JPH0448721A - Vapor growth device - Google Patents

Vapor growth device

Info

Publication number
JPH0448721A
JPH0448721A JP15730190A JP15730190A JPH0448721A JP H0448721 A JPH0448721 A JP H0448721A JP 15730190 A JP15730190 A JP 15730190A JP 15730190 A JP15730190 A JP 15730190A JP H0448721 A JPH0448721 A JP H0448721A
Authority
JP
Japan
Prior art keywords
reaction
gas discharge
nozzle
reaction gas
nozzle pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15730190A
Other languages
Japanese (ja)
Inventor
Tatsuya Suzuki
達也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15730190A priority Critical patent/JPH0448721A/en
Publication of JPH0448721A publication Critical patent/JPH0448721A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To supply all substrates equally with a reaction gas, and to improve the uniformity of film thickness among the substrates and resistivity thereof by gradually expanding the diameters of a plurality of reaction-gas discharge holes toward upper and lower both ends from a central section in the vertical longitudinal direction of a nozzle pipe and connecting a reaction-gas introducing pipe at the central section in the vertical longitudinal direction of the nozzle pipe. CONSTITUTION:Since the diameter of the reaction-gas discharge hole 11 of a nozzle pipe 7 is increased gradually toward and end section upper than and an end section lower than a position, where a reaction-gas introducing pipe 12 is mounted, the pressure loss of a reaction gas at both end sections is made remarkably lower than conventional devices, and the flow rate of the reaction gas ejected from all reaction-gas discharge holes can be kept constant. Since the reaction-gas introducing pipe is installed at a central section in the longitudinal direction of the side face of the nozzle pipe, the reaction gas is passed in a reaction vessel at a high temperature and heated sufficiently and introduced into the nozzle pipe, thus equalizing the temperature of the reaction gas ejected from all reaction-gas discharge holes. Accordingly, film thickness among substrate crystals and resistivity can be equalized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は気相成長装置に関し、特に反応容器を縦に組み
立てた気相成長装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a vapor phase growth apparatus, and particularly to a vapor phase growth apparatus in which reaction vessels are vertically assembled.

〔従来の技術〕[Conventional technology]

