface-coated cutting tool for processing titanium alloy
JP4116382B2 (en) Coated hard tool
JP2005271106A (en) Coated cutting tool
JP2005138208A (en) Surface coated cutting tool and its manufacturing method
JP2004066361A (en) Coated cutting tool
JP6641611B1 (en) Cutting tool and manufacturing method thereof
JP4080481B2 (en) Surface-coated cutting tool and manufacturing method thereof
JP4908767B2 (en) Surface covering member and cutting tool
JP2006192544A (en) Surface-coated cutting tool and its manufacturing method

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20061121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4398287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees