JPH07283286A - Ultra high vacuum transferring device - Google Patents

Ultra high vacuum transferring device

Info

Publication number
JPH07283286A
JPH07283286A JP7063394A JP7063394A JPH07283286A JP H07283286 A JPH07283286 A JP H07283286A JP 7063394 A JP7063394 A JP 7063394A JP 7063394 A JP7063394 A JP 7063394A JP H07283286 A JPH07283286 A JP H07283286A
Authority
JP
Japan
Prior art keywords
sample
high vacuum
ultra
vacuum
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7063394A
Other languages
Japanese (ja)
Other versions
JP2555973B2 (en
Inventor
Yoshimasa Sugimoto
喜正 杉本
Kiyoshi Asakawa
潔 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6070633A priority Critical patent/JP2555973B2/en
Publication of JPH07283286A publication Critical patent/JPH07283286A/en
Application granted granted Critical
Publication of JP2555973B2 publication Critical patent/JP2555973B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To transport a sample to a processing device in an ultra-high vacuum while shutting off vibration due to other processing devices in a through vacuum process for semiconductor manufacturing. CONSTITUTION:Between processing devices which need operations in an ultra- high vacuum, a device transfers a sample through a sample transferring path that connects processing devices in an ultra-high vacuum and a sample transferring path 11 and a processing room 12 are isolated by a pair of gate valves 13 and are connected and disconnected with a quick coupling 16. This part is equipped with a vacuum pump that can evacuate the part to an ultra-high vacuum. As the sample is transferred without contamination of the surface of it and is insulated from mechanical vibration, the performance of working fine area and evaluation improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造装置など真
空下での一貫した操作を要する装置において試料を搬送
する際に使用される搬送装置であり、特に超高真空中で
の微細加工装置との試料の搬送に好適な超高真空搬送装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transfer device used for transferring a sample in a device such as a semiconductor manufacturing device which requires a consistent operation in a vacuum, and in particular, a fine processing device in an ultrahigh vacuum. The present invention relates to an ultra-high vacuum transfer device suitable for transferring samples.

【0002】[0002]

【従来の技術】半導体の製造における、結晶成長、パタ
ーニング、エッチング、ドーピング、再成長、電極形成
などの各プロセスを超高真空中で連続的に行うことによ
り、加工表面の劣化をもたらさずに半導体を製造する真
空一貫プロセスの開発がなされている。この真空一貫プ
ロセスにおいて、各プロセス装置に試料を超高真空下で
搬送する超高真空搬送装置は必要不可欠なものである。
2. Description of the Related Art Semiconductor manufacturing processes such as crystal growth, patterning, etching, doping, re-growth, and electrode formation are continuously carried out in an ultrahigh vacuum, so that the processed surface is not deteriorated. The vacuum integrated process for manufacturing is manufactured. In this vacuum integrated process, an ultra-high vacuum transfer device that transfers a sample to each process device under ultra-high vacuum is indispensable.

【0003】従来の超高真空の搬送装置は、真空度を超
高真空領域まで到達させるために、ベイキング(加熱脱
ガス処理)が可能なステンレス製のパイプを、銅等のガ
スケットを介してフランジで接続する方式を取ってい
る。そのため試料搬送路とプロセス装置との間はリジッ
ドに固定された搬送路で接続されている。従来の具体例
を図3を用いて詳細に説明する。図3は従来の超高真空
の搬送装置の構成を示す模式図である。搬送路31に設
置された試料キャリヤ37上に、試料34は設置されて
いる。試料キャリヤ37は搬送路31内を移動でき、評
価室や結晶成長室等の各プロセス室に試料34を搬送す
ることができる。試料キャリヤ37上の試料34は、マ
グネット36で移動可能なトランスファロッド35で搬
送路31からプロセス室32へ搬送される。搬送時には
ゲートバルブ33を開閉することによりプロセス室と搬
送路との間を開通あるいは遮断する。
In a conventional ultra-high vacuum transfer device, a stainless steel pipe capable of baking (heating degassing treatment) is flanged via a gasket such as copper in order to reach the ultra-high vacuum region. The method of connecting with is adopted. Therefore, the sample transport path and the process device are connected by a rigidly secured transport path. A conventional specific example will be described in detail with reference to FIG. FIG. 3 is a schematic diagram showing the structure of a conventional ultra-high vacuum transfer device. The sample 34 is installed on the sample carrier 37 installed in the transport path 31. The sample carrier 37 can move in the transfer path 31, and can transfer the sample 34 to each process chamber such as an evaluation chamber and a crystal growth chamber. The sample 34 on the sample carrier 37 is transferred from the transfer path 31 to the process chamber 32 by the transfer rod 35 movable by the magnet 36. During transfer, the gate valve 33 is opened and closed to open or shut off the connection between the process chamber and the transfer path.

【0004】[0004]

【発明が解決しようとしている課題】しかしながら、半
導体の製造における真空一貫プロセスではひとつの試料
搬送路に多くの装置が接続されており、従来の搬送装置
では、試料搬送路とプロセス装置あるいは他の装置とが
強固に固定接続されているため、機械的な振動が試料搬
送路を通じてプロセス装置間を互いに伝わりやすいとい
う問題点がある。他のプロセス装置で生じた機械的振動
が、特に微細な電子線を用いる加工や評価の装置に伝わ
ると、機械的振動はそれら加工や評価の分解能を決める
大きな要因であるため、分解能を低下させ悪影響を及ぼ
す。そこで、装置全体を空気ばねによる除震台に乗せた
り、また接続部分をベローズ接続にする等の工夫もされ
ている。しかし、真空一貫プロセス装置全体を除震台に
乗せる方法は、費用の点で高価になることや、装置自体
をコンパクトに作る必要があり発展性が犠牲になる等の
欠点がある。また、ベローズ接続による方法は、他のプ
ロセス装置や搬送路から伝わる機械的振動を低減するこ
とはできても、なくすことはできなかった。
However, in the vacuum integrated process in semiconductor manufacturing, many devices are connected to one sample transfer path, and in the conventional transfer device, the sample transfer path and the process device or other devices are connected. Since and are firmly fixedly connected, there is a problem that mechanical vibrations are easily transmitted to each other between the process devices through the sample transport path. When mechanical vibration generated in other process equipment is transmitted to a processing or evaluation device that uses a particularly fine electron beam, the mechanical vibration is a major factor that determines the resolution of the processing and evaluation, so the resolution is reduced. Adversely affect. Therefore, various measures have been taken such as placing the entire device on a vibration isolation table using an air spring, and connecting the connection part with a bellows. However, the method of mounting the entire vacuum integrated process device on the seismic isolation table has drawbacks such as an increase in cost and the need to make the device itself compact, and sacrificing developability. Further, the method using the bellows connection can reduce the mechanical vibration transmitted from other process devices and the conveyance path, but cannot eliminate it.

【0005】本発明の目的は、上記問題点を解決し、超
高真空一貫プロセスにおける各装置で生ずる機械的振動
が、微細加工や微細領域の評価を行う装置などに伝わら
ず、かつ超高真空下での試料の搬送が可能な搬送装置を
提供することにある。
The object of the present invention is to solve the above-mentioned problems, to prevent the mechanical vibration generated in each device in the ultra-high vacuum integrated process from being transmitted to the device for performing fine processing or evaluation of the fine region, and to obtain the ultra-high vacuum. An object of the present invention is to provide a transfer device that can transfer a sample below.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の第1の発明による超高真空搬送装置は、複
数のプロセス装置間を、前記プロセス装置間をつなぐ試
料搬送路により、試料を超高真空下で搬送する超高真空
搬送装置であって、試料搬送路とプロセス装置との間の
区間が2つの開閉バルブで仕切られ、前記2つの開閉バ
ルブを閉じた後の該区間において、前記試料搬送路と前
記プロセス装置の双方あるいはいずれか一方から切り離
せることを特徴とする。
In order to achieve the above object, the ultrahigh vacuum transfer apparatus according to the first invention of the present invention comprises: a plurality of process apparatuses; and a sample transfer path for connecting the process apparatuses. An ultra-high vacuum transfer device for transferring a sample under ultra-high vacuum, wherein a section between a sample transfer path and a process device is partitioned by two opening / closing valves, and the section after closing the two opening / closing valves. In the above, it is possible to separate from the sample transport path and / or the process device.

【0007】第2の発明は、前記2つの開閉バルブで仕
切られた前記区間内を超高真空領域まで短時間で排気で
きる真空排気装置を設けたことを特徴とする第1の発明
に記載の超高真空搬送装置である。
A second aspect of the present invention is characterized in that a vacuum exhaust device is provided which can exhaust the interior of the section partitioned by the two opening / closing valves to an ultrahigh vacuum region in a short time. It is an ultra-high vacuum transfer device.

【0008】[0008]

【作用】本発明では、2つの開閉バルブで仕切られた搬
送路とプロセス室との間を機械的に完全に分離できるた
め、電子ビームを用いた微細な加工や評価装置などにお
いて、他の装置で生じた外部からの機械的振動が搬送路
を通じて伝わらず、それら加工や評価の分解能を低下さ
せることがないため、良好な状態での操作が可能とな
る。また、本装置は、この仕切られた区間内を高速で超
高真空領域まで排気可能な排気系を有するため、切り離
したあとに再度、前記区間を接続し超高真空下にするこ
とを短時間で行え、超高真空下で試料を搬送できるた
め、製造過程における半導体の表面汚染等の心配がな
い。
According to the present invention, since the transport path partitioned by the two opening / closing valves and the process chamber can be mechanically completely separated from each other, it is possible to use other devices in a fine processing or evaluation device using an electron beam. Since the mechanical vibration from the outside generated in step 2 is not transmitted through the transport path and the resolution of the processing and evaluation is not lowered, the operation in a good state can be performed. Also, since this device has an exhaust system capable of exhausting the inside of this partitioned section at high speed to the ultra-high vacuum region, it is possible to connect the sections again after disconnection for a short time in the ultra-high vacuum. Since the sample can be transferred under ultra-high vacuum, there is no concern about surface contamination of the semiconductor during the manufacturing process.

【0009】[0009]

【実施例】以下に本発明の一実施例を図面に従って説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0010】図1は本発明の試料搬送装置の全体の構成
を示す概略図である。図1に示すように、本発明の試料
搬送装置の搬送路11とプロセス室12との間は2つの
ゲートバルブ13により仕切られており、その2つのゲ
ートバルブ13で仕切られた区間には切り離し可能なク
イックカップリング継手16によって接続された部分が
あり、またその区間内を短時間で超高真空にすることが
できる真空排気装置17が設置されている。
FIG. 1 is a schematic diagram showing the overall structure of the sample transporting apparatus of the present invention. As shown in FIG. 1, the transfer path 11 and the process chamber 12 of the sample transfer apparatus of the present invention are partitioned by two gate valves 13, and the sections partitioned by the two gate valves 13 are separated. There is a part that is connected by a possible quick coupling joint 16, and a vacuum exhaust device 17 that can make an ultrahigh vacuum in that section in a short time is installed.

【0011】試料14はトランスファロッド15によっ
て試料搬送路11とプロセス室12との間を行き来す
る。
The sample 14 moves back and forth between the sample transfer path 11 and the process chamber 12 by the transfer rod 15.

【0012】真空排気装置17は大容量のターボモレキ
ュラポンプ(TMP)とイオンポンプ(IP)との組合
わせから構成され、大気から高速に排気するためにTM
Pを使い、超高真空領域で真空度を保持するためにIP
を用いる。これにより、到達真空度を1×10-9Tor
r以下にすることができる。
The vacuum evacuation device 17 is composed of a combination of a large capacity turbo molecular pump (TMP) and an ion pump (IP), and is used to evacuate the atmosphere at high speed.
IP is used to maintain the degree of vacuum in the ultra-high vacuum region by using P
To use. As a result, the ultimate vacuum is 1 × 10 -9 Tor
It can be r or less.

【0013】クイックカップリング継手16はOリング
シールによる超高真空対応のものであり、クイックカッ
プリング継手16に付随する着脱式のベルトにより、継
手16における接続部分を簡単に切り離したり、再び接
続できる構造となっている。
The quick coupling joint 16 corresponds to an ultra-high vacuum by an O-ring seal, and a detachable belt attached to the quick coupling joint 16 allows the connecting portion of the joint 16 to be easily disconnected or reconnected. It has a structure.

【0014】次に、本発明の装置を用いて試料を搬送す
る工程について、図2を用いて説明する。図2(a)は
試料設置工程を、(b)は試料搬送工程を、(c)は切
り離し工程を示す本発明の装置の構成図である。
Next, the step of transporting a sample using the apparatus of the present invention will be described with reference to FIG. 2A is a block diagram of the apparatus of the present invention showing a sample setting step, FIG. 2B showing a sample transporting step, and FIG. 2C showing a separating step.

【0015】まず、試料24を搬送路21側に設置する
(図2(a)試料設置)。この時、2つのゲートバルブ
23は両方とも閉じた状態となっている。又、搬送路2
1とプロセス室22とを繋ぐ中間領域はクイックカップ
リング継手25によって接続されており、真空排気装置
26によって超高真空領域まで排気され保持されてい
る。
First, the sample 24 is set on the side of the transport path 21 (FIG. 2A, sample setting). At this time, the two gate valves 23 are both closed. Also, the transport path 2
The intermediate region connecting 1 to the process chamber 22 is connected by a quick coupling joint 25, and is evacuated to an ultra-high vacuum region by a vacuum exhaust device 26 and held therein.

【0016】次に試料24を搬送路21からプロセス室
22に搬送する(図2(b)試料搬送)。この時には、
2つのゲートバルブ23を両方とも開け、試料24をト
ランスファロッド(図示せず)を用いてプロセス室22
に搬送する。プロセス室22に試料を搬送した後にトラ
ンスファロッドを搬送路21側に引戻し、ゲートバルブ
23を両方とも閉じる。これで試料24のプロセス室2
2への搬送工程は完了である。
Next, the sample 24 is transferred from the transfer path 21 to the process chamber 22 (sample transfer in FIG. 2B). At this time,
Both gate valves 23 are opened, and the sample 24 is transferred to the process chamber 22 using a transfer rod (not shown).
Transport to. After transferring the sample to the process chamber 22, the transfer rod is pulled back to the transfer path 21 side, and both gate valves 23 are closed. This is the process chamber 2 for sample 24
The transfer process to 2 is completed.

【0017】この後、他の装置から生ずる機械的振動が
伝わらないようにするため、プロセス室側と搬送路側と
をクイックカップリング継手25による接続部分で切り
離す作業を行う(図2(c)切り離し)。まず、2つの
ゲートバルブ13により仕切られた中間領域内を排気し
ていた真空排気装置26のゲートバルブ(図示せず)を
閉じる。続いて中間領域内に窒素ガスを導入して大気圧
にリークする。そして、クイックカップリング継手25
を取り外し、プロセス室側と搬送路側とに切り離す。そ
の後、ただちに密閉蓋27を切り離した部分に取付け真
空排気する。この真空度は超高真空領域まで到達させる
必要はなく10-7Torr程度の真空度まで排気する。
このように排気することで、切り離した部分を大気に晒
して置くことなく保持できる。図2のように、クイック
カップリング継手25は、2つのゲートバルブ23の内
の一方に近い箇所に設置し、真空排気装置をクイックカ
ップリング継手25と他方のゲートバルブ23との間に
設置することが好ましい。
Thereafter, in order to prevent the mechanical vibration generated from other devices from being transmitted, the process chamber side and the conveying path side are separated at the connection portion by the quick coupling joint 25 (FIG. 2 (c) disconnection). ). First, the gate valve (not shown) of the vacuum exhaust device 26 that has exhausted the inside of the intermediate region partitioned by the two gate valves 13 is closed. Then, nitrogen gas is introduced into the intermediate region to leak to the atmospheric pressure. And quick coupling fitting 25
To separate it into the process chamber side and the transport path side. Immediately thereafter, the sealing lid 27 is attached to the separated portion and vacuum exhaust is performed. This degree of vacuum does not have to reach the ultrahigh vacuum region, and the degree of vacuum is evacuated to about 10 -7 Torr.
By exhausting in this way, the separated part can be held without exposing it to the atmosphere. As shown in FIG. 2, the quick coupling joint 25 is installed at a position near one of the two gate valves 23, and a vacuum exhaust device is installed between the quick coupling joint 25 and the other gate valve 23. It is preferable.

【0018】この切り離された状態で、プロセス室に搬
送された試料に電子ビームを用いた微細加工などを行
う。搬送路と切り離されているため機械的振動は極めて
小さく、他の装置と搬送路により接続されているときに
は最小加工サイズは1μm 程度であったものが、本発明
の装置により切り離すことで、ほぼビーム径と同程度の
サイズである50nmの加工が可能となった。又、2次電
子を用いた走査型電子顕微鏡モードでの微細領域の評価
においても、切り離すことで分解能が従来は1μm 程度
であったものが数十nm程度となり、微細加工と同程度に
性能が向上した。
In this separated state, the sample carried into the process chamber is subjected to fine processing using an electron beam. Since it is separated from the transport path, mechanical vibration is extremely small, and the minimum processing size was about 1 μm when it was connected to another device by the transport path. Processing of 50 nm, which is about the same size as the diameter, has become possible. Also, in the evaluation of the fine area in the scanning electron microscope mode using secondary electrons, the resolution was about 1 μm in the past, but it was about several tens of nm when separated, and the performance was comparable to that of fine processing. Improved.

【0019】以上のように切り離すところまでを詳細に
説明したが、プロセス終了後に再びプロセス装置側と搬
送路側とを接続する方法は、これまでの作業と逆の作業
となる。まず、密閉蓋27で閉じられた両側を窒素ガス
で大気圧までリークし、素早くクイックカップリング継
手25で接続する。その後、真空排気装置26を用いて
超高真空領域まで排気する。10-8Torr台まで充分
排気した後、ゲートバルブ23を両方とも開けプロセス
室22にある試料24をトランスファロッドで搬送路2
1側に搬送する。搬送終了後、ゲートバルブ23を両方
とも閉じる。以上の操作によりで、プロセス室22にあ
った試料を搬送路側に移動することができる。
Although the steps up to the separation have been described above in detail, the method of connecting the process device side and the transport path side again after the process is completed is the reverse of the work up to now. First, both sides closed by the sealing lid 27 are leaked to atmospheric pressure with nitrogen gas, and quickly connected by the quick coupling joint 25. Then, the vacuum exhaust device 26 is used to exhaust to an ultrahigh vacuum region. After exhausting sufficiently to the 10 -8 Torr level, both gate valves 23 are opened and the sample 24 in the process chamber 22 is transferred by the transfer rod to the transfer path 2
Transport to 1 side. After the transportation is completed, both gate valves 23 are closed. By the above operation, the sample in the process chamber 22 can be moved to the transport path side.

【0020】本発明の装置を用いた搬送方法では、一度
搬送経路を大気に晒すことになるが極めて短時間であ
り、かつ直ちに高真空領域まで真空に排気した後に試料
を搬送することから、試料表面に対する大気汚染の影響
は極めて小さいものと考えられる。実際にこのように試
料搬送した試料の表面をオージェ電子分光法で調べたと
ころ、表面に酸素、炭素等の大気汚染が原因と見られる
元素からの信号は見られず極めて清浄な表面が保たれて
いることがわかった。
In the transfer method using the apparatus of the present invention, the transfer path is exposed to the atmosphere once, but in a very short time, and the sample is transferred immediately after it is evacuated to a high vacuum region. The effect of air pollution on the surface is considered to be extremely small. When the surface of the sample transported in this way was actually examined by Auger electron spectroscopy, no signals from elements such as oxygen and carbon, which are considered to be the cause of atmospheric pollution, were observed, and a very clean surface was maintained. I found out.

【0021】又、搬送経路を一度大気に晒し、それから
真空排気することから試料の搬送に時間がかかると考え
られるが、大容量のTMPを設置することでこの問題は
回避できる。また、半導体製造時の塩素ガスを用いたエ
ッチングプロセスを例とすると、プロセス終了後にプロ
セス室を高真空に排気する時間と、搬送路を高真空に排
気する時間はほぼ同じであり、搬送路を真空にする時間
がスループットに悪影響を及ぼすことはないことがわか
った。
Further, it is considered that it takes time to transfer the sample because the transfer path is exposed to the atmosphere once and then vacuum exhaust is performed, but this problem can be avoided by installing a large capacity TMP. Also, taking the etching process using chlorine gas during semiconductor manufacturing as an example, the time to evacuate the process chamber to high vacuum after the process is almost the same as the time to evacuate the transfer path to high vacuum. It was found that the time of applying the vacuum did not adversely affect the throughput.

【0022】[0022]

【発明の効果】以上のように、本発明の超高真空試料搬
送装置を用いることにより、電子ビーム等を用いた微細
加工や微小領域の評価において、他の装置など外部から
の機械的振動の影響を受けないため、高分解能で微細領
域の加工や評価を行うことができ、また超高真空下で試
料を搬送するため、試料表面の大気による汚染の心配が
ない。
As described above, by using the ultra-high vacuum sample transfer device of the present invention, mechanical vibrations from other devices such as other devices can be avoided in microfabrication using an electron beam or in the evaluation of a minute area. Since it is not affected, it is possible to process and evaluate a fine region with high resolution, and since the sample is transported under ultra-high vacuum, there is no concern about contamination of the sample surface by the atmosphere.

【0023】また、本発明によれば、従来の除震台に装
置全体を乗せる装置と違い、真空一貫プロセスに用いる
装置全体をコンパクトに作る必要はなく、新たにプロセ
ス装置を加える際にも本発明の搬送装置を取り付けるだ
けでよいため、発展性が犠牲になることもない。
Further, according to the present invention, unlike the conventional apparatus for mounting the entire apparatus on the seismic isolation table, it is not necessary to make the entire apparatus used for the vacuum integrated process compact, and it is necessary to add a new process apparatus. Since it suffices to attach the transport device of the invention, the developability is not sacrificed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の試料搬送装置の全体の構成を示す概略
図である。
FIG. 1 is a schematic diagram showing the overall configuration of a sample transport device of the present invention.

【図2】本発明の試料搬送装置を用いた試料搬送各工程
における装置の構成を示す断面図である。 (a)試料設置工程における本発明の構成図。 (b)試料搬送工程における本発明の構成図。 (c)切り離し工程における本発明の構成図。
FIG. 2 is a cross-sectional view showing a configuration of an apparatus in each step of sample transport using the sample transport apparatus of the present invention. (A) The block diagram of this invention in a sample installation process. (B) The block diagram of this invention in a sample conveyance process. (C) The block diagram of this invention in a cutting process.

【図3】従来の試料搬送装置の全体を示す構成図であ
る。
FIG. 3 is a configuration diagram showing an entire conventional sample transport device.

【符号の説明】[Explanation of symbols]

11、21、31 搬送路 12、22、32 プロセス室 13、23、33 ゲートバルブ 14、24、34 試料 15、35 トランスファロッド 16、25 クイックカップリング継手 17、26 真空排気装置 27 密閉蓋 36 マグネット 37 試料キャリヤ 11, 21, 31 Conveying path 12, 22, 32 Process chamber 13, 23, 33 Gate valve 14, 24, 34 Sample 15, 35 Transfer rod 16, 25 Quick coupling joint 17, 26 Vacuum exhaust device 27 Sealing lid 36 Magnet 37 sample carrier

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】複数のプロセス装置間を、前記プロセス装
置間をつなぐ試料搬送路により、試料を超高真空下で搬
送する超高真空搬送装置であって、前記試料搬送路と前
記プロセス装置との間の区間が2つの開閉バルブで仕切
られ、前記2つの開閉バルブを閉じた後の該区間におい
て、前記試料搬送路と前記プロセス装置の双方あるいは
いずれか一方から切り離せることを特徴とする超高真空
搬送装置。
1. An ultra-high vacuum transfer apparatus for transferring a sample between a plurality of process apparatuses under an ultra-high vacuum by a sample transfer path connecting the process apparatuses, the sample transfer path and the process apparatus. Is divided by two opening / closing valves, and in the section after closing the two opening / closing valves, the sample transfer path and / or the process device can be separated from either or either one of the above. High vacuum transfer device.
【請求項2】前記2つの開閉バルブで仕切られた前記区
間内を超高真空領域まで排気できる真空排気装置を設け
たことを特徴とする請求項1記載の超高真空搬送装置。
2. The ultra-high vacuum transfer apparatus according to claim 1, further comprising a vacuum exhaust device capable of exhausting the interior of the section partitioned by the two opening / closing valves to an ultra-high vacuum region.
JP6070633A 1994-04-08 1994-04-08 Ultra high vacuum transfer device Expired - Lifetime JP2555973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6070633A JP2555973B2 (en) 1994-04-08 1994-04-08 Ultra high vacuum transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6070633A JP2555973B2 (en) 1994-04-08 1994-04-08 Ultra high vacuum transfer device

Publications (2)

Publication Number Publication Date
JPH07283286A true JPH07283286A (en) 1995-10-27
JP2555973B2 JP2555973B2 (en) 1996-11-20

Family

ID=13437248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6070633A Expired - Lifetime JP2555973B2 (en) 1994-04-08 1994-04-08 Ultra high vacuum transfer device

Country Status (1)

Country Link
JP (1) JP2555973B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329763A (en) * 2001-04-27 2002-11-15 Yaskawa Electric Corp Connecting structure between hermetic chambers
JP2020176689A (en) * 2019-04-19 2020-10-29 株式会社ブイテックス Control method for gate valve
WO2022210839A1 (en) * 2021-03-31 2022-10-06 ボンドテック株式会社 Bonding system and bonding method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163951A (en) * 1987-12-21 1989-06-28 Toshiba Corp Vacuum device
JPH02283017A (en) * 1989-01-06 1990-11-20 General Signal Corp Wafer processing apparatus
JPH053240A (en) * 1991-06-24 1993-01-08 Tdk Corp Method and apparatus for clean conveyance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163951A (en) * 1987-12-21 1989-06-28 Toshiba Corp Vacuum device
JPH02283017A (en) * 1989-01-06 1990-11-20 General Signal Corp Wafer processing apparatus
JPH053240A (en) * 1991-06-24 1993-01-08 Tdk Corp Method and apparatus for clean conveyance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329763A (en) * 2001-04-27 2002-11-15 Yaskawa Electric Corp Connecting structure between hermetic chambers
JP2020176689A (en) * 2019-04-19 2020-10-29 株式会社ブイテックス Control method for gate valve
WO2022210839A1 (en) * 2021-03-31 2022-10-06 ボンドテック株式会社 Bonding system and bonding method
JPWO2022210839A1 (en) * 2021-03-31 2022-10-06

Also Published As

Publication number Publication date
JP2555973B2 (en) 1996-11-20

Similar Documents

Publication Publication Date Title
US6899507B2 (en) Semiconductor processing apparatus comprising chamber partitioned into reaction and transfer sections
JPH02283017A (en) Wafer processing apparatus
JPS61291032A (en) Vacuum apparatus
KR20140001589U (en) Load lock chamber with slit valve doors
JP2555973B2 (en) Ultra high vacuum transfer device
US8197704B2 (en) Plasma processing apparatus and method for operating the same
JPH07193115A (en) Vacuum processing apparatus
JPH04162709A (en) Manufacturing apparatus of semiconductor and processing method of reaction
JPH07211762A (en) Wafer transfer treater
JP2011233707A (en) Vacuum processing apparatus
JP2001185598A (en) Substrate processor
JPH0362944A (en) Substrate treatment apparatus
JPS59231816A (en) Dry-etching apparatus
JP2887079B2 (en) Ashing equipment
JPH0324773B2 (en)
JP2576495B2 (en) Dry etching equipment
JP2870410B2 (en) Vacuum processing equipment
JPH07166353A (en) Continuous sputtering method
JP3463785B2 (en) Sealing device and processing device
JPH0513002Y2 (en)
JP2849772B2 (en) Sealing device and sealing method
JP2664216B2 (en) Control method of vacuum processing equipment
JPH0494114A (en) Electron beam lithography
JPH0587258A (en) Gate valve
JPH056934A (en) Vacuum wafer carrier

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960709