JPH0728094B2 - 半導体レ−ザ素子 - Google Patents
半導体レ−ザ素子Info
- Publication number
- JPH0728094B2 JPH0728094B2 JP62044939A JP4493987A JPH0728094B2 JP H0728094 B2 JPH0728094 B2 JP H0728094B2 JP 62044939 A JP62044939 A JP 62044939A JP 4493987 A JP4493987 A JP 4493987A JP H0728094 B2 JPH0728094 B2 JP H0728094B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- light emitting
- wavelength
- emitting layer
- semiconductor laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4031—Edge-emitting structures
- H01S5/4043—Edge-emitting structures with vertically stacked active layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/06209—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
- H01S5/0622—Controlling the frequency of the radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/3418—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers using transitions from higher quantum levels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4087—Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Semiconductor Lasers (AREA)
Description
【発明の詳細な説明】 〔技術分野〕 本発明は、半導体レーザ素子に関し、特に素子に流す電
流の大きさを変えることにより、異なる波長のレーザ光
を発する半導体レーザ素子に関する。
流の大きさを変えることにより、異なる波長のレーザ光
を発する半導体レーザ素子に関する。
近年、光通信や光学的情報処理の分野における、半導体
レーザ素子の需要は急激に増大してきており、それに伴
って素子の機能に対する要求も多様化しつつある。発振
波長が可変な半導体レーザ素子もそのうちの一つであ
る。例えば、光カードや光デイスク等の媒体にレーザ光
を照射して情報の記録及び再生を行う場合、通常再生光
の出力を記録光よりも低くすることによって、再生光に
よる書き込みを防止している。ここで、波長可変の半導
体レーザ素子を用い、再生光の波長を媒体感度の低い領
域に設定すれば、再生光の出力をそれほど低下させるこ
となく上記書き込み防止出来、S/N比の高い情報の再生
が可能となる。
レーザ素子の需要は急激に増大してきており、それに伴
って素子の機能に対する要求も多様化しつつある。発振
波長が可変な半導体レーザ素子もそのうちの一つであ
る。例えば、光カードや光デイスク等の媒体にレーザ光
を照射して情報の記録及び再生を行う場合、通常再生光
の出力を記録光よりも低くすることによって、再生光に
よる書き込みを防止している。ここで、波長可変の半導
体レーザ素子を用い、再生光の波長を媒体感度の低い領
域に設定すれば、再生光の出力をそれほど低下させるこ
となく上記書き込み防止出来、S/N比の高い情報の再生
が可能となる。
上記要求に対して、従来、多重量子井戸(MQW)構造の
高次量子準位を用いた波長可変半導体レーザ素子が提案
されている。第10図は、このような従来の半導体レーザ
素子における、発光領域付近のエネルギーバンド図であ
る。ここで発光領域23は、ウエル層22とバリア層21とが
交互に積層されたMQW構造を有している。また、この発
光領域23とバリア層19の両側には、より屈折率の小さい
クラッド層20が設けられ、光導波路構造24が構成されて
いる。この半導体レーザ素子に電流を注入すると、まず
電子25は、E0で示すエネルギー準位に蓄積され、正孔26
と再結合することにより、n=0の量子準位間の光(波
長λ1)が発振する。更に注入電流を流すと、E1で示す
エネルギー準位のキヤリア密度が増し、再結合によって
