JPH07283478A - Manufacture of distorted quantum well laser - Google Patents

Manufacture of distorted quantum well laser

Info

Publication number
JPH07283478A
JPH07283478A JP6956994A JP6956994A JPH07283478A JP H07283478 A JPH07283478 A JP H07283478A JP 6956994 A JP6956994 A JP 6956994A JP 6956994 A JP6956994 A JP 6956994A JP H07283478 A JPH07283478 A JP H07283478A
Authority
JP
Japan
Prior art keywords
layer
quantum well
gas
sulfur
strained quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6956994A
Other languages
Japanese (ja)
Inventor
Junichi Sato
淳一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP6956994A priority Critical patent/JPH07283478A/en
Publication of JPH07283478A publication Critical patent/JPH07283478A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a distorted quantum well laser of a structure, wherein the interface between a well layer and a barrier layer is formed into a steep interface in the order of atomic layer scale, by a method wherein prior to the growth of the well layer and the barrier layer of a distorted quantum well structure, the growth surfaces of the well and barrier layers are exposed to a sulfur-containing gas plasma. CONSTITUTION:A buffer layer 11 is grown on the surface of a substrate 10, subsequently, a first light guide layer 12 is grown and after this, a plasma treatment using sulfur-containing gas, such as S2F2 gas, is performed on the growth surfaces of the layers 11 and 12. After the plasma treatment, the growth surfaces are heated to remove a sulfur film. Then, after a well layer 13 is grown, a second plasma treatment using a sulfur-containing gas is again performed. After this, a barrier layer 14 is grown and a plasma treatment in the formation of the layers 14 and 13 and the formation of each layer is repeatedly performed to form an active layer 20, which is formed into a distorted quantum well structure having 4 layers of wells. After that, a second light guide layer 15, a clad layer 16 and a contact layer 17 are grown and moreover, an electrode is formed to obtain a distorted quantum well laser.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は歪量子井戸レーザーの製
造方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for manufacturing a strained quantum well laser.

【0002】[0002]

【従来の技術】量子効果デバイス、とりわけ、最近、注
目を集めている量子井戸レーザーは、発光領域すなわち
活性層が、ウエル層とバリア層の積層による量子井戸構
造を有し、そのウエル層を格子整合条件から意図的にず
らす事でウエルに2軸性の歪を導入する歪量子井戸レー
ザーの研究が盛んである。
2. Description of the Related Art Quantum effect devices, especially quantum well lasers, which have recently been attracting attention, have a light emitting region, that is, an active layer, having a quantum well structure formed by stacking a well layer and a barrier layer, and the well layer is a lattice. Research on strained quantum well lasers, in which biaxial strain is introduced into the well by intentionally shifting from the matching condition, has been actively conducted.

【0003】この歪量子井戸レーザーは、量子サイズ効
果に加えて歪の効果によりバンド構造が変化するため新
しい物性を生み出す事が可能で、このため、従来構造の
量子井戸レーザーのデバイス特性改善を図る手段として
注目されている。
This strained quantum well laser can produce new physical properties because the band structure changes due to the effect of strain in addition to the quantum size effect. Therefore, the device characteristics of the conventional quantum well laser are improved. It is attracting attention as a means.

【0004】このような歪量子井戸レーザーの製造方法
の第1の従来例として1.55μm帯InGaAs/I
nGaAsP歪量子井戸レーザーを減圧有機金属気相成
長(MOVPE)法を用いて作製した例が平成2年度春
季応物関連講演会予稿集30a−SA−9に報告されて
いる。この報告例では歪の効果により正孔の有効質量が
減少し、価電子帯の状態密度関数が小さくなる事から閾
値キャリア密度が低減され、InAs組成X=0.62
のブロードコンタクト型歪量子井戸レーザーにおいて閾
値電流密度Jth+398A/cm2 という低い値が得ら
れている。
As a first conventional example of a method of manufacturing such a strained quantum well laser, a 1.55 μm band InGaAs / I
An example in which an nGaAsP strained quantum well laser is manufactured by using the low pressure metal organic vapor phase epitaxy (MOVPE) method is reported in the proceedings of the spring compound-related lectures in the 1990 fiscal year, 30a-SA-9. In this reported example, the effective mass of holes is reduced by the effect of strain, and the density of states function of the valence band is reduced, so that the threshold carrier density is reduced and the InAs composition X = 0.62.
The threshold current density J th +398 A / cm 2 is as low as that of the broad contact strained quantum well laser.

【0005】しかしながら、歪量子井戸レーザーにおい
ては、ウエル層を格子整合条件からずらすためにその組
成を変えると禁制帯幅も変化するため発振波長もそれに
伴って変わってしまうという問題がある。
However, in the strained quantum well laser, if the composition of the well layer is changed to deviate from the lattice matching condition, the forbidden band width also changes, so that the oscillation wavelength also changes accordingly.

【0006】従って、所望の発振波長、例えば長波長帯
半導体レーザーでは1.3μm或いは1.55μmを得
るためにはウエル層の厚さを変化させる必要がある。一
例として長波長帯歪量子井戸レーザーとしては論理的に
様々なレーザー特性の改善が予測されている1.55μ
m帯のInGaAs/InGaAsP量子井戸レーザー
を考えると、ウエル層に2軸性の圧縮歪みを導入するた
めにInAs組成Xを大きくすると、1.55μmの発
振波長を得るためにはウエル幅を薄くする必要があり、
X=0.6及び0.7のとき、それぞれウエル幅は、
4.5nm、2.8nmとなる。このような薄いウエル
層においては、ウエル層とバリア層の界面において、1
〜2原子層程度の厚さの揺らぎがあっても、層厚の変化
としては10%程度という大きなものとなる。その結果
レーザー特性としては理論的に予測された特性が得られ
ないという問題点があった。
Therefore, it is necessary to change the thickness of the well layer in order to obtain a desired oscillation wavelength, for example, a long wavelength band semiconductor laser of 1.3 μm or 1.55 μm. As an example, a long-wavelength strained quantum well laser is theoretically expected to improve various laser characteristics.
Considering an m-band InGaAs / InGaAsP quantum well laser, if the InAs composition X is increased to introduce biaxial compressive strain in the well layer, the well width is reduced to obtain an oscillation wavelength of 1.55 μm. Must be,
When X = 0.6 and 0.7, the well width is
It becomes 4.5 nm and 2.8 nm. In such a thin well layer, at the interface between the well layer and the barrier layer, 1
Even if there is a fluctuation in the thickness of about 2 atomic layers, the change in the layer thickness is as large as about 10%. As a result, there is a problem that theoretically predicted laser characteristics cannot be obtained.

【0007】この点に鑑みて、特開平5−7053号公
報には、ウエル層とバリア層の界面が原子層オーダーで
急峻な界面となる歪量子井戸レーザーの製造方法を提供
する手段として、活性層であるウエル層とバリア層の成
長切り換え時に、成長層表面に対する角度が45°以下
の水素プラズマビームを成長層に照射する工程を含む歪
量子井戸レーザーの製造方法が提案されている。
In view of this point, Japanese Unexamined Patent Publication (Kokai) No. 5-7053 discloses a method for producing a strained quantum well laser in which the interface between a well layer and a barrier layer is a steep interface on the atomic layer order, A method for manufacturing a strained quantum well laser has been proposed which includes a step of irradiating a growth layer with a hydrogen plasma beam having an angle of 45 ° or less with respect to the surface of the growth layer when switching the growth of the well layer and the barrier layer.

【0008】しかしながら、この技術にあっても、水素
のイオンを半導体層表面に照射するものであるため、た
とえ、そのエネルギーを小さくして、斜めに照射したと
してもイオンの衝撃によるダメージは避けられない。ま
た、水素は原子半径が小さいために半導体層の内部に打
ち込まれてしまうという懸念があった。
However, even in this technique, hydrogen ions are irradiated onto the surface of the semiconductor layer. Therefore, even if the energy is reduced and the irradiation is performed obliquely, damage due to ion bombardment can be avoided. Absent. Further, there is a concern that hydrogen has a small atomic radius and may be implanted into the semiconductor layer.

