JPH07278707A - Zinc alloy - Google Patents

Zinc alloy

Info

Publication number
JPH07278707A
JPH07278707A JP7051694A JP7051694A JPH07278707A JP H07278707 A JPH07278707 A JP H07278707A JP 7051694 A JP7051694 A JP 7051694A JP 7051694 A JP7051694 A JP 7051694A JP H07278707 A JPH07278707 A JP H07278707A
Authority
JP
Japan
Prior art keywords
less
weight
alloy
zinc
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7051694A
Other languages
Japanese (ja)
Inventor
Ryuji Ninomiya
隆二 二宮
Kohei Kubota
耕平 久保田
Masahiko Morinaga
正彦 森永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP7051694A priority Critical patent/JPH07278707A/en
Publication of JPH07278707A publication Critical patent/JPH07278707A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a zinc alloy having desired mechanical properties by preparing a zinc alloy having a compsn. contg. specified ratios of one or more kinds among Li, Be, Na, Mg, Al, Si, K, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Cd, In, Sn and Sb and satisfying specified conditions. CONSTITUTION:A zinc alloy having a compsn. contg., one ore more kinds among by weight, <=0.1%Li, <=0.1% Be, <=0.1% Na, <=0.1% Mg, <=0.1% Al, <=0.1% Si, <=0.1% K, <=0.1% Ca, <=0.1% Ti, <=0.1% V, <=0.1% Mn, <=0.1% Fe <=0.1% Co, <=0.1% Ni, <=15% Cu, <=1% Cd, <=1% In, <=1% Sn and <=1% Sb, and in which the S orbit energy levels (Mk) calculated by a molecular orbital method as for zinc and each alloy element, the molar fraction of each alloy element and prescribed mechanical properties Mp of the alloy satisfy prescribed calibration curves is prepd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は所定の機械特性を有する
亜鉛合金に関し、より具体的には所定の引張強度、圧縮
耐力又はブリネル硬さを有する亜鉛合金に関する。
FIELD OF THE INVENTION The present invention relates to a zinc alloy having predetermined mechanical properties, and more particularly to a zinc alloy having a predetermined tensile strength, compression strength or Brinell hardness.

【0002】[0002]

【従来の技術】亜鉛合金は主としてダイカスト製品に用
いられ、そのダイカスト製品の用途によって亜鉛合金に
求められる引張強度、圧縮耐力、ブリネル硬さ等の機械
特性が異なってくる。従来、種々の亜鉛合金が知られて
おり、公知の亜鉛合金の中に所望の機械特性を有する亜
鉛合金があれば問題はないが、所望の機械特性を有する
亜鉛合金を新規に開発する場合には、亜鉛合金の諸性質
に及ぼす各合金元素の影響を試作実験から求め、これら
のデータに基づいて最適合金組成を決定するという、い
わゆる試行錯誤的な方法が用いられていた。
2. Description of the Related Art Zinc alloys are mainly used for die casting products, and mechanical properties such as tensile strength, compression strength and Brinell hardness required for zinc alloys differ depending on the use of the die casting products. Conventionally, various zinc alloys are known, and there is no problem if there is a zinc alloy having desired mechanical properties among known zinc alloys, but when a zinc alloy having desired mechanical properties is newly developed. Used a so-called trial-and-error method in which the effect of each alloying element on various properties of a zinc alloy was obtained from trial experiments and the optimum alloy composition was determined based on these data.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
試行錯誤的手法によれば、所望の諸特性を兼備する亜鉛
合金の開発には多大な費用、時間、労力を必要とし、極
めて非能率的であり、特に使用実績のない多成分系亜鉛
合金についてこのような方法を実施することは極めて困
難であった。
However, according to the conventional trial-and-error method, the development of a zinc alloy having desired properties requires a great deal of cost, time and labor, and is extremely inefficient. However, it is extremely difficult to carry out such a method for a multi-component zinc alloy that has not been used in particular.

【0004】本発明は、このような従来技術の有する課
題に鑑みてなされたものであり、本発明の目的は、所望
の機械特性から亜鉛合金組成を容易に決定することので
きる亜鉛合金を提供することにある。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a zinc alloy whose zinc alloy composition can be easily determined from desired mechanical properties. To do.

【0005】[0005]

【課題を解決するための手段】本発明者等は上記の課題
を解決するために種々検討を重ね、亜鉛合金の諸特性を
評価するため、亜鉛合金の電子構造を分子軌道計算法
(DV−Xαクラスター法)によって求めた。この計算
法は、例えば足立裕彦著「量子材料化学入門」(三共出
版、1991年)に詳しく説明されている。この計算か
ら求められたパラメーターである母金属亜鉛中の合金元
素Mのs軌道エネルギーレベル(以下、Mkと記載す
る)を用いることにより、亜鉛合金の機械特性の検量線
が得られ、これにより亜鉛合金の機械特性を評価し得る
ことを見出し、本発明に到達した。
Means for Solving the Problems The present inventors have conducted various studies to solve the above-mentioned problems, and in order to evaluate various properties of zinc alloys, the electronic structure of zinc alloys was analyzed by a molecular orbital calculation method (DV- Xα cluster method). This calculation method is described in detail, for example, in "Introduction to Quantum Material Chemistry" by Hirohiko Adachi (Sankyo Publishing, 1991). By using the s-orbital energy level (hereinafter referred to as Mk) of the alloying element M in the mother metal zinc, which is the parameter obtained from this calculation, a calibration curve of the mechanical properties of the zinc alloy can be obtained, which gives the zinc The inventors have found that the mechanical properties of alloys can be evaluated, and have reached the present invention.

【0006】本発明においては、図1に示す亜鉛クラス
ター模型を用いて分子軌道計算によりMkを算出した。
この算出値は表1に示す通りであった。また、亜鉛合金
においては、各合金元素の添加可能な最大量は固溶度、
脆い金属間化合物の晶出、合金溶製の可否等によって制
限される。その最大添加量も表1に示す。
In the present invention, Mk was calculated by molecular orbital calculation using the zinc cluster model shown in FIG.
The calculated value was as shown in Table 1. In zinc alloys, the maximum amount of each alloying element that can be added is the solid solubility,
Limited by the crystallization of brittle intermetallic compounds and the possibility of alloy melting. The maximum addition amount is also shown in Table 1.

【0007】[0007]

【表1】 [Table 1]

【0008】上記のMk値を用いて下記の式により合金
組成による組成平均を行う: △Mk=Σ|Mki −MkZn|×Xi 式中、Mki はi元素のMk値であり、MkZnはZn元
素のMk値であり、Xiはi元素のモル分率である。こ
の△Mk値は亜鉛合金の引張強度、圧縮耐力、ブリネル
硬さ等の機械特性と相関しており、従ってこの△Mk値
と亜鉛合金の機械特性との相関から検量線を求めること
ができる。そしてこの検量線を利用することにより所望
の機械特性を有する合金組成を容易に決定することがで
きる。また逆にこの検量線を利用することにより合金組
成から亜鉛合金の機械特性を求めることができる。
Using the above Mk values, composition averaging according to the alloy composition is performed by the following formula: ΔMk = Σ | Mk i −Mk Zn | × X i In the formula, Mk i is the Mk value of the i element, Mk Zn is the Mk value of the Zn element, and X i is the mole fraction of the i element. This ΔMk value correlates with mechanical properties such as tensile strength, compression strength and Brinell hardness of the zinc alloy. Therefore, a calibration curve can be obtained from the correlation between the ΔMk value and mechanical properties of the zinc alloy. Then, by using this calibration curve, the alloy composition having desired mechanical properties can be easily determined. On the contrary, the mechanical characteristics of the zinc alloy can be obtained from the alloy composition by using this calibration curve.

【0009】亜鉛合金の一般的な組成であるZn−Al
−Cu−Mgの種々の合金について△Mk=Σ|Mki
−MkZn|×Xi を求めた。この場合には△Mkは式 △Mk=|MkAl−MkZn|×XAl+|MkCu−MkZn
|×XCu+|MkMg−MkZn|×XMg によって算出した。この△Mk値と亜鉛合金の引張強
度、圧縮耐力又はブリネル硬さとの相関図はそれぞれ図
2、図3及び図4に示す通りであった。この図2、図3
及び図4から検量線が求められ、相関係数を考慮する
と、亜鉛合金の引張強度Ts(MPa)については式 Ts=a+bΣ|Mki −MkZn|×Xi (式中、aは130〜155、好ましくは135〜15
0の範囲内の値であり、bは1270であり、Mki
i元素のMk値であり、MkZnはZn元素のMk値であ
り、またXi はi元素のモル分率である)を満足してお
り、亜鉛合金の圧縮耐力Cy(MPa)については式 Cy=a+bΣ|Mki −MkZn|×Xi (式中、aは140〜165、好ましくは145〜16
0の範囲内の値であり、bは1120であり、Mki
i元素のMk値であり、MkZnはZn元素のMk値であ
り、またXi はi元素のモル分率である)を満足してお
り、また亜鉛合金のブリネル硬さBh(HB)について
は式 Bh=a+bΣ|Mki −MkZn|×Xi (式中、aは62〜74、好ましくは63〜72の範囲
内の値であり、bは260であり、Mki はi元素のM
k値であり、MkZnはZn元素のMk値であり、またX
i はi元素のモル分率である)を満足している。これら
の検量線から所望の機械特性を有する合金組成を容易に
決定することができる。
Zn-Al, which is the general composition of zinc alloys
-Cu-Mg for various alloys ΔMk = Σ | Mk i
−Mk Zn | × X i was calculated. In this case, ΔMk is represented by the formula ΔMk = | Mk Al −Mk Zn | × X Al + | Mk Cu −Mk Zn
It was calculated by | × X Cu + | Mk Mg −Mk Zn | × X Mg . Correlations between the ΔMk value and the tensile strength, compression strength or Brinell hardness of the zinc alloy were as shown in FIGS. 2, 3 and 4, respectively. 2 and 3
4 and the calibration curve is obtained from FIG. 4, and considering the correlation coefficient, the tensile strength Ts (MPa) of the zinc alloy is expressed by the formula Ts = a + bΣ | Mk i −Mk Zn | × X i (where, a is 130 to 155, preferably 135-15
A value in the range of 0, b is 1270, Mk i is the Mk value of the i element, Mk Zn is the Mk value of the Zn element, and X i is the mole fraction of the i element). And the compressive strength Cy (MPa) of the zinc alloy is expressed by the formula Cy = a + bΣ | Mk i −Mk Zn | × X i (where a is 140 to 165, preferably 145 to 16).
A value in the range of 0, b is 1120, Mk i is the Mk value of the i element, Mk Zn is the Mk value of the Zn element, and X i is the mole fraction of the i element). And the Brinell hardness Bh (HB) of the zinc alloy is expressed by the formula Bh = a + bΣ | Mk i −Mk Zn | × X i (where a is 62 to 74, preferably 63 to 72). Value, b is 260, Mk i is M of i element
k value, Mk Zn is the Mk value of the Zn element, and X
i is the mole fraction of the element i ). An alloy composition having desired mechanical properties can be easily determined from these calibration curves.

【0010】従って、本発明の所望の機械特性を有する
亜鉛合金は、0.1重量%以下のLi、0.1重量%以
下のBe、0.1重量%以下のNa、0.1重量%以下
のMg、25重量%以下のAl、0.1重量%以下のS
i、0.1重量%以下のK、0.1重量%以下のCa、
0.1重量%以下のTi、0.1重量%以下のV、0.
1重量%以下のMn、0.1重量%以下のFe、0.1
重量%以下のCo、0.1重量%以下のNi、15重量
%以下のCu、1重量%以下のCd、1重量%以下のI
n、1重量%以下のSn及び1重量%以下のSbからな
る群から選ばれた少なくとも1種の合金元素を含み、亜
鉛及び各合金元素について分子軌道法により算出したs
軌道エネルギーレベルMk及び各合金元素のモル分率と
合金の所定の機械特性Mpとが所定の検量線を満足する
ことを特徴とする。
Accordingly, a zinc alloy having the desired mechanical properties of the present invention comprises 0.1 wt% or less Li, 0.1 wt% or less Be, 0.1 wt% or less Na, 0.1 wt%. Mg below, Al less than 25 wt%, S less than 0.1 wt%
i, K of 0.1% by weight or less, Ca of 0.1% by weight or less,
0.1% by weight or less of Ti, 0.1% by weight or less of V, 0.
1% by weight or less of Mn, 0.1% by weight or less of Fe, 0.1
Wt% or less Co, 0.1 wt% or less Ni, 15 wt% or less Cu, 1 wt% or less Cd, 1 wt% or less I
n containing at least one alloying element selected from the group consisting of 1% by weight or less of Sn and 1% by weight or less of Sb, and s calculated by the molecular orbital method for zinc and each alloying element
It is characterized in that the orbital energy level Mk, the mole fraction of each alloying element, and the predetermined mechanical characteristic Mp of the alloy satisfy a predetermined calibration curve.

【0011】また、本発明の亜鉛合金は、具体的には、
上記の合金元素からなる群から選ばれた少なくとも1種
の合金元素を含み、亜鉛及び各合金元素について分子軌
道法により算出したs軌道エネルギーレベルMk及び各
合金元素のモル分率と合金の引張強度Ts(MPa)と
が式 Ts=a+bΣ|Mki −MkZn|×Xi (式中、aは130〜155の範囲内の値であり、bは
1270であり、Mkiはi元素のMk値であり、Mk
ZnはZn元素のMk値であり、またXi はi元素のモル
分率である)を満足することを特徴とする所望の引張強
度を有する亜鉛合金、上記の合金元素からなる群から選
ばれた少なくとも1種の合金元素を含み、亜鉛及び各合
金元素について分子軌道法により算出したs軌道エネル
ギーレベルMk及び各合金元素のモル分率と合金の圧縮
耐力Cy(MPa)とが式 Cy=a+bΣ|Mki −MkZn|×Xi (式中、aは140〜165の範囲内の値であり、bは
1120であり、Mkiはi元素のMk値であり、Mk
ZnはZn元素のMk値であり、またXi はi元素のモル
分率である)を満足することを特徴とする所望の圧縮耐
力を有する亜鉛合金、又は上記の合金元素からなる群か
ら選ばれた少なくとも1種の合金元素を含み、亜鉛及び
各合金元素について分子軌道法により算出したs軌道エ
ネルギーレベルMk及び各合金元素のモル分率と合金の
ブリネル硬さBh(HB)とが式 Bh=a+bΣ|Mki −MkZn|×Xi (式中、aは62〜74の範囲内の値であり、bは26
0であり、Mki はi元素のMk値であり、MkZnはZ
n元素のMk値であり、またXi はi元素のモル分率で
ある)を満足することを特徴とする所望のブリネル硬さ
を有する亜鉛合金である。
The zinc alloy of the present invention is specifically
The s-orbital energy level Mk calculated by the molecular orbital method for zinc and each alloying element, containing at least one alloying element selected from the group consisting of the above alloying elements, the mole fraction of each alloying element, and the tensile strength of the alloy. Ts (MPa) Togashiki Ts = a + bΣ | Mk i -Mk Zn | in × X i (wherein, a is a value in the range of one hundred thirty to one hundred fifty-five, b is 1270, Mk i is Mk of i elements Value, Mk
Zn is the Mk value of the Zn element, and X i is the mole fraction of the i element), and a zinc alloy having a desired tensile strength is selected from the group consisting of the above alloy elements. And at least one type of alloying element, zinc s orbital energy level Mk calculated by the molecular orbital method for each alloying element, the mole fraction of each alloying element, and the compressive strength Cy (MPa) of the alloy are expressed as Cy = a + bΣ | Mk i −Mk Zn | × X i (where a is a value within the range of 140 to 165, b is 1120, Mk i is the Mk value of the i element, and Mk is
Zn is the Mk value of the Zn element, and X i is the mole fraction of the i element). Zinc alloy having a desired compressive strength, or a group consisting of the above alloy elements. Of at least one alloying element, the s-orbital energy level Mk calculated by the molecular orbital method for zinc and each alloying element, the mole fraction of each alloying element, and the Brinell hardness Bh (HB) of the alloy are expressed by the formula Bh = A + bΣ | Mk i −Mk Zn | × X i (where a is a value within the range of 62 to 74, and b is 26
0, Mk i is the Mk value of the i element, and Mk Zn is Z
a zinc alloy having a desired Brinell hardness, which is a Mk value of an n element and X i is a mole fraction of the i element.

【0012】[0012]

【実施例】【Example】

実施例1 亜鉛合金の機械特性が 引張強度 約350MPa 圧縮耐力 約340MPa ブリネル硬さ 約110HB である合金を得るために、引張強度、圧縮耐力及びブリ
ネル硬さの検量線から合金組成がZn−10%Al−1
0%Cu−0.02%Mgである亜鉛合金を調製した。
この亜鉛合金について引張強度、圧縮耐力及びブリネル
硬さの実測値及び計算値は次の通りであった: 実施例2 亜鉛合金の機械特性が 引張強度 約320MPa 圧縮耐力 約310MPa ブリネル硬さ 約100HB である合金を得るために、引張強度、圧縮耐力及びブリ
ネル硬さの検量線から合金組成がZn−27%Al−
2.5%Cu−0.02%Mgである亜鉛合金を調製し
た。この亜鉛合金について引張強度、圧縮耐力及びブリ
ネル硬さの実測値及び計算値は次の通りであった:
Example 1 In order to obtain an alloy having mechanical properties of a zinc alloy having a tensile strength of about 350 MPa, a compressive proof strength of about 340 MPa, and a Brinell hardness of about 110 HB, an alloy composition of Zn-10% was obtained from a calibration curve of tensile strength, compressive proof strength and Brinell hardness. Al-1
A zinc alloy of 0% Cu-0.02% Mg was prepared.
The measured and calculated tensile strength, compressive strength and Brinell hardness for this zinc alloy were as follows: Example 2 In order to obtain an alloy having mechanical properties of a zinc alloy having a tensile strength of about 320 MPa, a compressive proof strength of about 310 MPa, and a Brinell hardness of about 100 HB, an alloy composition of Zn-27% was obtained from a calibration curve of tensile strength, compressive proof strength and Brinell hardness. Al-
A zinc alloy was prepared that was 2.5% Cu-0.02% Mg. The measured and calculated tensile strength, compressive strength and Brinell hardness for this zinc alloy were as follows:

【0013】[0013]

【発明の効果】本発明の亜鉛合金は所望の機械特性から
検量線を用いて合金組成を容易に決定できるものであ
り、新合金の開発が著しく簡単になり、また、これによ
ってユーザーニーズの多様化に迅速に対処できる。
EFFECTS OF THE INVENTION The zinc alloy of the present invention can easily determine the alloy composition from the desired mechanical properties by using a calibration curve, which greatly simplifies the development of new alloys and also makes it possible to meet a variety of user needs. Can be dealt with quickly.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において分子軌道計算によりMkを算出
するのに用いた亜鉛クラスター模型を示す。
FIG. 1 shows a zinc cluster model used for calculating Mk by molecular orbital calculation in the present invention.

【図2】△Mk値と引張強度との相関を示す引張強度検
量線グラフである。
FIG. 2 is a tensile strength calibration curve graph showing the correlation between ΔMk value and tensile strength.

【図3】△Mk値と圧縮耐力との相関を示す圧縮耐力検
量線グラフである。
FIG. 3 is a compression strength calibration curve graph showing the correlation between the ΔMk value and the compression strength.

【図4】△Mk値とブリネル硬さとの相関を示すブリネ
ル硬さ検量線グラフである。
FIG. 4 is a Brinell hardness calibration curve graph showing a correlation between ΔMk value and Brinell hardness.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 0.1重量%以下のLi、0.1重量%
以下のBe、0.1重量%以下のNa、0.1重量%以
下のMg、25重量%以下のAl、0.1重量%以下の
Si、0.1重量%以下のK、0.1重量%以下のC
a、0.1重量%以下のTi、0.1重量%以下のV、
0.1重量%以下のMn、0.1重量%以下のFe、
0.1重量%以下のCo、0.1重量%以下のNi、1
5重量%以下のCu、1重量%以下のCd、1重量%以
下のIn、1重量%以下のSn及び1重量%以下のSb
からなる群から選ばれた少なくとも1種の合金元素を含
み、亜鉛及び各合金元素について分子軌道法により算出
したs軌道エネルギーレベルMk及び各合金元素のモル
分率と合金の所定の機械特性Mpとが所定の検量線を満
足することを特徴とする所望の機械特性を有する亜鉛合
金。
1. Li less than 0.1% by weight, 0.1% by weight
The following Be, 0.1 wt% or less Na, 0.1 wt% or less Mg, 25 wt% or less Al, 0.1 wt% or less Si, 0.1 wt% or less K, 0.1 C by weight or less
a, 0.1% by weight or less of Ti, 0.1% by weight or less of V,
0.1% by weight or less of Mn, 0.1% by weight or less of Fe,
0.1% by weight or less of Co, 0.1% by weight or less of Ni, 1
5 wt% or less Cu, 1 wt% or less Cd, 1 wt% or less In, 1 wt% or less Sn and 1 wt% or less Sb
S orbital energy level Mk calculated by the molecular orbital method for zinc and each alloying element, containing at least one alloying element selected from the group consisting of Satisfying a predetermined calibration curve, zinc alloy having desired mechanical properties.
【請求項2】 0.1重量%以下のLi、0.1重量%
以下のBe、0.1重量%以下のNa、0.1重量%以
下のMg、25重量%以下のAl、0.1重量%以下の
Si、0.1重量%以下のK、0.1重量%以下のC
a、0.1重量%以下のTi、0.1重量%以下のV、
0.1重量%以下のMn、0.1重量%以下のFe、
0.1重量%以下のCo、0.1重量%以下のNi、1
5重量%以下のCu、1重量%以下のCd、1重量%以
下のIn、1重量%以下のSn及び1重量%以下のSb
からなる群から選ばれた少なくとも1種の合金元素を含
み、亜鉛及び各合金元素について分子軌道法により算出
したs軌道エネルギーレベルMk及び各合金元素のモル
分率と合金の引張強度Ts(MPa)とが式 Ts=a+bΣ|Mki −MkZn|×Xi (式中、aは130〜155の範囲内の値であり、bは
1270であり、Mkiはi元素のMk値であり、Mk
ZnはZn元素のMk値であり、またXi はi元素のモル
分率である)を満足することを特徴とする所望の引張強
度を有する亜鉛合金。
2. Li less than 0.1% by weight, 0.1% by weight
The following Be, 0.1 wt% or less Na, 0.1 wt% or less Mg, 25 wt% or less Al, 0.1 wt% or less Si, 0.1 wt% or less K, 0.1 C by weight or less
a, 0.1% by weight or less of Ti, 0.1% by weight or less of V,
0.1% by weight or less of Mn, 0.1% by weight or less of Fe,
0.1% by weight or less of Co, 0.1% by weight or less of Ni, 1
5 wt% or less Cu, 1 wt% or less Cd, 1 wt% or less In, 1 wt% or less Sn and 1 wt% or less Sb
S orbital energy level Mk calculated by the molecular orbital method for zinc and each alloying element, containing at least one alloying element selected from the group consisting of, and the mole fraction of each alloying element and the tensile strength Ts (MPa) of the alloy. And Ts = a + bΣ | Mk i −Mk Zn | × X i (where a is a value within the range of 130 to 155, b is 1270, Mk i is the Mk value of the i element, and Mk
Zn is the Mk value of the Zn element, and X i is the mole fraction of the i element.) A zinc alloy having a desired tensile strength.
【請求項3】 0.1重量%以下のLi、0.1重量%
以下のBe、0.1重量%以下のNa、0.1重量%以
下のMg、25重量%以下のAl、0.1重量%以下の
Si、0.1重量%以下のK、0.1重量%以下のC
a、0.1重量%以下のTi、0.1重量%以下のV、
0.1重量%以下のMn、0.1重量%以下のFe、
0.1重量%以下のCo、0.1重量%以下のNi、1
5重量%以下のCu、1重量%以下のCd、1重量%以
下のIn、1重量%以下のSn及び1重量%以下のSb
からなる群から選ばれた少なくとも1種の合金元素を含
み、亜鉛及び各合金元素について分子軌道法により算出
したs軌道エネルギーレベルMk及び各合金元素のモル
分率と合金の圧縮耐力Cy(MPa)とが式 Cy=a+bΣ|Mki −MkZn|×Xi (式中、aは140〜165の範囲内の値であり、bは
1120であり、Mkiはi元素のMk値であり、Mk
ZnはZn元素のMk値であり、またXi はi元素のモル
分率である)を満足することを特徴とする所望の圧縮耐
力を有する亜鉛合金。
3. Li less than 0.1% by weight, 0.1% by weight
The following Be, 0.1 wt% or less Na, 0.1 wt% or less Mg, 25 wt% or less Al, 0.1 wt% or less Si, 0.1 wt% or less K, 0.1 C by weight or less
a, 0.1% by weight or less of Ti, 0.1% by weight or less of V,
0.1% by weight or less of Mn, 0.1% by weight or less of Fe,
0.1% by weight or less of Co, 0.1% by weight or less of Ni, 1
5 wt% or less Cu, 1 wt% or less Cd, 1 wt% or less In, 1 wt% or less Sn and 1 wt% or less Sb
S-orbital energy level Mk calculated by the molecular orbital method for zinc and each alloying element, containing at least one alloying element selected from the group consisting of, and the mole fraction of each alloying element and the compressive strength Cy (MPa) of the alloy. And Cy = a + bΣ | Mk i −Mk Zn | × X i (where a is a value within the range of 140 to 165, b is 1120, Mk i is the Mk value of the i element, and Mk
Zn is the Mk value of the Zn element, and X i is the mole fraction of the i element.) A zinc alloy having a desired compression strength.
【請求項4】 0.1重量%以下のLi、0.1重量%
以下のBe、0.1重量%以下のNa、0.1重量%以
下のMg、25重量%以下のAl、0.1重量%以下の
Si、0.1重量%以下のK、0.1重量%以下のC
a、0.1重量%以下のTi、0.1重量%以下のV、
0.1重量%以下のMn、0.1重量%以下のFe、
0.1重量%以下のCo、0.1重量%以下のNi、1
5重量%以下のCu、1重量%以下のCd、1重量%以
下のIn、1重量%以下のSn及び1重量%以下のSb
からなる群から選ばれた少なくとも1種の合金元素を含
み、亜鉛及び各合金元素について分子軌道法により算出
したs軌道エネルギーレベルMk及び各合金元素のモル
分率と合金のブリネル硬さBh(HB)とが式 Bh=a+bΣ|Mki −MkZn|×Xi (式中、aは62〜74の範囲内の値であり、bは26
0であり、Mki はi元素のMk値であり、MkZnはZ
n元素のMk値であり、またXi はi元素のモル分率で
ある)を満足することを特徴とする所望のブリネル硬さ
を有する亜鉛合金。
4. Li less than 0.1% by weight, 0.1% by weight
The following Be, 0.1 wt% or less Na, 0.1 wt% or less Mg, 25 wt% or less Al, 0.1 wt% or less Si, 0.1 wt% or less K, 0.1 C by weight or less
a, 0.1% by weight or less of Ti, 0.1% by weight or less of V,
0.1% by weight or less of Mn, 0.1% by weight or less of Fe,
0.1% by weight or less of Co, 0.1% by weight or less of Ni, 1
5 wt% or less Cu, 1 wt% or less Cd, 1 wt% or less In, 1 wt% or less Sn and 1 wt% or less Sb
The s-orbital energy level Mk calculated by the molecular orbital method for zinc and each alloying element, containing at least one alloying element selected from the group consisting of, and the mole fraction of each alloying element and the Brinell hardness of the alloy Bh (HB ) And the formula Bh = a + bΣ | Mk i −Mk Zn | × X i (where a is a value within the range of 62 to 74, and b is 26).
0, Mk i is the Mk value of the i element, and Mk Zn is Z
a zinc alloy having a desired Brinell hardness, which is a Mk value of an n element and X i is a mole fraction of the i element).
JP7051694A 1994-04-08 1994-04-08 Zinc alloy Pending JPH07278707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7051694A JPH07278707A (en) 1994-04-08 1994-04-08 Zinc alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7051694A JPH07278707A (en) 1994-04-08 1994-04-08 Zinc alloy

Publications (1)

Publication Number Publication Date
JPH07278707A true JPH07278707A (en) 1995-10-24

Family

ID=13433779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7051694A Pending JPH07278707A (en) 1994-04-08 1994-04-08 Zinc alloy

Country Status (1)

Country Link
JP (1) JPH07278707A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945066A (en) * 1997-11-20 1999-08-31 Griffin; James D. Zinc-copper based alloy and castings made therefrom
US6280795B1 (en) * 1998-05-22 2001-08-28 Cominco, Ltd. Galvanizing of reactive steels
JP2009203545A (en) * 2008-02-29 2009-09-10 Dowa Metals & Mining Co Ltd Zn ALLOY FOR DIE CASTING, AND METHOD FOR PRODUCING DIE-CAST MEMBER USING THE Zn ALLOY FOR DIE CASTING
KR20110092219A (en) 2010-02-08 2011-08-17 닛소 긴조쿠카가쿠 가부시키가이샤 Zinc base alloy
JP2012213800A (en) * 2011-03-28 2012-11-08 Hiroshima Univ Method for deciding composition ratio of zinc alloy for high temperature solder and utilization of the same
US20160168664A1 (en) * 2013-08-27 2016-06-16 The United States Playing Card Company Reduced Conductivity and Unique Electro-Magnetic Signature Zinc Alloy
KR101722899B1 (en) * 2017-02-02 2017-04-03 주식회사 애니메탈 Zinc alloy with excellent softening resistance
CN109128064A (en) * 2018-09-21 2019-01-04 北京科技大学 A kind of biodegradable Zn-Na system kirsite and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945066A (en) * 1997-11-20 1999-08-31 Griffin; James D. Zinc-copper based alloy and castings made therefrom
US6280795B1 (en) * 1998-05-22 2001-08-28 Cominco, Ltd. Galvanizing of reactive steels
JP2009203545A (en) * 2008-02-29 2009-09-10 Dowa Metals & Mining Co Ltd Zn ALLOY FOR DIE CASTING, AND METHOD FOR PRODUCING DIE-CAST MEMBER USING THE Zn ALLOY FOR DIE CASTING
US8834652B2 (en) 2010-02-08 2014-09-16 Nisso Metallochemical Co., Ltd. Zinc base alloy
EP2363508A1 (en) 2010-02-08 2011-09-07 Nisso Metallochemical Co., Ltd. Zinc base alloy
KR20110092219A (en) 2010-02-08 2011-08-17 닛소 긴조쿠카가쿠 가부시키가이샤 Zinc base alloy
JP2012213800A (en) * 2011-03-28 2012-11-08 Hiroshima Univ Method for deciding composition ratio of zinc alloy for high temperature solder and utilization of the same
JP2016218083A (en) * 2011-03-28 2016-12-22 国立大学法人広島大学 Method for determining composition ratio of zinc alloy for high temperature solder and utilization of the same
JP2018089699A (en) * 2011-03-28 2018-06-14 国立大学法人広島大学 Method for determining composition ratio of zinc alloy for high temperature solder and utilization of the same
US20160168664A1 (en) * 2013-08-27 2016-06-16 The United States Playing Card Company Reduced Conductivity and Unique Electro-Magnetic Signature Zinc Alloy
KR101722899B1 (en) * 2017-02-02 2017-04-03 주식회사 애니메탈 Zinc alloy with excellent softening resistance
CN109128064A (en) * 2018-09-21 2019-01-04 北京科技大学 A kind of biodegradable Zn-Na system kirsite and preparation method thereof
CN109128064B (en) * 2018-09-21 2020-04-28 北京科技大学 Biodegradable Zn-Na series zinc alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH08134581A (en) Production of magnesium alloy
US7351372B2 (en) Copper base alloy and method for producing same
EP1413636A4 (en) Aluminum alloy excellent in machinability, and aluminum alloy material and method for production thereof
EP1600517A3 (en) Lead-free, free-cutting copper alloys
PL349340A1 (en) Hypereutectic aluminium-silicon alloy product for semisolid forming
JPH111735A (en) High strength cu alloy with excellent press blankability and corrosion resistance
JPH07278707A (en) Zinc alloy
EP0964069B1 (en) Strontium master alloy composition having a reduced solidus temperature and method of manufacturing the same
HK1024512A1 (en) Steel for use at high temperatures
WO2003093514A3 (en) Inoculation alloy against micro-shrinkage cracking for treating cast iron castings
JPS607024B2 (en) Manufacturing method of copper-based alloy
JPH0649572A (en) High strength zinc alloy for die casting and zinc alloy die-cast parts
JPH06228698A (en) Mg base alloy excellent in corrosion resistance
JP3779830B2 (en) Copper alloy for semiconductor lead frames
EP0039242A1 (en) An improved aluminium bronze alloy
CA1270384A (en) Nickel copper alloys with enhanced malleability and improved sulfide distribution
JPS6415340A (en) Iron-copper-chromium alloy for high-strength lead frame
JPH05195121A (en) Alloy for pressing die
JPS59179753A (en) Die casting aluminum alloy
JPH0621306B2 (en) Zinc-based alloy for molds
JPH01119635A (en) Spring material having electric conductivity
US2178575A (en) Magnesium base alloy
JPS5779141A (en) High strength aluminum alloy for die casting
JPS60258440A (en) Precipitation strengthening copper alloy
JPS624847A (en) Precipitation hardening type corrosion-resistant ni-base alloy having high strength and high hardness