n=1の量子準位間の光(波長λ2)が発振する。この
ようにして、1つの素子から異なる波長の光を得ること
が出来る。
高次量子準位を用いた波長可変半導体レーザ素子が提案
されている。第10図は、このような従来の半導体レーザ
素子における、発光領域付近のエネルギーバンド図であ
る。ここで発光領域23は、ウエル層22とバリア層21とが
交互に積層されたMQW構造を有している。また、この発
光領域23とバリア層19の両側には、より屈折率の小さい
クラッド層20が設けられ、光導波路構造24が構成されて
いる。この半導体レーザ素子に電流を注入すると、まず
電子25は、E0で示すエネルギー準位に蓄積され、正孔26
と再結合することにより、n=0の量子準位間の光(波
長λ1)が発振する。更に注入電流を流すと、E1で示す
エネルギー準位のキヤリア密度が増し、再結合によって
n=1の量子準位間の光(波長λ2)が発振する。この
ようにして、1つの素子から異なる波長の光を得ること
が出来る。
しかしながら、上記従来の波長可変半導体レーザ素子
は、以下の問題点を有していた。
は、以下の問題点を有していた。
(I)異なる波長で発振させる為には、吸収損失やミラ
ー損失を通常の半導体レーザ素子より大幅に大きくする
必要があり、素子としての効率が悪い。
ー損失を通常の半導体レーザ素子より大幅に大きくする
必要があり、素子としての効率が悪い。
(II)異なる量子準位を用いているだけなので、発振波
長の差はせいぜい数10nm程度しか得られない。
長の差はせいぜい数10nm程度しか得られない。
(III)2つ以上の準位を持つ量子井戸を形成する必要
がある為、1準位の量子井戸を用いた方が素子の特性が
向上する場合でも、その構成をとり得ない。
がある為、1準位の量子井戸を用いた方が素子の特性が
向上する場合でも、その構成をとり得ない。
(IV)波長を切り換える(即ち、波長λ2の光が発振し
たら、波長λ1の光の発振を止める)のが難かしい。
たら、波長λ1の光の発振を止める)のが難かしい。
本発明の目的は、上記従来技術の問題点を解決し、波長
可変範囲が広く、高い効率で作動する波長可変半導体レ
ーザ素子を提供することにある。また、本発明の半導体
レーザ素子によれば、発振波長の切り換えを容易に行う
ことが出来るものである。
可変範囲が広く、高い効率で作動する波長可変半導体レ
ーザ素子を提供することにある。また、本発明の半導体
レーザ素子によれば、発振波長の切り換えを容易に行う
ことが出来るものである。
本発明の上記目的は、異なるバンドギヤツプを有する半
導体を積層して成り、該積層体中に発光層を含む光導波
路構造を備えた半導体レーザ素子において、同一の光導
波路構造内に、互いに発振波長の異なる複数の発光層を
設け、かつ、この素子に発振しきい値近くの電流を流し
たときに、発振波長の長い方の発行層の光利得が、より
発振波長の短い他の発光層のいずれかの発振波長におい
て正となるように構成することによって達成される。
導体を積層して成り、該積層体中に発光層を含む光導波
路構造を備えた半導体レーザ素子において、同一の光導
波路構造内に、互いに発振波長の異なる複数の発光層を
設け、かつ、この素子に発振しきい値近くの電流を流し
たときに、発振波長の長い方の発行層の光利得が、より
発振波長の短い他の発光層のいずれかの発振波長におい
て正となるように構成することによって達成される。
以下、本発明の実施例を、図面を用いて詳細に説明す
る。
る。
第1図は、本発明に基づく半導体レーザ素子の一実施例
の構成を示す略断面図である。図中、1はn型GaAs基
板、2はn型GaAsバツフア層、5はn型AlGaAsクラツド
層、4は光導波路構造部、3はp型AlGaAsクラツド層、
6はp型GaAsキヤツプ層、7及び8は電極を示す。ま
た、光導波路構造部4は、前記クラツド層5上に、順
次、p型AlGaAsバリア層92、ノンドープGaAs第2発光層
12、p型AlGaAsバリア層11、ノンドープAlGaAs第1発光
層10及びp型AlGaAsバリア層91が積層されて成る。この
素子は、通常の半導体構造法、例えば液相エピタキシー
(LPE)法、有機金属気相成長(MO−CVD)法或いは分子
線エピタキシー(MBE)法を用いて、基板1上に上記異
なるエネルギーギヤツプを有する種々の半導体層を成長
させることによって作製される。レーザ共振面は、例え
ばこのように積層された半導体をへき開することによっ
て形成される。また、電流狭窄層等、良く知られた手段
によつて、共振面と平行な方向に電流注入域を制限し、
ストライプ状の活性領域を形成しても良い。
の構成を示す略断面図である。図中、1はn型GaAs基
板、2はn型GaAsバツフア層、5はn型AlGaAsクラツド
層、4は光導波路構造部、3はp型AlGaAsクラツド層、
6はp型GaAsキヤツプ層、7及び8は電極を示す。ま
た、光導波路構造部4は、前記クラツド層5上に、順
次、p型AlGaAsバリア層92、ノンドープGaAs第2発光層
12、p型AlGaAsバリア層11、ノンドープAlGaAs第1発光
層10及びp型AlGaAsバリア層91が積層されて成る。この
素子は、通常の半導体構造法、例えば液相エピタキシー
(LPE)法、有機金属気相成長(MO−CVD)法或いは分子
線エピタキシー(MBE)法を用いて、基板1上に上記異
なるエネルギーギヤツプを有する種々の半導体層を成長
させることによって作製される。レーザ共振面は、例え
ばこのように積層された半導体をへき開することによっ
て形成される。また、電流狭窄層等、良く知られた手段
によつて、共振面と平行な方向に電流注入域を制限し、
ストライプ状の活性領域を形成しても良い。
第2図は、第1図示の素子の光導波路構造部4付近のエ
ネルギーバンド図である。図中、第1図と同一の部分に
は同一の符号を付し、詳細な説明は省略する。図に示す
ように、第1発光層10は、第2発光層12に比べて狭いバ
ンドギヤツプを有する。第1図に示す電極7,8間に電流
を流すと、電子14は、第1発光層10及び第2発光層12に
注入され、まず第1発光層10中で電子14と正孔15との再
結合が生じ、波長λ1の光が誘導放出される。次に、注
入電流を増していくと、第2発光層12中でも電子14と正
孔15との再結合が生じ、波長λ2の光が誘導放出され
る。更に注入電流を増加すると、波長λ1の発振は停止
し、波長λ2の光のみが発する。
ネルギーバンド図である。図中、第1図と同一の部分に
は同一の符号を付し、詳細な説明は省略する。図に示す
ように、第1発光層10は、第2発光層12に比べて狭いバ
ンドギヤツプを有する。第1図に示す電極7,8間に電流
を流すと、電子14は、第1発光層10及び第2発光層12に
注入され、まず第1発光層10中で電子14と正孔15との再
結合が生じ、波長λ1の光が誘導放出される。次に、注
入電流を増していくと、第2発光層12中でも電子14と正
孔15との再結合が生じ、波長λ2の光が誘導放出され
る。更に注入電流を増加すると、波長λ1の発振は停止
し、波長λ2の光のみが発する。
上記の如き電流−光出力特性の概略を第3図に示す。第
3図において、Iは電流、P1,P2はそれぞれ波長λ1,
λ2の光の出力を示す。電流Iを増加していくと、まず
第1のしきい値電流I=I1tnで波長λ1の光が発振し、
続いて第2のしきい値電流I=I2thで波長λ2の光が発
振する。さらに電流を増していくと、I=I1Vで波長λ
1の光が発振を停止し、波長λ2の光のみが発振するよ
うになる。従って、I1th<I<I2thを満たす電流値とI
>I1Vを満たす電流値との間で注入電流を切り換えるこ
とにより、波長λ1の光と波長λ2の光とのスイツチン
グを行うことが出来る。
3図において、Iは電流、P1,P2はそれぞれ波長λ1,
λ2の光の出力を示す。電流Iを増加していくと、まず
第1のしきい値電流I=I1tnで波長λ1の光が発振し、
続いて第2のしきい値電流I=I2thで波長λ2の光が発
振する。さらに電流を増していくと、I=I1Vで波長λ
1の光が発振を停止し、波長λ2の光のみが発振するよ
うになる。従って、I1th<I<I2thを満たす電流値とI
>I1Vを満たす電流値との間で注入電流を切り換えるこ
とにより、波長λ1の光と波長λ2の光とのスイツチン
グを行うことが出来る。
次に、本発明の半導体レーザ素子の動作原理を第6図を
用いて説明する。第6図は、第1図示の素子のエネルギ
ーバンドの上半分を示す図で、第2図と同一の部材には
同一の符号を付し、詳細な説明は省略する。第6図にお
いて、第1図発光層10及び第2発光層12中のキヤリア密
度を各々n1及びn2、注入電流密度をjとする。また、第
2発光層12に注入されたキヤリアが、r2の速さで自然放
出又は非発光性の再結合をし、r21の速さで第1発光層1
0に移り、残りが誘電放出で再結合するとする。更に、
第1発光層に移ったキヤリアが、r1の速さで自然放出又
は非発光性の再結合をし、残りが誘導放出で再結合する
と考えると、このときのレート方程式は、e=1の単位
を用いて、以下のように表わされる。
用いて説明する。第6図は、第1図示の素子のエネルギ
ーバンドの上半分を示す図で、第2図と同一の部材には
同一の符号を付し、詳細な説明は省略する。第6図にお
いて、第1図発光層10及び第2発光層12中のキヤリア密
度を各々n1及びn2、注入電流密度をjとする。また、第
2発光層12に注入されたキヤリアが、r2の速さで自然放
出又は非発光性の再結合をし、r21の速さで第1発光層1
0に移り、残りが誘電放出で再結合するとする。更に、
第1発光層に移ったキヤリアが、r1の速さで自然放出又
は非発光性の再結合をし、残りが誘導放出で再結合する
と考えると、このときのレート方程式は、e=1の単位
を用いて、以下のように表わされる。
但し、ここで は夫々波長λ1,λ2の光のエネルギー、S1,S2は夫々
波長λ1,λ2の光のビーム幅、Γ1及びg1(n1)は夫
々波長λ1の光の第1発光層における閉じじ込め係数及
び利得、Γ2及びg2(n2)は夫々波長λ2の光の第2発
光層における閉じ込め係数及び利得、Γ′2及びg′2
(n1)は夫々波長λ2の光の第1発光層における閉じ込
め係数及び利得を示す。
波長λ1,λ2の光のビーム幅、Γ1及びg1(n1)は夫
々波長λ1の光の第1発光層における閉じじ込め係数及
び利得、Γ2及びg2(n2)は夫々波長λ2の光の第2発
光層における閉じ込め係数及び利得、Γ′2及びg′2
(n1)は夫々波長λ2の光の第1発光層における閉じ込
め係数及び利得を示す。
上記レート方程式の定常解は、発振時のキヤリア密度の
飽和を考慮して、次の4つの領域に分けて得られる。
飽和を考慮して、次の4つの領域に分けて得られる。
(i)P1=P2=0(j<j1th) (ii)P1>0,P2=0(j1thj<j2th) (iii)P1>0,P2>0(j2th≦j<j1V) (8) n1=n1th (10) (iv)P1=0,P2>0(j1Vj) n2=n2th (13) また、(12)式より、 以上の式から、第3図のふるまいがわかる。即ち、(1
2)式より、 g2′(n1th)>0 (17) であれば、I2thI>I1Vの領域でP1が減少していき、
I=I1Vにおいて、P1=0となり、波長λ1からλ2へ
のスイツチングが完了する。
2)式より、 g2′(n1th)>0 (17) であれば、I2thI>I1Vの領域でP1が減少していき、
I=I1Vにおいて、P1=0となり、波長λ1からλ2へ
のスイツチングが完了する。
更に、理解を容易とするために、注入電流密度jに対す
るキヤリア密度の変化を第4図に示す。第1発光層内の
キヤリア密度n1は、j=j1thで飽和して、j=j1Vで減
少を始める。また、第2発光層内のキヤリア密度n2は、
j=j2thで飽和する。尚、ここまで、n1th及びn2thが一
定であるかのように議論したが、実際は微かづつ変化す
る。しかし、それも考慮に入れても、注入電流の増加に
従って(i)→(ii)→(iii)(iv)と状態が変化し
ていくとに変わりはない。
るキヤリア密度の変化を第4図に示す。第1発光層内の
キヤリア密度n1は、j=j1thで飽和して、j=j1Vで減
少を始める。また、第2発光層内のキヤリア密度n2は、
j=j2thで飽和する。尚、ここまで、n1th及びn2thが一
定であるかのように議論したが、実際は微かづつ変化す
る。しかし、それも考慮に入れても、注入電流の増加に
従って(i)→(ii)→(iii)(iv)と状態が変化し
ていくとに変わりはない。
第5図に、本発明の半導体レーザ素子のI2th<I<I1V
における利得分布を示した。17及び16は夫々第1発光層
10及び第2発光層12の光利得である。即ち、第1発光層
10の光利得が、第2発光層12の発光波長λ2において正
であれば、前述の(iv)の過程が生じ、波長λ1とλ2
のスイツチングを行うことが出来る。
における利得分布を示した。17及び16は夫々第1発光層
10及び第2発光層12の光利得である。即ち、第1発光層
10の光利得が、第2発光層12の発光波長λ2において正
であれば、前述の(iv)の過程が生じ、波長λ1とλ2
のスイツチングを行うことが出来る。
また、第1発光層10,第2発光層12或いはギヤツプ層11
の厚さや混晶比、ドープ量等を変化させることによっ
て、上記λ1,λ2,I1th,I2th,I1V等は種々の値に
設定出来る。例えば、波長λ1とλ2との差を大きくと
る場合、(17)式の条件を満たす為には、第1発光層10
による光利得が正になる波長範囲を広くする必要があ
る。この場合には、第1発光層の幅L1を小さくすれば良
い。すると、Γ1が小さくなるのでΓ1g1(n1)がレー
ザ発振に必要な値に達成するのに、より大きなn1が必要
になり、n1thが大きくなる。その結果、利得が正である
波長域が広くなる。
の厚さや混晶比、ドープ量等を変化させることによっ
て、上記λ1,λ2,I1th,I2th,I1V等は種々の値に
設定出来る。例えば、波長λ1とλ2との差を大きくと
る場合、(17)式の条件を満たす為には、第1発光層10
による光利得が正になる波長範囲を広くする必要があ
る。この場合には、第1発光層の幅L1を小さくすれば良
い。すると、Γ1が小さくなるのでΓ1g1(n1)がレー
ザ発振に必要な値に達成するのに、より大きなn1が必要
になり、n1thが大きくなる。その結果、利得が正である
波長域が広くなる。
尚、本発明の半導体レーザ素子においては、波長λ1の
光も波長λ2の光も共に光導波路構造4内で導波される
ので、これらの光はレーザ端面のほとんど同じ場所から
射出される。また、光導波路構造部4の領域の大部分が
P型にドープされているのは、正孔がクラツド層3から
注入されて、第2発光層12まで行きつくのが大変なの
で、予め、ドーピングにより充分な数の正孔を供給して
おくためである。
光も波長λ2の光も共に光導波路構造4内で導波される
ので、これらの光はレーザ端面のほとんど同じ場所から
射出される。また、光導波路構造部4の領域の大部分が
P型にドープされているのは、正孔がクラツド層3から
注入されて、第2発光層12まで行きつくのが大変なの
で、予め、ドーピングにより充分な数の正孔を供給して
おくためである。
本発明の如き波長変化の動作は無条件で起こるものでは
ない。以下にその動作条件と、素子の具体的な設計の仕
方を詳述する。
ない。以下にその動作条件と、素子の具体的な設計の仕
方を詳述する。
これを説明するための必要な式として、レーザーの発振
条件を書き下しておく。
条件を書き下しておく。
とおいたとき、 λ1の発振条件:G1=0 (20) λ2の発振条件:G2=0 (21) である。但し、 α1:λ1の光の損失係数 α2:λ2の光の損失係数 L :LDの共振器長 R :共振器端面の(平均)反射率 である。これを用いて、(22)式以下の式が導かれる。
(a)n1thとj1thの表式 n1thとj1thは、(4),(18),(20)式より、次のよ
うに求められる。即ち、 の解としてn1thが求まり、 によりj1thが求まる。
うに求められる。即ち、 の解としてn1thが求まり、 によりj1thが求まる。
(b)λ1が先に発振する条件(波長可変レーザーとし
ての動作条件)(3),(19),(21)式より、次式が
条件になることがわかる。
ての動作条件)(3),(19),(21)式より、次式が
条件になることがわかる。
(c)n2thとj2thの表式 (5),(6),(19),(21)式より、 の解としてn2thが求まり、 j2th=L2(r2th+r2)n2th (26) により、j2thが求まる。
(d)j1Vの存在条件(スイツチングの条件) (12)式より、(17)式が条件になる。
(e)j1Vの表式 (16)で与えられる。
g1(n1),g2(n2)の函数形は、活性層の構造に依存す
るが、「半導体レーザと光集積回路」(末松編著,オー
ム社,1984)や、「Heterostructure Lasers」(Casey a
nd Panish著,Academic,1978)等に書かれている方法を
用いることにより、どんな構造のときに、どんな函数形
になるかどうかを、容易に計算または実測することがで
きる。λ1,λ2,r1,r2,r21,Γ1,Γ2,
Γ2′,α1,α2についても同様である。そのように
して得られた結果を、上記(22)式以下の式に代入する
ことにより、所望の特性を持たせるための条件が得られ
る。
るが、「半導体レーザと光集積回路」(末松編著,オー
ム社,1984)や、「Heterostructure Lasers」(Casey a
nd Panish著,Academic,1978)等に書かれている方法を
用いることにより、どんな構造のときに、どんな函数形
になるかどうかを、容易に計算または実測することがで
きる。λ1,λ2,r1,r2,r21,Γ1,Γ2,
Γ2′,α1,α2についても同様である。そのように
して得られた結果を、上記(22)式以下の式に代入する
ことにより、所望の特性を持たせるための条件が得られ
る。
即ち、第2図の各領域でのxの値や、厚さ(L1,L2,
LB,LG等)等のいくつかの組合せについて、まず、上述
の方法で、g1(n1),g2(n2),λ1,λ2…等を求め
る。その結果を、(22)式以下の式に代入して、波長可
変レーザとして動作するかどうか((24)式を満たすか
どうか)とか、j1th,j2th,j1vの値が求まる。そうす
れば、xやL1,L2…等を、どの値にしたときに、所望の
特性をもつ波長可変レーザになるかどうかがわかるわけ
である。それがわかれば、MBE法,MOCVD法やLPE法等を用
いて、通常の半導体レーザーを作成するのと同様の方法
で、容易に作成できる。
LB,LG等)等のいくつかの組合せについて、まず、上述
の方法で、g1(n1),g2(n2),λ1,λ2…等を求め
る。その結果を、(22)式以下の式に代入して、波長可
変レーザとして動作するかどうか((24)式を満たすか
どうか)とか、j1th,j2th,j1vの値が求まる。そうす
れば、xやL1,L2…等を、どの値にしたときに、所望の
特性をもつ波長可変レーザになるかどうかがわかるわけ
である。それがわかれば、MBE法,MOCVD法やLPE法等を用
いて、通常の半導体レーザーを作成するのと同様の方法
で、容易に作成できる。
一例として、j1thの大きさを制御する方法を、さらに具
体的に書くと、j1thを小さくするには、(23)式より、
L1を小さくしても良いし、r21を大きくしてもよい。r21
を大きくするには、バリア層11と第2発光層12とのバン
ドギヤツプの差を小さくしてもよいし、バリア層の幅LB
を小さくしてもよい。また、光導波路構造部の幅LGを変
えてΓ1を大きくしても、j1thを小さくすることができ
る。他方、j1thを大きくするには、上記と逆のことを行
えばよい。
体的に書くと、j1thを小さくするには、(23)式より、
L1を小さくしても良いし、r21を大きくしてもよい。r21
を大きくするには、バリア層11と第2発光層12とのバン
ドギヤツプの差を小さくしてもよいし、バリア層の幅LB
を小さくしてもよい。また、光導波路構造部の幅LGを変
えてΓ1を大きくしても、j1thを小さくすることができ
る。他方、j1thを大きくするには、上記と逆のことを行
えばよい。
以下に本発明の更に具体的な実施例を示す。
〈実施例1〉 分子線エピタキシー法を用い、第1図に示す構造の半導
体レーザ素子を作製した。まず、n型GaAs基板1上に、
バツフア層2としてn型GaAsを1μm、クラツド層5と
してn型(不純物濃度5×1017cm-3)Al0.6Ga0.4Asを2
μmの厚さに成長させた。次に、このクラツド層5上
に、順次バリア層92,第2発光層12,バリア層11,第1発
光層10,バリア層91を成長させた。各々の組成は、第1
発光層10がノンドープGaAs、第2発光層12がノンドープ
Al0.12Ga0.88As、バリア層11がp型(不純物濃度4×10
18cm-3)Al0.28Ga0.72As、バリア層91及び92がp型(不
純物濃度4×1018cm-3)Al0.3Ga0.7Asとした。また各層
の厚さは第2図の表記でL1=60Å,L2=120Å,LB=80
Å,LG=0.2μmとした。更にバリア層91の上に、クラ
ツド層3としてp型(不純物濃度1×1018cm-3)Al0.6G
a0.4Asを1.5μm、キヤツプ層6としてp型GaAsを0.5μ
mの厚さに成長した。キヤツプ層6とクラツド層3の一
部をバリア層91近くまでエツチングし、ストライプ状の
凸状領域を形成した後、誘電体層でマスキングして、エ
ツチングされていないキヤツプ層6の上部のみに接触す
るよう、電極8を蒸着した。更に基板1の底面にも電極
7を蒸着した。この積層体をへき開し、レーザ共振面を
有する半導体レーザ素子を作製した。
体レーザ素子を作製した。まず、n型GaAs基板1上に、
バツフア層2としてn型GaAsを1μm、クラツド層5と
してn型(不純物濃度5×1017cm-3)Al0.6Ga0.4Asを2
μmの厚さに成長させた。次に、このクラツド層5上
に、順次バリア層92,第2発光層12,バリア層11,第1発
光層10,バリア層91を成長させた。各々の組成は、第1
発光層10がノンドープGaAs、第2発光層12がノンドープ
Al0.12Ga0.88As、バリア層11がp型(不純物濃度4×10
18cm-3)Al0.28Ga0.72As、バリア層91及び92がp型(不
純物濃度4×1018cm-3)Al0.3Ga0.7Asとした。また各層
の厚さは第2図の表記でL1=60Å,L2=120Å,LB=80
Å,LG=0.2μmとした。更にバリア層91の上に、クラ
ツド層3としてp型(不純物濃度1×1018cm-3)Al0.6G
a0.4Asを1.5μm、キヤツプ層6としてp型GaAsを0.5μ
mの厚さに成長した。キヤツプ層6とクラツド層3の一
部をバリア層91近くまでエツチングし、ストライプ状の
凸状領域を形成した後、誘電体層でマスキングして、エ
ツチングされていないキヤツプ層6の上部のみに接触す
るよう、電極8を蒸着した。更に基板1の底面にも電極
7を蒸着した。この積層体をへき開し、レーザ共振面を
有する半導体レーザ素子を作製した。
この素子に、電流を徐々に増加させながら注入したとこ
ろ、80mAで波長830nmのレーザ光が出射し、85mAでそれ
に加えて波長780nmのレーザ光が出射した。更に電流を
増やすと、88mAで波長830nmの光は発振を停止し、波長7
80nmのレーザ光のみが出射した。
ろ、80mAで波長830nmのレーザ光が出射し、85mAでそれ
に加えて波長780nmのレーザ光が出射した。更に電流を
増やすと、88mAで波長830nmの光は発振を停止し、波長7
80nmのレーザ光のみが出射した。
本発明は以上説明した実施例に限らず種々の応用が可能