【0009】[0009]

【発明が解決しようとする課題】本発明は、半導体層に
ダメージを与えることなく、しかも処理後の半導体層の
表面に不純物が残らない、ウエル層とバリア層の界面が
原子層オーダーで急峻な界面となる歪量子井戸レーザー
の製造方法を提供することにある。
SUMMARY OF THE INVENTION According to the present invention, the interface between the well layer and the barrier layer is steep on the atomic layer order without damaging the semiconductor layer and leaving no impurities on the surface of the processed semiconductor layer. An object of the present invention is to provide a method for manufacturing a strained quantum well laser that serves as an interface.

【0010】すなわち、本発明者は鋭意考察を重ねた結
果、同じドライプロセスで処理するにしても、半導体層
表面にダメージを与えることなく、かつ、処理後の半導
体層表面に不純物の残りにくいガスケミストリーで処理
すれば良いと考えるに至り、上述した課題を解決する発
明を提供するに至った。
That is, as a result of earnest studies by the present inventor, even if the same dry process is performed, a gas that does not damage the surface of the semiconductor layer and hardly causes impurities to remain on the surface of the semiconductor layer after the processing is obtained. The inventors have come to think that treatment by chemistry is sufficient, and have provided an invention that solves the above-mentioned problems.

【0011】[0011]

【課題を解決するための手段】第1の本発明は、歪量子
井戸構造を構成する活性層を少なくとも含む半導体層を
積層する結晶成長工程を少なくとも工程内に有する半導
体レーザーの製造方法において、活性層であるウエル層
とバリア層の成長に当たって、その成長面を硫黄を含む
ガスプラズマにさらす工程を含ましめるものである。
The first aspect of the present invention provides a method for manufacturing a semiconductor laser, which comprises at least a crystal growth step of laminating a semiconductor layer including at least an active layer forming a strained quantum well structure in the step. In the growth of the well layer and the barrier layer, which are the layers, a step of exposing the growth surface to a gas plasma containing sulfur is included.

【0012】また、第2の本発明は、前記硫黄を含むガ
スとして、S2 2 ,SF2 ,SF 4 ,S2 10,S3
Cl2 ,SCl2 ,S2 Br2 ,SBr2 ,S3 Br2
から選ばれる少なくとも一種のガスを用いる。
A second aspect of the present invention is a gas containing sulfur.
As S2F2, SF2, SF Four, S2FTen, S3
Cl2, SCl2, S2Br2, SBr2, S3Br2
At least one gas selected from is used.

【0013】第3の本発明は、前記硫黄を含むガスとし
て、S2 2 ,SF2 ,SF4 ,S 2 10,S3
2 ,SCl2 ,S2 Br2 ,SBr2 ,S3 Br2
ら選ばれる少なくとも一種の第1のガスと、H2 ,H2
S,シラン系化合物から選ばれる少なくとも一種の第2
のガスとを混合したガスを用いる。
A third aspect of the present invention provides the sulfur-containing gas.
S2F2, SF2, SFFour, S 2FTen, S3C
l2, SCl2, S2Br2, SBr2, S3Br2Or
At least one first gas selected from2, H2
At least one second selected from S and silane compounds
A gas mixed with the above gas is used.

【0014】第4の本発明は、前記硫黄を含むガスとし
て、S2 2 ,SF2 ,SF4 ,S 2 10,S3
2 ,SCl2 ,S2 Br2 ,SBr2 ,S3 Br2
ら選ばれる少なくとも一種の第1のガスと窒素を含む少
なくとも一種の第2のガスとを混合したガスを用いる。
A fourth aspect of the present invention provides a gas containing sulfur.
S2F2, SF2, SFFour, S 2FTen, S3C
l2, SCl2, S2Br2, SBr2, S3Br2Or
At least one first gas selected from the
At least a gas mixed with a kind of second gas is used.

【0015】[0015]

【作用】本発明方法によれば、水素を使わずに半導体層
表面を処理出来るものである。従って、水素原子のよう
な、目的としない原子が半導体層の格子内に打ち込まれ
ることはない。また、照射のエネルギーを低下させる効
果に加えて、後述する硫黄の堆積膜の生成によって、イ
オン衝撃が緩衝される効果を示すため半導体層がイオン
衝撃によってダメージを受けることはない。
According to the method of the present invention, the surface of the semiconductor layer can be treated without using hydrogen. Therefore, unintended atoms such as hydrogen atoms are not implanted in the lattice of the semiconductor layer. Further, in addition to the effect of lowering the irradiation energy, the effect of buffering the ion bombardment by the formation of a deposited film of sulfur described later is exhibited, so that the semiconductor layer is not damaged by the ion bombardment.

【0016】この作用を詳しく述べる前にまず、硫黄を
含むガスの働きについて述べておく。上述の本発明方法
によるプロセスでは、特開平4−84277号に開示さ
れているように、分子内に硫黄を数多く含むガスはプラ
ズマ中で容易に解離して、エッチャントであるハロゲン
ラジカルと堆積性の硫黄を生成する。このエッチングと
堆積が同時に起こる事により、イオンの照射面では、イ
オンのエネルギーにより堆積膜である硫黄が除去され、
エッチングが進む。一方、イオンが照射されない被エッ
チング物の側壁では硫黄の堆積により側壁保護効果が発
生し、ハロゲンラジカルによるサイドエッチングを防止
することが出来る。以上のエッチングと堆積の効果によ
り異方性加工が可能となる。更にRF(高周波)バイア
スを印加しないなど、イオンのエネルギーを0に近くし
ておけば、エッチングのモードを起こさずに堆積のみが
起こるようにすることができる。
Before describing this action in detail, first, the function of the gas containing sulfur will be described. In the process according to the method of the present invention described above, as disclosed in JP-A-4-84277, a gas containing a large amount of sulfur in the molecule is easily dissociated in plasma, and a halogen radical as an etchant and a deposition property It produces sulfur. Since this etching and deposition occur at the same time, the sulfur that is the deposited film is removed by the energy of the ions on the ion irradiation surface,
Etching proceeds. On the other hand, the side wall protection effect occurs due to the deposition of sulfur on the side wall of the object to be etched that is not irradiated with ions, and side etching by halogen radicals can be prevented. Anisotropic processing is possible due to the above etching and deposition effects. Further, if the ion energy is set close to 0, for example, by applying no RF (radio frequency) bias, only the deposition can be performed without causing the etching mode.

【0017】又、より堆積を強固にするため、H2 ,H
2 S,シラン系化合物を添加して、プラズマ放電中で水
素ラジカル(以下、H* と略す。)を放出して、 H* +X* →HX の反応でエッチャントであるハロゲンを捕捉する作用が
ある。これにより、エッチングと硫黄による側壁保護作
用のバランスを取って、再現性良く、安定に異方性エッ
チングを行なうことが出来る。
In order to make the deposition stronger, H 2 , H
2 Adds S and silane compounds to release hydrogen radicals (hereinafter abbreviated as H * ) during plasma discharge, and has the function of trapping halogen, which is an etchant, by the reaction of H * + X * → HX. . This balances the etching and the side wall protection effect of sulfur, and anisotropic etching can be stably performed with good reproducibility.

【0018】又、同じくN2 ,NF3 ,NH3 などの窒
素を含むガスを添加することによって、プラズマ放電中
で生成した窒素ラジカル(以下、N* と略す。)が、硫
黄ラジカルと反応して、より安定な結合を有するポリチ
アジルポリマー(SN)x を形成することでより強固な
側壁保護膜が出来る。これは既に本出願人が特開平4−
354331号で提案しているものである。
Similarly, by adding a gas containing nitrogen such as N 2 , NF 3 and NH 3 , nitrogen radicals (hereinafter abbreviated as N * ) generated during plasma discharge react with sulfur radicals. By forming a polythiazyl polymer (SN) x having a more stable bond, a stronger side wall protective film can be formed. This is already disclosed by the present applicant in Japanese Patent Laid-Open No. 4-
It is proposed in No. 354331.

【0019】この技術を応用すれば、硫黄の堆積を起こ
させながら、ハロゲンラジカルをメインにエッチングを
行えるので、ダメージが入ったり、原子半径の大きい硫
黄やハロゲンが半導体層に打ち込まれることも少なくな
る。
By applying this technique, halogen radicals can be mainly etched while causing sulfur to be deposited, so that damage and damage of sulfur or halogen having a large atomic radius to the semiconductor layer are reduced. .

【0020】そして、上述の方法の適用によって凹部に
は堆積が生じ、凸部にはエッチングが進むので、半導体
層表面を原子層レベルで平坦にすることができる。ま
た、堆積した硫黄は90℃以上に加熱することで容易に
昇華除去出来る。
By applying the above-mentioned method, deposition occurs in the concave portions and etching progresses in the convex portions, so that the surface of the semiconductor layer can be flattened at the atomic layer level. Further, the deposited sulfur can be easily removed by sublimation by heating it to 90 ° C. or higher.

【0021】[0021]

【実施例】以下、図面を用いて本発明の具体的な実施例
について説明をする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described below with reference to the drawings.

【0022】〔実施例1〕図1は本発明の一実施例を説
明する為の歪量子井戸レーザーの製造方法の工程説明図
である。まず、図1Aに示すように、n型InPによる
(001)面を主面とする基板10を用意し、その表面
の酸化膜の除去を行った後、MBE(分子線エピタキシ
ー)法により基板温度550℃においてSiを1×10
18cm-3ドープしたInPによるバッファ層11を厚さ
200nm成長し、続いてInGaAsPによる第1の
光ガイド層12を厚さ70nm成長した。この後、成長
表面に対して次の条件で硫黄を含むガスでのプラズマ処
理を行った。 ガス流量 : S2 2 を30sccm 圧力 : 1.33Pa 温度 : 10℃ マイクロ波 : 850w(2.45GH
z) RF(高周波)バイアス: 5W なお、プラズマ処理の後は100℃以上に加熱して硫黄
膜を除去した。
[Embodiment 1] FIG. 1 is a process explanatory view of a method of manufacturing a strained quantum well laser for explaining an embodiment of the present invention. First, as shown in FIG. 1A, a substrate 10 having a (001) plane of n-type InP as a main surface is prepared, an oxide film on the surface is removed, and then a substrate temperature is measured by an MBE (molecular beam epitaxy) method. Si at 1 x 10 at 550 ° C
The buffer layer 11 made of InP doped with 18 cm −3 was grown to a thickness of 200 nm, and then the first optical guide layer 12 made of InGaAsP was grown to a thickness of 70 nm. After that, the growth surface was subjected to plasma treatment with a gas containing sulfur under the following conditions. Gas flow rate: 30 sccm of S 2 F 2 Pressure: 1.33 Pa Temperature: 10 ° C. Microwave: 850 w (2.45 GH)
z) RF (radio frequency) bias: 5 W After the plasma treatment, heating was performed at 100 ° C. or higher to remove the sulfur film.

【0023】次に図1Bに示すように、In0.71Ga
0.29Asウエル層13を厚さ3nm成長した後、再び硫
黄を含むガスでの第2のプラズマ処理を行った。この場
合のプラズマ処理条件も上記条件と同じに行った。
Next, as shown in FIG. 1B, In 0.71 Ga
After the 0.29 As well layer 13 was grown to a thickness of 3 nm, the second plasma treatment with a gas containing sulfur was performed again. The plasma treatment conditions in this case were the same as the above conditions.

【0024】この後図1Cに示すように、InGaAs
によるバリア層14を厚さ15nm成長した。このバリ
ア層とウエル層との形成と各層の形成前における上述と
同様のプラズマ処理を繰り返し行って4層のウエルを有
する歪量子井戸構造による活性層20を形成した。その
後順次InGaAsPによる第2の光ガイド層15を厚
さ70nmに、Beを2×1018cm-3ドープInPに
よるクラッド層16を厚さ1.5μmに、Beを1×1
19cm-3ドープしたInGaAsによるコンタクト層
17を厚さ100nmに成長し、さらに電極(図示せ
ず)を形成して波長1.3μmの発光を行う歪量子井戸
レーザーを作製した。実施例1におけるように、歪量子
井戸構造の製造過程で、硫黄を含むガスプラズマにさら
す工程をとった結果、ウエル層13とバリア層14の界
面は原子層オーダーで平坦化され、歪の効果がレーザー
特性に充分反映されるようになった。
Thereafter, as shown in FIG. 1C, InGaAs
The barrier layer 14 was grown to a thickness of 15 nm. The barrier layer and the well layer were formed, and the same plasma treatment as described above before forming each layer was repeated to form an active layer 20 having a strained quantum well structure having four well layers. After that, the second optical guide layer 15 made of InGaAsP is made to have a thickness of 70 nm, the Be is 2 × 10 18 cm −3, the cladding layer 16 made of InP is made to have a thickness of 1.5 μm, and Be is made to be 1 × 1.
A contact layer 17 made of 0 19 cm −3 doped InGaAs was grown to a thickness of 100 nm, and an electrode (not shown) was further formed to fabricate a strained quantum well laser emitting light at a wavelength of 1.3 μm. As in Example 1, in the process of manufacturing the strained quantum well structure, as a result of taking the step of exposing to the gas plasma containing sulfur, the interface between the well layer 13 and the barrier layer 14 is flattened on the atomic layer order, and the strain effect is exerted. Is now fully reflected in the laser characteristics.

【0025】〔実施例2〕実施例1と同様の方法をとる
ものの、この実施例2では、実施例1における硫黄を含
むプラズマ処理の条件を変更し、次の条件でプラズマ処
理を行った。 ガス流量 : S2 2 /H2 を30/5sccm 圧力 : 1.33Pa 温度 : 30℃ マイクロ波 : 850w(2.45GHz) RFバイアス : 10W このとき、前述したように、水素ラジカルによる過剰な
フッ素ラジカルの取り込みで硫黄膜ができやすくなり、
プラズマ処理の温度を上げることが出来、省エネルギー
に貢献できた。
[Embodiment 2] Although the same method as in Embodiment 1 was adopted, in Embodiment 2, the conditions of the plasma treatment containing sulfur in Embodiment 1 were changed, and the plasma treatment was carried out under the following conditions. Gas flow rate: S 2 F 2 / H 2 of 30/5 sccm Pressure: 1.33 Pa Temperature: 30 ° C. Microwave: 850 w (2.45 GHz) RF bias: 10 W At this time, as described above, excess fluorine due to hydrogen radicals The incorporation of radicals makes it easier to form a sulfur film,
It was possible to raise the temperature of plasma processing and contribute to energy saving.

【0026】そして、この場合においても各プラズマ処
理後に次の工程に移る場合は、100℃以上に加熱し
て、前述したように硫黄堆積膜を除去すれば良い。この
ようにして、歪量子井戸構造の半導体レーザーを作製し
た。
Also in this case, when the next step is carried out after each plasma treatment, it is sufficient to heat at 100 ° C. or higher to remove the sulfur deposition film as described above. Thus, a semiconductor laser having a strained quantum well structure was manufactured.

【0027】〔実施例3〕実施例1と同様の工程をとる
ものの前処理すなわち硫黄を含むプラズマ処理の条件を
次のように変更した。 ガス流量 : S2 2 /N2 を30/5sccm 圧力 : 1.33Pa 温度 : 50℃ マイクロ波 : 850w(2.45GHz) RFバイアス : 30W この実施例3では窒素を添加することで前述したように
窒素ラジカルがハロゲン化硫黄から解離する硫黄ラジカ
ルと重合することでより安定なポリチアジル膜の堆積が
起こるようにした。従って、フッ素ラジカルのエッチン
グが少ない為、前処理の温度を上げることが出来、省エ
ネルギーに貢献できた。
[Embodiment 3] The conditions of the pretreatment, that is, the plasma treatment containing sulfur are changed as follows, although the same steps as those of the embodiment 1 are performed. Gas flow rate: S 2 F 2 / N 2 of 30/5 sccm Pressure: 1.33 Pa Temperature: 50 ° C. Microwave: 850 w (2.45 GHz) RF bias: 30 W In Example 3, as described above, nitrogen was added. In addition, more stable deposition of polythiazyl film was caused by polymerization of nitrogen radicals with sulfur radicals dissociated from sulfur halide. Therefore, since the etching of the fluorine radicals is small, the temperature of the pretreatment can be increased, which contributes to energy saving.

【0028】そして、この場合各プラズマ処理後の次の
工程に移るに当たっては、200℃以上に加熱して、前
述のように硫黄を含む膜も除去すれば良い。この後、上
述したような工程を経て、歪量子井戸構造の半導体レー
ザーを作製した。
In this case, in the next step after each plasma treatment, the film containing sulfur may be removed by heating at 200 ° C. or higher. After that, a semiconductor laser having a strained quantum well structure was manufactured through the steps described above.

【0029】上述の各実施例では歪量子井戸構造として
InGaAs/InGaAsP系材料を用いたが、In
GaAs/AlGaAsP系材料等歪系であれば他の材
料を用いることもできる。
In each of the above-mentioned embodiments, the InGaAs / InGaAsP-based material is used as the strained quantum well structure.
Other materials such as GaAs / AlGaAsP-based materials can be used as long as they are strain-based materials.

【0030】又、上述の実施例では固体ソースのMBE
法を用いたが、ガスソースMBE法等他の成長法を用い
ることもできる。
Also, in the above embodiment, solid source MBE is used.
Although the method was used, other growth methods such as the gas source MBE method can also be used.

【0031】[0031]

【発明の効果】本発明による歪量子井戸レーザーの製造
方法によれば、ウエル層とバリア層の界面が原子層オー
ダーで平坦にすることができ、ウエル層がきわめて薄い
歪量子井戸構造も界面の揺らぎのない状態で実現でき、
歪みの効果がデバイス特性に充分反映され、閾値電流
2.5mA、内部量子効率80%、内部損失6cm-1
特性温度75K程度の良好な特性が得られる。
According to the method of manufacturing a strained quantum well laser according to the present invention, the interface between the well layer and the barrier layer can be made flat on the order of atomic layers, and the well layer has a very thin strained quantum well structure. It can be realized without fluctuation,
The effect of strain is sufficiently reflected in the device characteristics, and the threshold current is 2.5 mA, the internal quantum efficiency is 80%, the internal loss is 6 cm -1 ,
Good characteristics with a characteristic temperature of about 75 K can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明製造方法の一実施例の工程説明図であ
る。 Aはその一の工程図 Bはその一の工程図 Cはその一の工程図
FIG. 1 is a process explanatory view of an embodiment of the manufacturing method of the present invention. A is the one process drawing B is the one process drawing C is the one process drawing

【符号の説明】[Explanation of symbols]

10 基板 11 バッファ層 12 光ガイド層 13 ウエル層 14 バリア層 15 光ガイド層 16 クラッド層 17 コンタクト層 10 substrate 11 buffer layer 12 optical guide layer 13 well layer 14 barrier layer 15 optical guide layer 16 clad layer 17 contact layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 歪量子井戸構造を構成する活性層を少な
くとも含む半導体層を積層する結晶成長工程を少なくと
も工程内に有する半導体レーザーの製造方法において、 上記歪量子井戸構造のウエル層とバリア層の成長に先立
って、その成長面を硫黄を含むガスプラズマにさらす工
程を含む事を特徴とする歪量子井戸レーザーの製造方
法。
1. A method for manufacturing a semiconductor laser, which comprises at least a crystal growth step of laminating a semiconductor layer including at least an active layer constituting a strained quantum well structure in the step, wherein the well layer and the barrier layer having the strained quantum well structure are formed. A method for manufacturing a strained quantum well laser, which comprises a step of exposing the growth surface to a gas plasma containing sulfur prior to growth.
【請求項2】 前記硫黄を含むガスとして、 S2 2 ,SF2 ,SF4 ,S2 10,S3 Cl2 ,S
Cl2 ,S2 Br2 ,SBr2 ,S3 Br2 から選ばれ
る少なくとも一種のガスを用いることを特徴とする請求
項第1項に記載の歪量子井戸レーザーの製造方法。
2. The gas containing sulfur includes S 2 F 2 , SF 2 , SF 4 , S 2 F 10 , S 3 Cl 2 and S.
The method for producing a strained quantum well laser according to claim 1, wherein at least one gas selected from Cl 2 , S 2 Br 2 , SBr 2 , and S 3 Br 2 is used.
【請求項3】 前記硫黄を含むガスとして、 S2 2 ,SF2 ,SF4 ,S2 10,S3 Cl2 ,S
Cl2 ,S2 Br2 ,SBr2 ,S3 Br2 から選ばれ
る少なくとも一種の第1のガスと、H2 ,H2S,シラ
ン系化合物から選ばれる少なくとも一種の第2のガスと
を混合したガスを用いることを特徴とする請求項1また
は2記載の歪量子井戸レーザーの製造方法。
3. The gas containing sulfur includes S 2 F 2 , SF 2 , SF 4 , S 2 F 10 , S 3 Cl 2 and S.
Mixing at least one first gas selected from Cl 2 , S 2 Br 2 , SBr 2 and S 3 Br 2 with at least one second gas selected from H 2 , H 2 S and a silane compound. 3. The method for manufacturing a strained quantum well laser according to claim 1, wherein the gas is used.
【請求項4】 前記硫黄を含むガスとして、 S2 2 ,SF2 ,SF4 ,S2 10,S3 Cl2 ,S
Cl2 ,S2 Br2 ,SBr2 ,S3 Br2 から選ばれ
る少なくとも一種の第1のガスと、窒素を含む少なくと
も一種の第2のガスとを混合したガスを用いることを特
徴とする請求項1,2または3に記載の歪量子井戸レー
ザーの製造方法。
4. The gas containing sulfur is S 2 F 2 , SF 2 , SF 4 , S 2 F 10 , S 3 Cl 2 , S.
A gas obtained by mixing at least one first gas selected from Cl 2 , S 2 Br 2 , SBr 2 , and S 3 Br 2 with at least one second gas containing nitrogen is used. Item 4. A method of manufacturing a strained quantum well laser according to item 1, 2 or 3.
JP6956994A 1994-04-07 1994-04-07 Manufacture of distorted quantum well laser Pending JPH07283478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6956994A JPH07283478A (en) 1994-04-07 1994-04-07 Manufacture of distorted quantum well laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6956994A JPH07283478A (en) 1994-04-07 1994-04-07 Manufacture of distorted quantum well laser

Publications (1)

Publication Number Publication Date
JPH07283478A true JPH07283478A (en) 1995-10-27

Family

ID=13406551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6956994A Pending JPH07283478A (en) 1994-04-07 1994-04-07 Manufacture of distorted quantum well laser

Country Status (1)

Country Link
JP (1) JPH07283478A (en)

Similar Documents

Publication Publication Date Title
US6358316B1 (en) Method for producing semiconductor device, method for producing semiconductor laser device, and method for producing quantum wire structure
US6803605B2 (en) Method to GaAs based lasers and a GaAs based laser
US20050153470A1 (en) Method to obtain contamination free laser mirrors and passivation of these
US20070228395A1 (en) Semiconductor light emitting element and method for fabricating the same
JPH04262528A (en) Method for etching of semiconductor substrate
JP4537549B2 (en) Method for manufacturing compound semiconductor device
JP3778769B2 (en) Method of stabilizing compound semiconductor surface, method of manufacturing semiconductor laser device using the same, and semiconductor device such as semiconductor laser device
JPH07283478A (en) Manufacture of distorted quantum well laser
JP2001007443A (en) Manufacture of semiconductor light emitting device
JP2003158074A (en) Semiconductor multilayer substrate and method for manufacturing semiconductor multilayer film
Nie et al. Argon plasma exposure enhanced intermixing in an undoped InGaAsP∕ InP quantum-well structure
JP3196831B2 (en) Method for manufacturing semiconductor laser device
JP3272531B2 (en) Method for manufacturing compound semiconductor device
JPH057053A (en) Fabrication of strain quantum well laser
GB2309582A (en) Method and apparatus for manufacturing a semiconductor device with a nitride layer
JPH088488A (en) Manufacture of semiconductor multilayered substrate and semiconductor multilayered film
JPH05343738A (en) Manufacture of optical semiconductor device
JP2004055881A (en) Method for manufacturing optical semiconductor device
KR100330591B1 (en) Method of making semiconductor laser diode
WO2001067569A1 (en) Plasma based process for photonic integration
JPS62108592A (en) Manufacture of semiconductor
GB2385712A (en) Optoelectronic devices
JPH07193011A (en) Manufacture of semiconductor device
JPH07193053A (en) Etching method for semiconductor having super-lattice structure
Mei et al. Low-loss waveguide fabrication using inductively coupled argon plasma enhanced quantum well intermixing in InP quantum well sample