第8図及び第9図は従来の気相成長装置を示したもので
ある。第8図及び第9図に示すような継型の気相成長装
置は種々の成膜に使われているが、従来の気相成長装置
を使ってシリコンエピタキシャル成長を行う場合につい
て説明する。第8図及び第9図に示す従来の装置におい
ては、基板ホルダー4に単結晶基板5をある間隔で水平
に槓み重するように保持し、減圧下で抵抗加熱炉6によ
り900〜1200℃程度に加熱してその基板表面にジ
クロルシラン等のシラン系ガス、水素、及びドーピング
ガスを導入してエピタキシャル成長させるものとなって
いる(特願昭62−66575号)0反応容器は架台3
上に支持された内外管1.2の2重構造であり、外管1
で真空を保持し、回転する単結晶基板5にノズル管7を
用いて反応ガスを供給する。ノズル管7は等間隔でかつ
直径の等しい複数のガス放出孔10を有している0反応
ガスは内管2の円筒面に設けられた多数のガス排出孔8
を通して排気孔9より排出される。
FIGS. 8 and 9 show a conventional vapor phase growth apparatus. A joint-type vapor phase growth apparatus as shown in FIGS. 8 and 9 is used for various film formations, but a case in which silicon epitaxial growth is performed using a conventional vapor phase growth apparatus will be described. In the conventional apparatus shown in FIGS. 8 and 9, single-crystal substrates 5 are held on a substrate holder 4 so as to be stacked horizontally at certain intervals, and heated to 900 to 1200° C. in a resistance heating furnace 6 under reduced pressure. The reaction vessel is heated to a certain degree and a silane gas such as dichlorosilane, hydrogen, and a doping gas are introduced onto the surface of the substrate to cause epitaxial growth (Japanese Patent Application No. 62-66575).
It has a double structure with an inner and outer tube 1.2 supported on top, and an outer tube 1.
A vacuum is maintained at , and a reaction gas is supplied to the rotating single crystal substrate 5 using the nozzle pipe 7 . The nozzle pipe 7 has a plurality of gas discharge holes 10 that are equally spaced and have the same diameter.The reaction gas is discharged through a large number of gas discharge holes 8 provided on the cylindrical surface of the inner tube 2.
The gas is discharged through the exhaust hole 9.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の縦型気相エピタキシャル装置において、
単結晶基板5に反応ガスを供給するためのノズル管7は
、反応容器を高くして複数の基板5にエピタキシャル成
長させようとした場合に、その上下方向に長くなり、反
応ガスはノズル管7の上流である下流の反応ガス放出孔
10から主に放出され、ノズル管下流である上側の反応
ガス放出孔10から噴出されるガスの流量が減少すると
いう欠点がある。更に反応ガスは反応容器内に導入され
るまでは常温であり、従ってノズル管上流である下側の
反応ガス放出孔10付近での反応ガス温度とノズル管下
流である上側の反応ガス放出孔10付近での反応ガス温
度を比較すると、後者の方が高く、従って基板5に供給
される反応ガス中の各分解分子種の分圧比が反応ガス放
出孔10の位置により異なるという欠点がある。気相成
長法では基板結晶間の膜厚、抵抗率を均一化するために
は、各基板5に供給する反応ガス放出量及び反応ガス温
度を一定にすることが必要であるため、上述の欠点は極
めて重大である。
In the conventional vertical vapor phase epitaxial apparatus described above,
The nozzle pipe 7 for supplying the reaction gas to the single crystal substrate 5 becomes longer in the vertical direction when the reaction container is made higher to perform epitaxial growth on a plurality of substrates 5, and the reaction gas is supplied to the nozzle pipe 7. There is a drawback that the flow rate of gas is mainly emitted from the downstream reactive gas discharge hole 10 that is upstream, and is ejected from the upper reactive gas discharge hole 10 that is downstream of the nozzle pipe. Furthermore, the reaction gas is at room temperature until it is introduced into the reaction vessel, so the reaction gas temperature near the lower reaction gas discharge hole 10 upstream of the nozzle pipe and the upper reaction gas discharge hole 10 downstream of the nozzle pipe are different. Comparing the reactant gas temperatures in the vicinity, the latter is higher; therefore, there is a drawback that the partial pressure ratio of each decomposed molecular species in the reactant gas supplied to the substrate 5 varies depending on the position of the reactant gas discharge hole 10. In the vapor phase growth method, in order to make the film thickness and resistivity between the substrate crystals uniform, it is necessary to keep the amount of released reaction gas and the temperature of the reaction gas supplied to each substrate 5 constant. is extremely important.

本発明の目的は、ノズル管の上流と下流とでの反応ガス
の圧力損失を減少させて全ての反応ガス放出孔より噴出
される反応ガス流量を一定にすることにより、前記問題
点を解決した気相成長装置を提供することにある。
An object of the present invention is to solve the above problems by reducing the pressure loss of the reaction gas upstream and downstream of the nozzle pipe and making the flow rate of the reaction gas ejected from all the reaction gas discharge holes constant. An object of the present invention is to provide a vapor phase growth apparatus.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するため、本発明に係る気相成長装置に
おいては、基板ホルダーと、ノズル管と、反応ガス導入
管とを有する気相成長装置であって、基板ホルダーは、
a数の1&板を一定ピッチで上下に積み重ねて保持する
ものであり、 ノズル管は、上下管軸方向に沿って複数の反応ガス放出
孔を有し、各反応ガス放出孔より各段の基板の成長面に
反応ガスをそれぞれ供給するものであり、 該複数の反応ガス放出孔は、その直径が、前記ノズル管
の上下長さ方向の中心部より上下両端に向けて徐々に拡
径したものであり、 反応ガス導入管は、前記ノズル管の上下長さ方向の中心
部に接続させたものである。
In order to achieve the above object, a vapor phase growth apparatus according to the present invention includes a substrate holder, a nozzle pipe, and a reaction gas introduction pipe, the substrate holder comprising:
The nozzle tube has a plurality of reactive gas discharge holes along the axial direction of the upper and lower tubes, and each reactive gas discharge hole releases the substrate at each stage. The reactant gas is supplied to each of the growth surfaces of the nozzle pipe, and the diameter of the plurality of reactant gas discharge holes gradually increases from the center in the vertical length direction of the nozzle pipe toward both the upper and lower ends. The reaction gas introduction pipe is connected to the center of the nozzle pipe in the vertical length direction.

また、本発明においては、前記複数の反応ガス放出孔は
、前記ノズル管の側面に開口させたものであり、また前
記ノズル管は、異径のノズル細管を上下管軸方向に沿っ
て側面から横方向に突出させて有しており、 異径のノズル細管は、その管径が、ノズル管の上下長さ
方向の中心部より上下両端に向けて徐々に拡径させてあ
り、 前記複数の異径の反応ガス放出孔は、異径のノズル細管
の先端に開口させたものである。
Further, in the present invention, the plurality of reaction gas discharge holes are opened at the side surface of the nozzle pipe, and the nozzle pipe has nozzle capillaries of different diameters extending from the side surface along the axial direction of the upper and lower pipes. The nozzle thin tubes of different diameters are protruded in the lateral direction, and the tube diameter gradually increases from the center in the vertical length direction of the nozzle tube toward both the upper and lower ends. Reaction gas discharge holes of different diameters are opened at the tips of nozzle thin tubes of different diameters.

〔作用〕[Effect]

本発明によれば、ノズル管の反応ガス放出孔の直径は反
応ガス導入管が取り付けられた位置より上端部及び下端
部に近付くにつれ、徐々に増加して行くものであり、そ
のなめ両Il1部における反応ガスの圧力損失が従来よ
り著しく減少し、全ての反応ガス放出孔より噴出される
反応ガス流量を一定とすることができるという作用があ
る。
According to the present invention, the diameter of the reaction gas discharge hole of the nozzle pipe gradually increases as it approaches the upper and lower ends from the position where the reaction gas introduction pipe is attached, and The pressure loss of the reactant gas in the reactor gas is significantly reduced compared to the conventional method, and the flow rate of the reactant gas ejected from all the reactant gas discharge holes can be kept constant.

反応ガス導入管はノズル管の側面の長手方向の中央部に
取り付けられているため、反応ガスが高温の反応容器内
を通過して充分温められてからノズル管内に導入される
なめ、全ての反応ガス放出孔より噴出される反応ガスの
温度を均一化できるという作用がある。
Since the reaction gas introduction tube is attached to the longitudinal center of the side surface of the nozzle tube, the reaction gas passes through the high-temperature reaction vessel and is sufficiently warmed before being introduced into the nozzle tube, allowing all reactions to occur. This has the effect of making the temperature of the reaction gas ejected from the gas discharge hole uniform.

また上述の特徴を有する反応ガス放出孔をノズル管より
基板側に突出させる構造とすれば、上述の作用に加えて
、噴出する反応ガスの流れの指向性が著しく高まり、隣
接する反応ガス放出孔より噴出する反応ガス同士が互い
の流れを乱すことが殆ど無くなるという作用がある。
Furthermore, if the reactive gas discharge hole having the above-mentioned characteristics is structured to protrude from the nozzle pipe toward the substrate side, in addition to the above-mentioned effect, the directionality of the flow of the ejected reactive gas will be significantly increased, and the adjacent reactive gas discharge hole This has the effect that the ejected reaction gases hardly disturb each other's flow.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

(実施例1) 第1図は本発明の実施例1を示す縦断面図である。(Example 1) FIG. 1 is a longitudinal sectional view showing a first embodiment of the present invention.

図において、本装置は、装置をささえるための架台3と
、外管1と内管2とからなる二重管構造の反応管と、単
結晶基板5を保持するための基板ホルダー4と、抵抗加
熱炉6と、反応ガスを供給するノズル管7とから構成さ
れる0反応ガスはノズル管7より噴出され、内管壁面に
設けられたガス排出孔8を通り排気孔9が排気される。
In the figure, this device includes a pedestal 3 for supporting the device, a reaction tube with a double tube structure consisting of an outer tube 1 and an inner tube 2, a substrate holder 4 for holding a single crystal substrate 5, and a resistor. A reaction gas composed of a heating furnace 6 and a nozzle pipe 7 for supplying the reaction gas is ejected from the nozzle pipe 7, passes through a gas discharge hole 8 provided on the wall surface of the inner pipe, and is exhausted from an exhaust hole 9.

ノズル管7は第2図に示すように、ノズル管側面に上下
管軸方向の中心部より両端部に向けて徐々に直径が拡径
する複数の反応ガス放出孔11を上下管軸方向に沿って
有し、一方、反応ガス導入管12がノズル管7の上下管
軸方向の中心部に取り付けられている。そのため、ノズ
ル管7の側面の上下管軸方向の任意の位置にある反応ガ
ス放出孔11であっても噴出する反応ガスの温度、流量
は一定となるため、基板5間の膜厚均一性、抵抗率均一
性の高いエピタキシャル膜を成長させることができる。
As shown in FIG. 2, the nozzle tube 7 has a plurality of reaction gas discharge holes 11 on the side surface of the nozzle tube, the diameter of which gradually increases from the center in the axial direction of the upper and lower tubes toward both ends. On the other hand, a reaction gas introduction pipe 12 is attached to the center of the nozzle pipe 7 in the axial direction of the upper and lower pipes. Therefore, the temperature and flow rate of the ejected reaction gas are constant even if the reaction gas discharge hole 11 is located at an arbitrary position in the upper and lower tube axis directions on the side surface of the nozzle tube 7, so that the film thickness uniformity between the substrates 5 and An epitaxial film with high resistivity uniformity can be grown.

以下に本実施例による気相成長装置を使用したエピタキ
シャル膜の成長例を説明する。基板ホルダー4に直径1
50 ymのシリコン結晶基板5を8−間隔で31枚セ
ットし、1分間に5回転(5rpm)で基板ホルダー4
を回転させ、反応管内温度を抵抗加熱炉6により103
0℃とした。ノズル管7よりH2を20 SLH,S 
I H2Cl xを2005CCH1PH1を25CC
Hで流し、s torrの圧力でシリコン単結晶基板5
上にN型のシリコンエピタキシャル膜を3μm成長させ
た。この結果を第8図及び第9図に示した従来の装置で
エピタキシャル膜を成長させた場合の結果と比較して説
明する。第3図は従来の成長装置及び本発明の成長装置
を用いた場合の基板間膜厚分布、第4図は同様に基板間
抵抗率分布を示したものである。従来の成長装置を用い
た場合ではノズル管上流側である最下段から中段にかけ
て搭載した15枚の基板間膜厚分布は良好であったが、
ノズル管下流側である中段から最上段にかけて搭載した
16枚の基板間膜厚分布は良好ではなく、下流はど膜厚
が減少した。又、基板間抵抗率分布はノズル管下流程、
抵抗率が増加し良好ではなかった。これに対し本発明の
成長装置では基板間膜厚分布、基板間抵抗率分布とも著
しく改善され全領域の基板に対し±5%の良好な膜厚及
び抵抗率分布が得られた。これは第5図、第6図に示す
ように本発明の気相成長装置では従来のものと比較して
反応ガス温度、反応ガス流量ともに、反応ガス放出孔位
置に対する依存性が消滅したためである。
An example of growing an epitaxial film using the vapor phase growth apparatus according to this embodiment will be described below. Diameter 1 to board holder 4
Thirty-one 50 ym silicon crystal substrates 5 were set at 8-space intervals, and the substrate holder 4 was rotated at 5 rotations per minute (5 rpm).
is rotated, and the temperature inside the reaction tube is adjusted to 103 by the resistance heating furnace 6.
The temperature was 0°C. H2 from nozzle pipe 7 to 20 SLH, S
I H2Cl x 2005CCH1PH1 25CC
Silicon single crystal substrate 5
A 3 μm thick N-type silicon epitaxial film was grown thereon. This result will be explained in comparison with the result when an epitaxial film was grown using the conventional apparatus shown in FIGS. 8 and 9. FIG. 3 shows the inter-substrate film thickness distribution when using the conventional growth apparatus and the growth apparatus of the present invention, and FIG. 4 similarly shows the inter-substrate resistivity distribution. When using a conventional growth apparatus, the film thickness distribution among the 15 substrates mounted from the bottom to the middle stage on the upstream side of the nozzle tube was good;
The film thickness distribution among the 16 substrates mounted from the middle stage to the top stage on the downstream side of the nozzle pipe was not good, and the film thickness decreased downstream. In addition, the resistivity distribution between the substrates is at the downstream of the nozzle pipe,
The resistivity increased and was not good. On the other hand, in the growth apparatus of the present invention, both the inter-substrate film thickness distribution and the inter-substrate resistivity distribution were significantly improved, and a good film thickness and resistivity distribution of ±5% was obtained for the entire region of the substrates. This is because, as shown in FIGS. 5 and 6, in the vapor phase growth apparatus of the present invention, the dependence of both the reaction gas temperature and the reaction gas flow rate on the position of the reaction gas discharge hole has disappeared compared to the conventional one. .

(実施例2) 第7図は本発明の実施例2に係るノズル管を示す拡大概
略図である0本実施例において、前記ノズル管7は、異
径のノズル細管7a、7a・・・を上下管軸方向に沿っ
て側面より横方向に突出させて有しており、異径のノズ
ル細管7aは、その管径がノズル管7の上下方向の中心
部より上下両端に向けて徐々に拡径させてあり、複数の
異径の反応ガス放出孔13は異径のノズル細管7aの先
端に開口させたものである。その他の構成は実施例1と
同じである。この場合は実施例1における反応ガス温度
、反応ガス流量の反応ガス放出孔位置に対する依存性の
消滅という効果に加え、反応ガス流の指向性が高まると
いう効果が加わる。その結果、隣接する反応ガス放出孔
より噴出した反応ガス同士が互いの流れを乱すことが殆
ど無くなるため、特に隣接の反応ガス放出孔より噴出し
た反応ガス同士が互いの流れを乱しやすい反応ガス放出
孔の直径が大きいノズル管両端部付近において基板間膜
厚、抵抗率均一性が実施例1よりも改善されるため、全
体として±3%以下の基板間膜厚、抵抗率均一性を得る
ことができる。
(Embodiment 2) FIG. 7 is an enlarged schematic diagram showing a nozzle pipe according to Embodiment 2 of the present invention. In this embodiment, the nozzle pipe 7 includes nozzle thin tubes 7a, 7a, . . . having different diameters. The nozzle capillary tube 7a has a different diameter and extends laterally from the side surface along the axial direction of the upper and lower tubes. A plurality of reaction gas discharge holes 13 having different diameters are opened at the tips of nozzle thin tubes 7a having different diameters. The other configurations are the same as in the first embodiment. In this case, in addition to the effect of eliminating the dependence of the reaction gas temperature and reaction gas flow rate on the position of the reaction gas discharge hole in Example 1, there is an additional effect of increasing the directivity of the reaction gas flow. As a result, the reaction gases ejected from adjacent reaction gas discharge holes hardly disturb each other's flow, so the reaction gases ejected from adjacent reaction gas discharge holes are particularly likely to disturb each other's flow. The inter-substrate film thickness and resistivity uniformity are improved compared to Example 1 near both ends of the nozzle pipe where the diameter of the discharge hole is large, so overall the inter-substrate film thickness and resistivity uniformity are less than ±3%. be able to.

また以上はシリコンエピタキシャル成長を例として説明
したが、各種酸化膜、窒化膜、ポリシリコン膜、アモル
ファスシリコン膜などの成膜にも適用できるものであり
、その応用価値は極めて大きい。
Furthermore, although the above description has been made using silicon epitaxial growth as an example, it can also be applied to the formation of various oxide films, nitride films, polysilicon films, amorphous silicon films, etc., and its application value is extremely large.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の気相成長装置のノズル管
は反応ガス放出孔の直径を反応ガス導入口より離れるに
つれ拡大することにより反応ガス放出量を均一化でき、
また中央部の反応ガス放出孔に反応ガス導入口を設ける
ことにより反応ガス温度を均一化できるために全基板に
対して反応ガスが均一に供給される。その結果、基板間
の膜厚、抵抗率均一性を向上させることができるという
効果がある。特に第7図のノズル管では上述の効果に反
応ガス流の指向性の効果が加わるので、非常に良好な均
一性を得ることができる。
As explained above, in the nozzle pipe of the vapor phase growth apparatus of the present invention, the diameter of the reactive gas discharge hole increases as it moves away from the reactive gas inlet, thereby making it possible to uniformize the amount of reactive gas discharged.
Furthermore, by providing a reactive gas inlet in the central reactive gas discharge hole, the reactive gas temperature can be made uniform, so that the reactive gas is uniformly supplied to all the substrates. As a result, there is an effect that the film thickness and resistivity uniformity between the substrates can be improved. In particular, in the nozzle tube shown in FIG. 7, the effect of the directivity of the reactant gas flow is added to the above-mentioned effect, so that very good uniformity can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1に係る気相エピタキシャル成
長装!を示す縦断面図、第2図は本発明の実施例1に係
る気相エピタキシャル成長装置のノズル管を示す拡大概
略図、第3図は本発明の実施例1に係る気相エピタキシ
ャル成長装置を用いて成長させたときの基板間膜厚分布
図、第4図は本発明の実施例1に係る気相エピタキシャ
ル成長装置を用いて成長させたときの基板間抵抗率分布
図、第5図は本発明の実施例1の反応ガス温度と反応ガ
ス放出孔位置の関係を示す図、第6図は本発明の実施例
1の反応ガス放出量と反応ガス放出孔位置の関係を示す
図、第7図は本発明の実施例2に係る気相成長装置のノ
ズル管を示す拡大図、第8図は従来の気相エピタキシャ
ル成長装置を示す縦断面図、第9図は従来の気相エピタ
キシャル成長装置のノズルを示す拡大概略図である。 1・・・外管       2・・・内管3・・・架台
       4・・・基板ホルダー5・・・単結晶基
板    6・・・抵抗加熱炉7・・・ノズル管   
  8・・・ガス排出孔9・・・排気孔      1
0・・・ガス放出孔11、13・・・反応ガス放出孔 12・・・反応ガス導入管 ↑ 第1図 基イぎし上ギト1!イ立1【 第 3図 第 図 第 6図 第 図 第 9図
FIG. 1 shows a vapor phase epitaxial growth apparatus according to Example 1 of the present invention! FIG. 2 is an enlarged schematic diagram showing a nozzle tube of a vapor phase epitaxial growth apparatus according to Example 1 of the present invention, and FIG. FIG. 4 is a diagram of inter-substrate film thickness distribution when grown, and FIG. 5 is a resistivity distribution diagram between substrates when grown using the vapor phase epitaxial growth apparatus according to Example 1 of the present invention. FIG. 6 is a diagram showing the relationship between the reaction gas temperature and the position of the reaction gas discharge hole in Example 1, FIG. 6 is a diagram showing the relationship between the amount of reaction gas discharged and the position of the reaction gas discharge hole in Example 1 of the present invention, and FIG. An enlarged view showing a nozzle pipe of a vapor phase growth apparatus according to Example 2 of the present invention, FIG. 8 is a vertical cross-sectional view showing a conventional vapor phase epitaxial growth apparatus, and FIG. 9 shows a nozzle of a conventional vapor phase epitaxial growth apparatus. It is an enlarged schematic diagram. 1... Outer tube 2... Inner tube 3... Frame 4... Substrate holder 5... Single crystal substrate 6... Resistance heating furnace 7... Nozzle tube
8...Gas exhaust hole 9...Exhaust hole 1
0...Gas release holes 11, 13...Reaction gas release holes 12...Reaction gas introduction pipe↑ Fig. 1 Basic connection 1! 1 [Figure 3 Figure 6 Figure 9

Claims (3)

【特許請求の範囲】[Claims] (1)基板ホルダーと、ノズル管と、反応ガス導入管と
を有する気相成長装置であって、 基板ホルダーは、複数の基板を一定ピッチで上下に積み
重ねて保持するものであり、 ノズル管は、上下管軸方向に沿って複数の反応ガス放出
孔を有し、各反応ガス放出孔より各段の基板の成長面に
反応ガスをそれぞれ供給するものであり、 該複数の反応ガス放出孔は、その直径が、前記ノズル管
の上下長さ方向の中心部より上下両端に向けて徐々に拡
径したものであり、 反応ガス導入管は、前記ノズル管の上下長さ方向の中心
部に接続させたものであることを特徴とする気相成長装
置。
(1) A vapor phase growth apparatus having a substrate holder, a nozzle pipe, and a reaction gas introduction pipe, where the substrate holder holds a plurality of substrates stacked vertically at a constant pitch, and the nozzle pipe is , has a plurality of reactive gas discharge holes along the axial direction of the upper and lower tubes, and each reactive gas discharge hole supplies reactive gas to the growth surface of the substrate at each stage, and the plurality of reactive gas discharge holes are , whose diameter gradually increases from the center of the nozzle pipe in the vertical length direction toward both the top and bottom ends, and the reaction gas introduction pipe is connected to the center of the nozzle pipe in the vertical length direction. A vapor phase growth apparatus characterized in that:
(2)前記複数の反応ガス放出孔は、前記ノズル管の側
面に開口させたものであることを特徴とする請求項第(
1)項記載の気相成長装置。
(2) The plurality of reaction gas discharge holes are opened in a side surface of the nozzle pipe.
1) The vapor phase growth apparatus described in section 1).
(3)前記ノズル管は、異径のノズル細管を上下管軸方
向に沿って側面から横方向に突出させて有しており、 異径のノズル細管は、その管径が、ノズル管の上下長さ
方向の中心部より上下両端に向けて徐々に拡径させてあ
り、 前記複数の異径の反応ガス放出孔は、異径のノズル細管
の先端に開口させたものであることを特徴とする請求項
第(1)項記載の気相成長装置。
(3) The nozzle tube has nozzle capillaries of different diameters that protrude laterally from the side surfaces along the axial direction of the upper and lower tubes. The diameter gradually increases from the center in the length direction toward both the upper and lower ends, and the plurality of reaction gas discharge holes of different diameters are opened at the tips of nozzle thin tubes of different diameters. A vapor phase growth apparatus according to claim (1).
JP15730190A 1990-06-15 1990-06-15 Vapor growth device Pending JPH0448721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15730190A JPH0448721A (en) 1990-06-15 1990-06-15 Vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15730190A JPH0448721A (en) 1990-06-15 1990-06-15 Vapor growth device

Publications (1)

Publication Number Publication Date
JPH0448721A true JPH0448721A (en) 1992-02-18

Family

ID=15646672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15730190A Pending JPH0448721A (en) 1990-06-15 1990-06-15 Vapor growth device

Country Status (1)

Country Link
JP (1) JPH0448721A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012146939A (en) * 2010-12-21 2012-08-02 Hitachi Kokusai Electric Inc Substrate processing apparatus, method of manufacturing substrate, and method of manufacturing semiconductor device
JP2017147262A (en) * 2016-02-15 2017-08-24 株式会社日立国際電気 Substrate processing apparatus, manufacturing method of semiconductor device, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012146939A (en) * 2010-12-21 2012-08-02 Hitachi Kokusai Electric Inc Substrate processing apparatus, method of manufacturing substrate, and method of manufacturing semiconductor device
JP2017147262A (en) * 2016-02-15 2017-08-24 株式会社日立国際電気 Substrate processing apparatus, manufacturing method of semiconductor device, and program

Similar Documents

Publication Publication Date Title
JP3184000B2 (en) Method and apparatus for forming thin film
JPH01125923A (en) Vapor growth apparatus
JPH0448721A (en) Vapor growth device
JPH0658880B2 (en) Vapor phase epitaxial growth system
JPH0316208A (en) Apparatus for silicon epitaxial growth
JP2783041B2 (en) Vapor phase silicon epitaxial growth equipment
JPH01157519A (en) Vapor growth apparatus
JP2783037B2 (en) Vapor phase silicon epitaxial growth equipment
JPH04163912A (en) Vapor growth equipment
JPS5927611B2 (en) Vapor phase growth method
JPS6171625A (en) Vertical cvd device
JPH0682626B2 (en) Vapor phase growth equipment
JPS62214614A (en) Reduced pressure cvd device
JPH04154117A (en) Low pressure cvd system
JPH01235235A (en) Vapor growth equipment
JPH02102524A (en) Wafer boat
JPH05243161A (en) Vapor growth device and method of growing epitaxial film
JPS6240720A (en) Vapor phase epitaxial growing device
JP3057716B2 (en) Thin film formation method
JPH01235236A (en) Vapor growth equipment
JP2501436Y2 (en) Vapor phase growth equipment
JPS6369794A (en) Vapor phase epitaxy device
JPH0319324A (en) Vapor growth device
JP3231312B2 (en) Vapor phase growth equipment
JPH0669138A (en) Low pressure vapor phase epitaxial growth system