である。例えば、第7図或いは第8図に示すように、第
1発光層101,102及び第2発光層121,122を各々複数設
けることによって、光出力を増大させても良いし、第9
図のように、波長λ3の光を発する第3発光層18を設け
て3波長のレーザとしても良い。また、同様にして4波
長以上のレーザを構成することも出来る。更に、前述の
実施例ではAlGaAs系の半導体レーザ素子を示したが、本
発明はInGaAsP系等、どのような材料のレーザにも適用
が可能である。尚、第7図〜第9図において、111,1
12,113はバリア層を示し、その他第2図と同一の部分
には同一の符号を付し、詳細な説明は省略する。
である。例えば、第7図或いは第8図に示すように、第
1発光層101,102及び第2発光層121,122を各々複数設
けることによって、光出力を増大させても良いし、第9
図のように、波長λ3の光を発する第3発光層18を設け
て3波長のレーザとしても良い。また、同様にして4波
長以上のレーザを構成することも出来る。更に、前述の
実施例ではAlGaAs系の半導体レーザ素子を示したが、本
発明はInGaAsP系等、どのような材料のレーザにも適用
が可能である。尚、第7図〜第9図において、111,1
12,113はバリア層を示し、その他第2図と同一の部分
には同一の符号を付し、詳細な説明は省略する。
以上説明したように、本発明の半導体レーザ素子は、従
来の可変波長半導体レーザ素子に比べ、波長可変範囲を
広げ、発光効率を向上させる効果を有する。更に、本発
明によれば異なる波長を完全に切り換えて発振させるこ
とが可能となるものである。
来の可変波長半導体レーザ素子に比べ、波長可変範囲を
広げ、発光効率を向上させる効果を有する。更に、本発
明によれば異なる波長を完全に切り換えて発振させるこ
とが可能となるものである。
第1図は本発明の半導体レーザ素子の一実施例を示す略
断面図、第2図は第1図示の素子のエネルギーバンド
図、第3図は第1図示の素子における電流−光出力特性
を示す図、第4図は第1図示の素子における注入電流密
度に対する発光層内のキヤリア密度の変化を示す図、第
5図は第1図示の素子における光利得特性を示す図、第
6図は第1図示の素子の動作原理を説明する為のエネル
ギーバンド図、第7図乃至第9図は夫々本発明の変形例
を示すエネルギーバンド図、第10図は従来の波長可変半
導体レーザ素子を示すエネルギーバンド図である。 1……基板 2……バツフア層 3,5……クラツド層 4……光導波路構造部 6……キヤツプ層 7,8……電極 9,92,11……バリア層 10……第1発光層 12……第2発光層
断面図、第2図は第1図示の素子のエネルギーバンド
図、第3図は第1図示の素子における電流−光出力特性
を示す図、第4図は第1図示の素子における注入電流密
度に対する発光層内のキヤリア密度の変化を示す図、第
5図は第1図示の素子における光利得特性を示す図、第
6図は第1図示の素子の動作原理を説明する為のエネル
ギーバンド図、第7図乃至第9図は夫々本発明の変形例
を示すエネルギーバンド図、第10図は従来の波長可変半
導体レーザ素子を示すエネルギーバンド図である。 1……基板 2……バツフア層 3,5……クラツド層 4……光導波路構造部 6……キヤツプ層 7,8……電極 9,92,11……バリア層 10……第1発光層 12……第2発光層
Claims (1)
- 【請求項1】異なるバンドギヤツプを有する半導体を積
層して成り、該積層体中に発光層を含む光導波路構造を
備えた半導体レーザ素子において、 前記同一の光導波路構造内に、互いに発振波長の異なる
複数の発光層を有し、かつ、この素子に発振しきい値近
くの電流を流したときに、発振波長の長い方の発光層の
光利得が、より発振波長の短い他の発光層のいずれかの
発振波長において正になっていることを特徴とする半導
体レーザ素子。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62044939A JPH0728094B2 (ja) | 1987-02-27 | 1987-02-27 | 半導体レ−ザ素子 |
EP88102756A EP0280281B1 (en) | 1987-02-27 | 1988-02-24 | Variable oscillation wavelength semiconductor laser device |
DE3850139T DE3850139T2 (de) | 1987-02-27 | 1988-02-24 | Halbleiterlaser mit variabler Oszillationswellenlänge. |
US07/511,921 US4982408A (en) | 1987-02-27 | 1990-04-16 | Variable oscillation wavelength semiconduction laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62044939A JPH0728094B2 (ja) | 1987-02-27 | 1987-02-27 | 半導体レ−ザ素子 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63211787A JPS63211787A (ja) | 1988-09-02 |
JPH0728094B2 true JPH0728094B2 (ja) | 1995-03-29 |
Family
ID=12705453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62044939A Expired - Lifetime JPH0728094B2 (ja) | 1987-02-27 | 1987-02-27 | 半導体レ−ザ素子 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0728094B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2683092B2 (ja) * | 1989-03-30 | 1997-11-26 | キヤノン株式会社 | 半導体レーザ素子 |
US5365535A (en) * | 1992-01-13 | 1994-11-15 | Canon Kabushiki Kaisha | Semiconductor laser and beam splitting devices, and optical information recording/reproducing, optical communication, and optomagnetic recording/reproducing apparatuses using semiconductor laser and beam splitting devices |
-
1987
- 1987-02-27 JP JP62044939A patent/JPH0728094B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63211787A (ja) | 1988-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4982408A (en) | Variable oscillation wavelength semiconduction laser device | |
JPH05243669A (ja) | 半導体レーザ素子 | |
JP4027639B2 (ja) | 半導体発光装置 | |
JPH04305992A (ja) | 半導体レーザ素子 | |
JP2882335B2 (ja) | 光半導体装置およびその製造方法 | |
JP2702871B2 (ja) | 半導体レーザおよびその製造方法 | |
JPH0728093B2 (ja) | 半導体レ−ザ素子 | |
JPH0728094B2 (ja) | 半導体レ−ザ素子 | |
JP2679974B2 (ja) | 半導体レーザ装置 | |
JPH10209553A (ja) | 半導体レーザ素子 | |
JP2748570B2 (ja) | 半導体レーザ素子 | |
JPH0671121B2 (ja) | 半導体レーザ装置 | |
JPH0422033B2 (ja) | ||
JPS61220389A (ja) | 集積型半導体レ−ザ | |
JPH0278290A (ja) | 半導体レーザ素子 | |
JP2973215B2 (ja) | 半導体レーザ装置 | |
JPS62137893A (ja) | 半導体レ−ザ | |
JP3820826B2 (ja) | 半導体発光装置および半導体装置の製造方法 | |
JP3792434B2 (ja) | 自励発振型半導体レーザ | |
JPH08274403A (ja) | 半導体レーザ | |
JP3422365B2 (ja) | リッジストライプ型半導体レーザ装置 | |
JPH08130342A (ja) | 半導体レーザ | |
JPH05136528A (ja) | 半導体レーザ素子及びその駆動方法 | |
JP2908125B2 (ja) | 半導体レーザ素子およびその製造方法 | |
JPH10163561A (ja) | 半導体レーザ素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |