JPH0727872B2 - Vapor phase growth equipment - Google Patents

Vapor phase growth equipment

Info

Publication number
JPH0727872B2
JPH0727872B2 JP63220862A JP22086288A JPH0727872B2 JP H0727872 B2 JPH0727872 B2 JP H0727872B2 JP 63220862 A JP63220862 A JP 63220862A JP 22086288 A JP22086288 A JP 22086288A JP H0727872 B2 JPH0727872 B2 JP H0727872B2
Authority
JP
Japan
Prior art keywords
vapor
reaction gas
nozzle
phase
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63220862A
Other languages
Japanese (ja)
Other versions
JPH01157519A (en
Inventor
清一 獅子口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63220862A priority Critical patent/JPH0727872B2/en
Publication of JPH01157519A publication Critical patent/JPH01157519A/en
Publication of JPH0727872B2 publication Critical patent/JPH0727872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は気相成長装置に関し、特に反応容器を縦に立て
た気相成長装置に関するものである。
TECHNICAL FIELD The present invention relates to a vapor phase growth apparatus, and more particularly to a vapor phase growth apparatus in which a reaction vessel is set upright.

〔従来の技術〕[Conventional technology]

第5及び6図は従来の気相成長装置を示したものであ
る。この種の縦型の気相成長装置は、種々の成膜に使わ
れているが、Siエピタキシャル成長について説明する。
基板ホルダー4に単結晶基板5をある間隔で水平に積み
重ねる様に保持し、減圧下で900℃〜1200℃程度に加熱
してその基板表面にジクロロシラン(SiH2Cl2)等のシ
ラン系ガス、水素(H2)及びドーピングガスを導入して
エピタキシャル成長させるものとなっていた。
5 and 6 show a conventional vapor phase growth apparatus. This type of vertical vapor deposition apparatus has been used for various film formations, but Si epitaxial growth will be described.
The single crystal substrates 5 are held in the substrate holder 4 so as to be horizontally stacked at a certain interval, and heated to about 900 ° C. to 1200 ° C. under reduced pressure, and a silane-based gas such as dichlorosilane (SiH 2 Cl 2 ) is applied to the substrate surface. , Hydrogen (H 2 ) and a doping gas were introduced for epitaxial growth.

反応容器は2重構造で、外管1で真空を保持し回転する
単結晶基板5にノズル管7を用いて反応ガスを供給す
る。反応ガスは内管2の円筒面に設けられた多数のガス
排出孔8を通って排出される。
The reaction container has a double structure, and the nozzle tube 7 is used to supply the reaction gas to the rotating single crystal substrate 5 which holds the vacuum in the outer tube 1. The reaction gas is discharged through a number of gas discharge holes 8 provided on the cylindrical surface of the inner pipe 2.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上述した従来の気相エピタキシャル成長装置は、単結晶
基板5に反応ガスを供給するためのノズル管7が一本で
あるため、反応容器を高くして多数枚の基板結晶にエピ
タキシャル成長させようとすると、ノズル7が長くな
り、反応ガスはノズル管上流である下側の放出孔10から
主に放出されノズル管下流である上側の放出孔10から噴
出されるガスの流量が減少するという欠点がある。気相
成長法で基板結晶間の膜厚を均一にするためには各基板
結晶に供給する反応ガス流を一定にすることが必要であ
るが、従来の装置では、ノズル管の各放出孔から噴出さ
れる反応ガスの流量を一定にすることがむづかしく、基
板間の膜厚均一性が上がらないという欠点がある。
In the conventional vapor phase epitaxial growth apparatus described above, since the single nozzle tube 7 for supplying the reaction gas to the single crystal substrate 5 is provided, when the reaction vessel is raised and a large number of substrate crystals are epitaxially grown, There is a drawback that the nozzle 7 becomes longer, the reaction gas is mainly discharged from the lower discharge hole 10 upstream of the nozzle pipe, and the flow rate of the gas ejected from the upper discharge hole 10 downstream of the nozzle pipe is reduced. In order to make the film thickness between the substrate crystals uniform by the vapor phase growth method, it is necessary to keep the flow of the reaction gas supplied to each substrate crystal constant. It is difficult to keep the flow rate of the ejected reaction gas constant, and there is a drawback that the film thickness uniformity between the substrates cannot be improved.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明によれば、複数枚の被気相成長基板を所定の間隔
で水平に積み重ねるように保持し、複数の反応ガス放出
孔を有するノズル管より前記複数枚の被気相成長基板の
それぞれの被気相成長面にほぼ平行に前記反応ガスを流
し、前記被気相成長面に膜を気相成長させる気相成長装
置において、前記ノズル管は両端部がそれぞれ接続され
たほぼ平行な2本のノズル管より形成され、一方の該ノ
ズル管には、その側面の長手方向に前記複数の反応ガス
放出孔を有し、他方の前記ノズル管の長手方向のほぼ中
央部に前記反応ガスが導入される導入口を有する構造と
なっている気相成長装置が得られる。
According to the present invention, a plurality of vapor-phase-grown substrates are held so as to be horizontally stacked at a predetermined interval, and each of the plurality of vapor-phase-grown substrates is supported by a nozzle tube having a plurality of reaction gas emission holes. In a vapor phase growth apparatus in which the reaction gas is caused to flow substantially parallel to a vapor phase growth surface and a film is vapor-phase grown on the vapor phase growth surface, the nozzle tube has two substantially parallel ends connected to each other. Nozzle pipe, one of the nozzle pipes has the plurality of reaction gas discharge holes in the longitudinal direction of its side surface, and the other reaction gas is introduced into the nozzle pipe at a substantially central portion in the longitudinal direction. A vapor phase growth apparatus having a structure having an introduction port can be obtained.

また、前記2本のノズル管が接続された両端部の内どち
らか一方の接続部付近に前記反応ガスが導入される導入
口を設けた気相成長装置が得られる。
Further, it is possible to obtain a vapor phase growth apparatus in which an inlet for introducing the reaction gas is provided in the vicinity of either one of both end portions where the two nozzle tubes are connected to each other.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例の縦断面図である。本装
置は、装置を支えるための架台3、外管1と内管2から
成る2重構造の反応管、単結晶基板5を保持するための
基板ホルダー4、抵抗加熱炉6及び反応ガスを供給する
ノズル管7から構成される。反応ガスはノズル管7より
噴出され内管壁面に設けられたガス排出孔8を通り排気
口9から排気される。ノズル管7は第2図に示すよう
に、最上部及び最下部が接続されたほぼ平行な2本のノ
ズル管から構成されており、一方には単結晶基板5が設
けられる位置に対応した反応ガス放出孔を有し、他方は
反応ガス導入口をその中央部に有している。そのため、
ノズル管7の上部の先端付近の放出孔10から噴出される
反応ガスであっても噴出流量が減少せずすべての基板5
に供給される反応ガス量が一定となるため、基板結晶5
間の膜厚均一性が高いエピタキシャル膜を量産できる。
FIG. 1 is a vertical sectional view of the first embodiment of the present invention. This apparatus is provided with a pedestal 3 for supporting the apparatus, a reaction tube having a double structure including an outer tube 1 and an inner tube 2, a substrate holder 4 for holding a single crystal substrate 5, a resistance heating furnace 6 and a reaction gas. It is composed of the nozzle tube 7. The reaction gas is ejected from the nozzle pipe 7 and is exhausted from the exhaust port 9 through the gas exhaust hole 8 provided on the inner wall surface of the inner pipe. As shown in FIG. 2, the nozzle tube 7 is composed of two substantially parallel nozzle tubes having the uppermost part and the lowermost part connected to each other, and the reaction corresponding to the position where the single crystal substrate 5 is provided on one side. The other has a gas discharge hole, and the other has a reaction gas introduction port in its central portion. for that reason,
Even if the reaction gas is ejected from the emission hole 10 near the tip of the upper portion of the nozzle tube 7, the ejection flow rate does not decrease and all the substrates 5
Since the amount of reaction gas supplied to the substrate is constant, the substrate crystal 5
It is possible to mass-produce an epitaxial film having a high film thickness uniformity.

以下に、本実施例による気相成長装置を使用したエピタ
キシャル膜の成長例を説明する。基板ホルダー4に直径
150mmのシリコン結晶基板5を8mm間隔で100枚セット
し、1分間に5回転の回転数(5rpm)で基板ホルダー4
を回転させ、反応管内温度を抵抗加熱炉6により1050℃
とした。ノズル管7よりH2を20l/min、SiH2Cl2を200ml/
minPH3を2ml/minで流し5torr圧力でシリコン単結晶基板
5上にN型のシリコンエピタキシャル膜を厚さ5μm成
長させた。この結果を第5図、第6図に示した従来の装
置でエピタキシャル膜を成長させた場合の結果と比較し
て説明する。第3図は従来の成長装置及び本実施例の成
長装置を用いた場合の基板間膜厚分布を示したものであ
る。従来の成長装置を用いた場合、ノズル管上流側であ
る下段に配置した50枚の基板間膜厚分布は良好であった
が、下流側である上段に配置した基板では、下流ほど膜
厚が徐々に減少し膜厚分布が大きい。これに対し、本実
施例の成長装置では、基板間膜厚分布が著しく改善さ
れ、全領域の基板に対し±5%の良好な膜厚分布が得ら
れた。又基板間の抵抗分布も同様に改善された。
Hereinafter, an example of growing an epitaxial film using the vapor phase growth apparatus according to this example will be described. Substrate holder 4 diameter
100 pieces of 150 mm silicon crystal substrates 5 are set at 8 mm intervals, and the substrate holder 4 is rotated at 5 revolutions per minute (5 rpm).
The temperature inside the reaction tube by a resistance heating furnace 6 at 1050 ° C.
And Of H 2 from the nozzle pipe 7 20l / min, the SiH 2 Cl 2 200ml /
An N-type silicon epitaxial film was grown to a thickness of 5 μm on the silicon single crystal substrate 5 at a pressure of 5 torr by flowing minPH 3 at 2 ml / min. This result will be described in comparison with the result when the epitaxial film is grown by the conventional apparatus shown in FIGS. FIG. 3 shows the film thickness distribution between the substrates when the conventional growth apparatus and the growth apparatus of this embodiment are used. When the conventional growth apparatus was used, the film thickness distribution between the 50 substrates arranged in the lower stage on the upstream side of the nozzle tube was good, but in the substrate arranged in the upper stage on the downstream side, the film thickness became more downstream. It gradually decreases and the film thickness distribution is large. On the other hand, in the growth apparatus of this example, the inter-substrate film thickness distribution was remarkably improved, and a favorable film thickness distribution of ± 5% was obtained for the entire region of the substrate. Also, the resistance distribution between the substrates was similarly improved.

次に、反応ガス種をH220l/min、SiH2Cl2を200ml/min,B2
H6,2ml/minとして、P型シリコンエピタキシャル膜を成
長した本発明の第2の実施例について説明する。反応ガ
ス以外は第1の実施例と同条件で成長した。この場合に
おいても同様に基板間膜厚均一性の高いエピタキシャル
膜を成長できた。
Next, the reaction gas species was H 2 20 l / min, SiH 2 Cl 2 was 200 ml / min, and B 2
A second embodiment of the present invention in which a P-type silicon epitaxial film is grown with H 6 of 2 ml / min will be described. The growth was performed under the same conditions as in the first example except for the reaction gas. In this case as well, an epitaxial film with high film thickness uniformity between substrates could be grown.

第4図は本発明の第3の実施例のノズル管拡大概略図で
ある。反応ガス放出孔10の付いたノズル管最下部でガス
流を分岐するバイパス管を付けた構造になっている。ノ
ズル管以外は第1の実施例と同一構造とした。この場合
も、第1あるいは第2の実施例と同等の基板間膜厚均一
性、抵抗率均一性を有するエピタキシャル膜を成長でき
た。本実施例のノズル管は、第1の実施例のそれと比較
して、構造が単純であるため、製造時の加工が簡単であ
り、しかも第1の実施例の場合とほぼ同等の膜厚や抵抗
率の均一性を得ることができるという利点がある。
FIG. 4 is an enlarged schematic view of the nozzle tube according to the third embodiment of the present invention. It has a structure in which a bypass pipe for branching the gas flow is attached at the lowermost portion of the nozzle pipe having the reaction gas discharge hole 10. The structure is the same as that of the first embodiment except for the nozzle tube. Also in this case, it was possible to grow an epitaxial film having the same film thickness uniformity between substrates and resistivity uniformity as in the first or second embodiment. The nozzle tube of the present embodiment has a simpler structure than that of the first embodiment, so that the manufacturing process is easy, and the thickness of the nozzle tube is almost equal to that of the first embodiment. There is an advantage that uniformity of resistivity can be obtained.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、気相成長装置のノズル管
が最上部及び最下部で接続されたほぼ平行な2本のノズ
ル管から構成されており、一方はガス放出孔を有し他方
は反応ガス導入口を有するため、反応ガスは、全基板結
晶に対し均一に供給される。その結果、基板間の膜厚均
一性を向上させる効果がある。
As described above, in the present invention, the nozzle tube of the vapor phase growth apparatus is composed of two substantially parallel nozzle tubes connected at the top and the bottom, one of which has a gas release hole and the other of which has Since the reaction gas inlet is provided, the reaction gas is uniformly supplied to all the substrate crystals. As a result, there is an effect of improving the film thickness uniformity between the substrates.

また、以上シリコンエピタキシャル成長を例に説明して
きたが、各種の酸化膜、窒化膜、ポリシリコン膜、アモ
ルファスシリコン膜などの成膜にも適用できるものであ
り、その応用価値はきわめて大きい。
Further, although silicon epitaxial growth has been described above as an example, it can be applied to the formation of various oxide films, nitride films, polysilicon films, amorphous silicon films, etc., and its application value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の気相エピタキシャル成長装
置の縦断面図、第2図は本発明の第1の実施例の気相エ
ピタキシャル成長装置のノズル管拡大概略図、第3図は
本発明の第1の実施例による気相エピタキシャル成長装
置を用いて成長した基板間膜厚分布を示した図、第4図
は本発明の第3の実施例の気相エピタキシャル成長装置
のノズル管拡大概観図、第5図は従来の気相エピタキシ
ャル成長装置の縦断面図、第6図は従来の気相エピタキ
シャル成長装置のノズル拡大概観図である。 1……外管、2……内管、3……架台、4……基板ホル
ダー、5……単結晶基板、6……抵抗加熱炉、7……ノ
ズル管、8……ガス排出孔、9……排気口、10……ガス
放出孔。
FIG. 1 is a vertical sectional view of a vapor phase epitaxial growth apparatus according to an embodiment of the present invention, FIG. 2 is an enlarged schematic view of a nozzle tube of the vapor phase epitaxial growth apparatus according to the first embodiment of the present invention, and FIG. Showing the inter-substrate film thickness distribution grown using the vapor phase epitaxial growth apparatus according to the first embodiment of FIG. 4, and FIG. 4 is an enlarged schematic view of the nozzle tube of the vapor phase epitaxial growth apparatus of the third embodiment of the present invention, FIG. 5 is a vertical sectional view of a conventional vapor phase epitaxial growth apparatus, and FIG. 6 is an enlarged schematic view of nozzles of the conventional vapor phase epitaxial growth apparatus. 1 ... Outer tube, 2 ... Inner tube, 3 ... Stand, 4 ... Substrate holder, 5 ... Single crystal substrate, 6 ... Resistance heating furnace, 7 ... Nozzle tube, 8 ... Gas discharge hole, 9 ... Exhaust port, 10 ... Gas release hole.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】複数枚の被気相成長基板を所定の間隔で水
平に積み重ねるように保持し、複数の反応ガス放出孔を
有するノズル管より前記複数枚の被気相成長基板のそれ
ぞれの被気相成長面にほぼ平行に前記反応ガスを流し、
前記被気相成長面に膜を気相成長させる気相成長装置に
おいて、前記ノズル管は両端部がそれぞれ接続されたほ
ぼ平行な2本のノズル管より形成され、一方の該ノズル
管には、その側面の長手方向に前記複数の反応ガス放出
孔を有し、他方の前記ノズル管の長手方向のほぼ中央部
に前記反応ガスが導入される導入口を有する構造となっ
ていることを特徴とする気相成長装置。
1. A plurality of vapor-phase-grown substrates are held so as to be horizontally stacked at a predetermined interval, and each of the plurality of vapor-phase-grown substrates is supported by a nozzle tube having a plurality of reaction gas emission holes. Flowing the reaction gas substantially parallel to the vapor growth surface,
In the vapor-phase growth apparatus for vapor-depositing a film on the vapor-phase-grown surface, the nozzle tube is formed by two substantially parallel nozzle tubes each having both ends connected to each other, and one of the nozzle tubes has: It has a structure having a plurality of reaction gas discharge holes in the longitudinal direction of its side surface and an introduction port into which the reaction gas is introduced in a substantially central portion in the longitudinal direction of the other nozzle tube. Vapor growth equipment.
【請求項2】複数枚の被気相成長基板を所定の間隔で水
平に積み重ねるように保持し、複数の反応ガス放出孔を
有するノズル管より前記複数枚の被気相成長基板のそれ
ぞれの被気相成長面にほぼ平行に前記反応ガスを流し、
前記被気相成長面に膜を気相成長させる気相成長装置に
おいて、前記ノズル管は両端部がそれぞれ接続されたほ
ぼ平行な2本のノズル管より形成され、一方の該ノズル
管には、その側面の長手方向に前記複数の反応ガス放出
孔を有し、かつ前記2本のノズル管が接続された両端部
の内どちらか一方の接続部付近に前記反応ガスが導入さ
れる導入口が設けられていることを特徴とする気相成長
装置。
2. A plurality of vapor-phase grown substrates are held so as to be horizontally stacked at a predetermined interval, and each of the plurality of vapor-phase grown substrates is held by a nozzle tube having a plurality of reaction gas emission holes. Flowing the reaction gas substantially parallel to the vapor growth surface,
In the vapor-phase growth apparatus for vapor-depositing a film on the vapor-phase-grown surface, the nozzle tube is formed by two substantially parallel nozzle tubes each having both ends connected to each other, and one of the nozzle tubes has: The reaction gas discharge holes are provided in the longitudinal direction of the side surface, and an introduction port for introducing the reaction gas is provided in the vicinity of either one of both ends of the two nozzle tubes connected to each other. A vapor phase growth apparatus characterized by being provided.
JP63220862A 1987-09-22 1988-09-02 Vapor phase growth equipment Expired - Fee Related JPH0727872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63220862A JPH0727872B2 (en) 1987-09-22 1988-09-02 Vapor phase growth equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-239603 1987-09-22
JP23960387 1987-09-22
JP63220862A JPH0727872B2 (en) 1987-09-22 1988-09-02 Vapor phase growth equipment

Publications (2)

Publication Number Publication Date
JPH01157519A JPH01157519A (en) 1989-06-20
JPH0727872B2 true JPH0727872B2 (en) 1995-03-29

Family

ID=26523951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63220862A Expired - Fee Related JPH0727872B2 (en) 1987-09-22 1988-09-02 Vapor phase growth equipment

Country Status (1)

Country Link
JP (1) JPH0727872B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997768A (en) * 1995-09-28 1997-04-08 Nec Kyushu Ltd Vertical diffusion oven
JP5137462B2 (en) * 2007-05-21 2013-02-06 株式会社日立国際電気 Substrate processing apparatus, gas supply unit, and thin film forming method
JP2010141223A (en) * 2008-12-15 2010-06-24 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device and substrate processing apparatus
KR20120038632A (en) 2010-10-14 2012-04-24 삼성전자주식회사 Solar cell manufacturing method
KR102256105B1 (en) * 2019-12-13 2021-05-27 주식회사 금강쿼츠 A preheating tow way pipe nozzle for a semiconductor device fabrication

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817612A (en) * 1981-07-24 1983-02-01 Toshiba Corp Film forming device by glow discharge

Also Published As

Publication number Publication date
JPH01157519A (en) 1989-06-20

Similar Documents

Publication Publication Date Title
EP0308946B1 (en) Chemical vapor deposition apparatus for obtaining high quality epitaxial layer with uniform film thickness
JP3040212B2 (en) Vapor phase growth equipment
WO1992005577A1 (en) Method and apparatus for growing compound semiconductor crystals
US4819579A (en) Coating of semiconductor wafers and apparatus therefor
US4466381A (en) Coating of semiconductor wafers and apparatus therefor
JPH0727872B2 (en) Vapor phase growth equipment
JPH0316208A (en) Apparatus for silicon epitaxial growth
JP2783037B2 (en) Vapor phase silicon epitaxial growth equipment
JPH04163912A (en) Vapor growth equipment
JP2783041B2 (en) Vapor phase silicon epitaxial growth equipment
JPS5927611B2 (en) Vapor phase growth method
JPH03263818A (en) Metal organic vapor growth apparatus
JPS62263629A (en) Vapor growth device
JPH0682626B2 (en) Vapor phase growth equipment
JPH0448721A (en) Vapor growth device
JP2778321B2 (en) Vapor phase silicon epitaxial growth equipment
JPH0319324A (en) Vapor growth device
JPS6171625A (en) Vertical cvd device
JPH0670979B2 (en) Vapor phase growth equipment
JP3231312B2 (en) Vapor phase growth equipment
JPH05243161A (en) Vapor growth device and method of growing epitaxial film
JPS626682Y2 (en)
JP3057716B2 (en) Thin film formation method
JPS6240720A (en) Vapor phase epitaxial growing device
JPH01117315A (en) Vapor growth method for semiconductor thin film crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees