JPH0621306B2 - Zinc-based alloy for molds - Google Patents

Zinc-based alloy for molds

Info

Publication number
JPH0621306B2
JPH0621306B2 JP13150886A JP13150886A JPH0621306B2 JP H0621306 B2 JPH0621306 B2 JP H0621306B2 JP 13150886 A JP13150886 A JP 13150886A JP 13150886 A JP13150886 A JP 13150886A JP H0621306 B2 JPH0621306 B2 JP H0621306B2
Authority
JP
Japan
Prior art keywords
zinc
based alloy
alloy
hardness
molds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13150886A
Other languages
Japanese (ja)
Other versions
JPS62287030A (en
Inventor
達児 橋本
清隆 寺島
武裕 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUSO KINZOKU KAGAKU KK
Original Assignee
NITSUSO KINZOKU KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUSO KINZOKU KAGAKU KK filed Critical NITSUSO KINZOKU KAGAKU KK
Priority to JP13150886A priority Critical patent/JPH0621306B2/en
Publication of JPS62287030A publication Critical patent/JPS62287030A/en
Publication of JPH0621306B2 publication Critical patent/JPH0621306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金型用亜鉛基合金に係りおもにプラスチック射
出成形およびプラスチック圧縮成形時の金型用亜鉛基合
金に関する。
TECHNICAL FIELD The present invention relates to a zinc-based alloy for dies, and mainly to a zinc-based alloy for dies during plastic injection molding and plastic compression molding.

〔従来の技術〕[Conventional technology]

最近の商品は、用途及び機能が多様化され多種類少量生
産が要求されている。
Recent products have diversified uses and functions and are required to be manufactured in various kinds in small quantities.

元来金型はプラスチックの射出或いは圧縮成形等の多量
生産用手段として用いられて来たが、前記要求のため少
量多種生産にも適用することが望まれている。
Originally, the metal mold has been used as a means for mass production such as injection or compression molding of plastics, but it is desired to apply it to small-volume multi-production due to the above requirements.

生産量によるこれら製品の型製作費に占める割合は少量
生産の場合ほど高く、その節減が強く要求されている。
The ratio of these products to the die manufacturing cost due to the production amount is higher as in the case of small-scale production, and the reduction is strongly required.

従って、最近このような要望から型製作費の安い簡易金
型材が種々開発されている。
Therefore, recently, various kinds of simple mold materials, which are inexpensive in mold manufacturing cost, have been developed in response to such demands.

亜鉛基合金は簡易プレス型として耐圧力が高く、自己潤
滑性に富み、相手材を傷めない等の特徴のため、アルミ
板、鋼板の絞り型、曲け型、打抜型、引張成形用に試作
型、臨時型、小量生産型、機械加工が困難で形状の複雑
な型、異形大型の絞り型に使われているが、型のヘタ
リ、変形から耐用寿命で制約を受け、型製作目的、生産
数、板厚、形状、製作期限、製作費を十分考慮して採用
している。
Zinc-based alloy is a simple press type with high pressure resistance, rich self-lubricating property, and does not damage the mating material, so trial production for aluminum plate, steel plate drawing die, bending die, punching die, tensile forming It is used for molds, temporary molds, small-volume production molds, molds that are difficult to machine and have complicated shapes, and irregular large-sized drawing molds. It is adopted with due consideration of the number of products produced, plate thickness, shape, production deadline, and production cost.

簡易型として使用されている代表的な亜鉛基合金はZA
MAK2系の4%Al−3%Cu−0.05%Mg−Znと米
国特許第2752242号に開示された4%Al−3%
Cu−Ni−Ti−Mg−Zn(商品名グムーデイエ:Gmoodie)
が使用されている。
A typical zinc-based alloy used as a simplified type is ZA
MAK2 based 4% Al-3% Cu-0.05% Mg-Zn and 4% Al-3% disclosed in U.S. Pat. No. 2,752,242.
Cu-Ni-Ti-Mg-Zn (Product name: Gmoodie)
Is used.

その他引抜ダイス型用として米国特許第2908564
号に、Al2〜5%、Cu0.5〜5%、Mg0.02〜
0.3%、Fe−Zr−Al金属間化合物1〜3%、残Znか
らなる合金が、又プラスチック金型材として特開昭51
−79633号公報にAl8〜11%、Cu8〜11%、
Mg0.06〜0.08%、Ni8〜11%、残Znの亜鉛基
合金が開示されている。又、特公昭48−20967号
公報には、Al4〜25%、Cu3〜10%、Mg0.01
〜0.5%、Be0.02〜0.15%、Ti0.01〜
1.5%残Znからなる耐圧用亜鉛基合金が示されてい
る。然しながら従来の簡易型亜鉛基合金は熱間使用の温
度限界を150℃としているがプラスチック射出成形、
プラスチック圧縮成形時の条件では型のヘタリ、変形が
早く満足する性能ではなくプラスチック成形用長寿命型
材としては不適当である。
US Patent No. 2,908,564 for other drawing dies
No.2, Al2-5%, Cu0.5-5%, Mg0.02-
An alloy composed of 0.3%, Fe-Zr-Al intermetallic compound 1 to 3%, and the balance Zn is also used as a plastic mold material.
No. 79633, Al8-11%, Cu8-11%,
A zinc-based alloy containing 0.06 to 0.08% Mg, 8 to 11% Ni and the balance Zn is disclosed. In addition, Japanese Patent Publication No. 48-20967 discloses Al 4 to 25%, Cu 3 to 10%, Mg 0.01.
~ 0.5%, Be 0.02 to 0.15%, Ti 0.01 ~
A pressure-resistant zinc-based alloy consisting of 1.5% balance Zn is shown. However, the conventional simple zinc-based alloy has a temperature limit of 150 ° C for hot use, but plastic injection molding,
Under the conditions of plastic compression molding, the settling and deformation of the mold are rapid and the performance is not satisfactory, and it is not suitable as a long-life mold material for plastic molding.

また、従来の量産型金型は融点が非常に高く鋳造が困難
であり、ブロック材より切削加工を行っている。
In addition, the conventional mass-production mold has a very high melting point and is difficult to cast. Therefore, the block material is cut.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明はプラスチック射出成形、プラスチック圧縮成形
時の条件下例えば圧力20〜400kg/cm2、金型温度
100〜170℃、成形時間15sec/1mm〜2min/1.
5mmで、特に最も一般的に使用される150℃に於ける
引張強度の低下が少なく、かつ少なくとも硬度(Hv)が
120以上を保持し得る亜鉛基合金を提供し、従来の亜
鉛基合金型材に比べて試作型から直ちに中量産型に移行
可能な亜鉛基合金型材の提供を目的とする。
The present invention is carried out under the conditions of plastic injection molding and plastic compression molding, for example, pressure of 20 to 400 kg / cm 2 , mold temperature of 100 to 170 ° C., molding time of 15 sec / 1 mm to 2 min / 1.
Provided is a zinc-based alloy having a tensile strength of 5 mm, which does not cause a decrease in tensile strength at 150 ° C., which is most commonly used, and at least has a hardness (Hv) of 120 or more. In comparison, the purpose is to provide a zinc-based alloy mold material that can be immediately transferred from the prototype mold to the medium-mass production type.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はAl2%を越え20%、Cu10%を越え15
%、Mg0.05〜0.3%、Be0.001〜0.15
%、Ti0.05〜0.5%、残Znおよび不可避不純物か
らなる亜鉛基合金である。
The present invention exceeds Al 2% to 20%, Cu 10% to 15
%, Mg 0.05-0.3%, Be 0.001-0.15
%, Ti 0.05-0.5%, residual Zn and unavoidable impurities.

本発明に於ける不可避不純物とは、主にZn地金とAl、
Cu、Ti、Mg等を添加する場合に混入するものであり、通
常Fe、Pb、Cd、Sn、Si等が0.07%程度許容できる。
The unavoidable impurities in the present invention are mainly Zn metal and Al,
It is mixed when Cu, Ti, Mg, etc. are added, and usually 0.07% or so of Fe, Pb, Cd, Sn, Si, etc. is acceptable.

本発明の亜鉛基合金はAlを固溶したε相とCuを固溶し
たβ相およびCuを固溶したAlTiZnの金属間化合物と各
相に固溶するMg、Beよりなり、Mgは合金素地を強化し、
Beは溶融時の酸化防止に寄与している。
The zinc-based alloy of the present invention comprises an ε phase in which Al is dissolved, a β phase in which Cu is dissolved, an intermetallic compound of AlTiZn in which Cu is dissolved, and Mg and Be which are dissolved in each phase, and Mg is an alloy base material. To strengthen
Be contributes to oxidation prevention during melting.

本発明の亜鉛基合金はAlが20%を越えるか2%以下
であると第2図のように衝撃値が低下するのでAlの上
限を20%とし、下限を2%とした。
In the zinc-based alloy of the present invention, if Al exceeds 20% or 2% or less, the impact value decreases as shown in FIG. 2. Therefore, the upper limit of Al is 20% and the lower limit is 2%.

Cuが15%を越えると硬度は高くなるが第1表の比較例
26〜31に示されるように衝撃値が低く脆くなり、1
0%以下では150℃での硬度が低くなる。又、第1図
にはCu10.2%の本発明の合金とCu7.2%を含有す
る合金の引張強さと伸びの温度による変化が示されてお
り、本発明の合金は150℃に於ける機械的強度の劣化
の少ないことが明瞭であり、更に、第3図から明らかな
如く、Cu10%以下では高温に於ける硬度が常温に比較
し、急激(約5〜3%)に低下するが、10%超好まし
くは10.5%以上では硬度の低下が少なくなる。よっ
てCuは10%超15%好ましくは、10.5%〜15%
である。
When the Cu content exceeds 15%, the hardness becomes high, but as shown in Comparative Examples 26 to 31 in Table 1, the impact value is low and the brittleness becomes 1
If it is 0% or less, the hardness at 150 ° C becomes low. Further, FIG. 1 shows changes in tensile strength and elongation with temperature of the alloy of the present invention containing Cu of 10.2% and the alloy containing Cu of 7.2%. It is clear that there is little deterioration in mechanical strength, and as is clear from FIG. 3, the hardness at high temperature of 10% or less of Cu decreases sharply (about 5 to 3%) as compared with normal temperature. If it exceeds 10%, preferably 10.5% or more, the decrease in hardness is small. Therefore, Cu is more than 10% and 15%, preferably 10.5% to 15%.
Is.

Tiは0.5%を越えると金属間化合物の晶出量が多くな
り、衝撃値が低下し、Tiが0.05%以下では150℃
での硬度が低くなるのでTiの上限は05%として下限を
0.05%とした。
When Ti exceeds 0.5%, the amount of crystallization of intermetallic compounds increases and the impact value decreases, and when Ti is 0.05% or less, 150 ° C.
Therefore, the upper limit of Ti is set to 05% and the lower limit is set to 0.05%.

Mgは0.3%を越えると脆性が増大し、0.05%以下
では合金素地が弱くなるので上限を0.3%とし、下限
を0.05%とした。
If Mg exceeds 0.3%, brittleness increases, and if it is 0.05% or less, the alloy base becomes weak, so the upper limit was made 0.3% and the lower limit was made 0.05%.

Beは溶融時の酸化防止および鋳造性の改善から下限を
0.001%とし、合金の難易、コストの増加から上限
を0.15%とした。
The lower limit of Be was set to 0.001% from the viewpoint of preventing oxidation during melting and improving castability, and the upper limit was set to 0.15% from the difficulty of the alloy and the increase in cost.

〔実施例および試験例〕[Examples and test examples]

以下に、本発明を実施例および試験例によりさらに詳細
に説明する。
Hereinafter, the present invention will be described in more detail with reference to Examples and Test Examples.

ただし、本発明の範囲は下記実施例により何等限定され
るものではない。
However, the scope of the present invention is not limited to the following examples.

実施例1〜15 Al、Cu、Ti、Mg、Be及びZnを目標量秤り取り小型電気
炉内にセットした黒煙坩堝内で溶製した。
Examples 1 to 15 Al, Cu, Ti, Mg, Be and Zn were weighed in a target amount and melted in a black smoke crucible set in a small electric furnace.

得られた合金は第1表No1〜15に示される組成を有して
いた。これらにつき、衝撃試験片をJIS Z2202のシ
ャルピー衝撃試験に用いる4号試験片(切込部なし)を
金型重力鋳造で鋳込温度を融点より50℃高くし、金型
温度150℃の金型に鋳込み、切削加工によって10×
10×55mmに仕上げシャルピー衝撃試薬機(能力10
kg・m)で測定した。硬度測定用試片も同様に鋳込み、
表面仕上加工後、常温及び試片温度150℃加熱時間3
0分後における硬度をビッカース硬度計で測定した。こ
れらの測定結果を第1表に示す。
The resulting alloy had the composition shown in Table 1, Nos. 1-15. For these, the impact test piece used for the Charpy impact test of JIS Z2202 No. 4 test piece (without notch) was subjected to mold gravity casting, the casting temperature was 50 ° C higher than the melting point, and the mold temperature was 150 ° C. 10 × by casting and cutting
Charpy impact reagent machine (capacity 10
kg · m). Similarly, cast a hardness measurement sample,
After surface finishing, room temperature and sample temperature 150 ℃, heating time 3
The hardness after 0 minutes was measured with a Vickers hardness meter. The results of these measurements are shown in Table 1.

比較例16〜32 実施例に準じて合金を製造し、同様の測定を行った。結
果を第1表に示す。
Comparative Examples 16 to 32 Alloys were manufactured according to the examples, and the same measurements were performed. The results are shown in Table 1.

試験例1 本発明の合金(第1表No.5)と比較例(第1表No.1
9)の合金につき、実施例に記載の条件と同一の条件
で、金型重力鋳造し、JIS Z2201 4号試験片に
切削加工し、試片温度による引張強さ、伸びを測定し、
この測定結果を第1図に示す。
Test Example 1 Alloy of the present invention (No. 5 in Table 1) and Comparative Example (No. 1 in Table 1)
Regarding the alloy of 9), under the same conditions as those described in the examples, gravity casting of a mold was performed, and a JIS Z22014 No. 4 test piece was cut, and tensile strength and elongation according to the temperature of the test piece were measured.
The measurement result is shown in FIG.

試験例2 Cu3.9%、Ti0.31%、Mg1.6%、Be0.01
%、残Znの合金にAl添加量を変え、電気炉内にセット
した坩堝内で合金を溶製し、金型重力鋳造し、切削加工
でJIS Z2202のシャルピー衝撃試験片(10×1
0×55mm、ノッチなし)を作成し、実施例と同様にシ
ャルピー試験機により測定した。この測定結果を第2図
に示す。
Test Example 2 Cu 3.9%, Ti 0.31%, Mg 1.6%, Be 0.01
%, The amount of Al added to the remaining Zn alloy is changed, the alloy is melted in a crucible set in an electric furnace, gravity cast with a die, and a JIS Z2202 Charpy impact test piece (10 × 1
(0 × 55 mm, no notch) was prepared and measured by the Charpy tester in the same manner as in the examples. The measurement result is shown in FIG.

試験例3 Mg0.15%、Be0.01%、Ti0.31%でAl5%及び
3%と変化させ更にCu及びZnの含有量を変化させて常温
(20℃)及び高温(150℃)に於ける硬度(Hv)の
変化とCuの含有量の関係を求めた。第3図に示すように
Cu10%以下に比較し10%超好ましくは10.5%以
上では、高温に於ける硬度の低下が極めて改善されてい
る。
Test Example 3 Mg 0.15%, Be 0.01%, Ti 0.31%, Al 5% and 3%, and Cu and Zn contents were changed at room temperature (20 ° C) and high temperature (150 ° C). The relationship between the change in hardness (Hv) and the Cu content was determined. As shown in FIG.
When Cu is more than 10% and preferably more than 10.5%, compared to less than 10%, the decrease in hardness at high temperature is extremely improved.

〔発明の効果〕〔The invention's effect〕

本発明の亜鉛基合金は従来の金型用亜鉛基合金より遥か
に高い硬度、具体的には従来の金型用亜鉛基合金(4%
Al−3%Cu−0.05%Mg−Zn)は常温でHv120、
150℃でHv60〜70、引張強さは常温で27〜30
kgf/mmであるが本発明の亜鉛基合金は常温でHv150
〜180を有し、150℃でHv120〜145である引
張強さは常温で35〜45kgf/mmを有し、120℃で
30〜35kgf/mmであり、本発明の亜鉛基合金は高温
(120〜150℃)における強度、硬度が従来の亜鉛
基合金の常温における強度、硬度と同等或いはそれ以上
であり、常温硬度、高温硬度、衝撃値がバランスよく金
型材として満足できる。
The zinc-based alloy of the present invention has a hardness much higher than that of the conventional zinc-based alloy for molds, specifically, the conventional zinc-based alloy for molds (4%
Al-3% Cu-0.05% Mg-Zn) is Hv120 at room temperature,
Hv60-70 at 150 ℃, tensile strength 27-30 at room temperature
Although it is kgf / mm 2 , the zinc-based alloy of the present invention has Hv150 at room temperature.
Has 180, tensile strength is Hv120~145 at 0.99 ° C. has a 35~45kgf / mm 2 at room temperature, a 30~35kgf / mm 2 at 120 ° C., zinc based alloys of the present invention is a high temperature The strength and hardness at (120 to 150 ° C.) are equal to or higher than the strength and hardness at room temperature of conventional zinc-based alloys, and the room temperature hardness, high temperature hardness and impact value are well balanced and can be satisfied as a die material.

具体的には、温度による引張強さの低下が少なく、常温
での引張強さ35kgf/mmが120℃で32.6kgf/mm
となり低下率6.9%であるが従来の耐摩耗性亜鉛基
合金は常温での引張強さ32kgf/mmが100℃で23
kgf/mmとなり低下率28%と大きい。
Specifically, there is little decrease in tensile strength due to temperature, and tensile strength at room temperature of 35 kgf / mm 2 is 32.6 kgf / mm at 120 ° C.
Although the decrease rate is 6.9%, the conventional wear-resistant zinc-based alloy has a tensile strength of 32 kgf / mm 2 at room temperature of 23 at 100 ° C.
The value is kgf / mm 2 , which is a large reduction rate of 28%.

添加元素の最適量の領域を見出した結果、この低下率の
改善が達成されたものであり、本発明の産業的意義は極
めて大きい。
As a result of finding the region of the optimum amount of the additional element, the improvement of this reduction rate was achieved, and the industrial significance of the present invention is extremely great.

【図面の簡単な説明】 第1図 本発明の亜鉛基合金と耐摩耗性亜鉛基合金の温
度による引張強さ、伸びを示すグラフ。 δ5:本発明の亜鉛基合金 No.5の引張強さ(kgf/mm2) δ19:耐摩耗性亜鉛基合金 No.19の引張強さ(kgf/mm2) E−5:本発明の亜鉛基合金 No.5の伸び(%) E−5:耐摩耗性亜鉛基合金 No.19の伸び(%) 縦軸:(左)引張強さ(kgf/mm2) 〃:(右)伸び (%) 横軸:温度 (℃) 第2図 10%Cu−0.1%Ti−1.6%Mg−0.01
%Be−Zn合金にAlの添加量を変えた場合の衝撃値の変
化を示すグラフ。 縦軸:衝撃値 (kgf・m/cm2) 横軸:Al添加量 (%) 第3図 常温(20℃)と高温(150℃)に於ける硬
度(Hv)の変化率(△Hv/Hv(20℃))であり、Ti
0.3%、Mg0.15%、Be0.01%を固定しAl5
%及び3%をそれぞれ含有させ更にCu量を変化させた亜
鉛基合金の硬度の変化率を示すグラフ。 ●:Al5% ○:Al3% 横軸:Cu含有量 % 縦軸:常温(20℃)と高温(150℃)に於けるHvの変
化率%(△Hv/Hv(20℃))
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing tensile strength and elongation according to temperature of the zinc-based alloy and the wear-resistant zinc-based alloy of the present invention. .DELTA.5: tensile strength of the zinc-based alloy No.5 of the invention (kgf / mm 2) δ19: tensile strength of wear-resistant zinc-based alloy No.19 (kgf / mm 2) E -5: Zinc present invention Elongation (%) of base alloy No. 5 E-5: Elongation (%) of wear resistant zinc base alloy No. 19 Vertical axis: (left) Tensile strength (kgf / mm 2 ) 〃: (right) Elongation ( %) Horizontal axis: Temperature (° C) Fig. 2 10% Cu-0.1% Ti-1.6% Mg-0.01
The graph which shows the change of the impact value when changing the addition amount of Al to% Be-Zn alloy. Vertical axis: Impact value (kgf · m / cm 2 ) Horizontal axis: Al addition amount (%) Fig. 3 Change rate of hardness (Hv) at normal temperature (20 ° C) and high temperature (150 ° C) (△ Hv / Hv (20 ° C)) and Ti
0.3%, Mg 0.15%, Be 0.01% fixed, Al5
% And 3%, respectively, and a graph showing the rate of change in hardness of a zinc-based alloy in which the amount of Cu was changed. ●: Al5% ○: Al3% Horizontal axis: Cu content% Vertical axis: Change rate of Hv at normal temperature (20 ° C) and high temperature (150 ° C)% (△ Hv / Hv (20 ° C))

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アルミニウム2%を越え20%、銅10%
を越え15%、マグネシウム0.05〜0.3%、ベリ
リウム0.001〜0.15%、チタニウム0.05〜
0.5%、残亜鉛および不可避不純物からなる金型用亜
鉛基合金。
1. Aluminum exceeding 2%, 20%, copper 10%
Over 15%, magnesium 0.05-0.3%, beryllium 0.001-0.15%, titanium 0.05-
A zinc-based alloy for molds, which contains 0.5% of residual zinc and unavoidable impurities.
JP13150886A 1986-06-06 1986-06-06 Zinc-based alloy for molds Expired - Fee Related JPH0621306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13150886A JPH0621306B2 (en) 1986-06-06 1986-06-06 Zinc-based alloy for molds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13150886A JPH0621306B2 (en) 1986-06-06 1986-06-06 Zinc-based alloy for molds

Publications (2)

Publication Number Publication Date
JPS62287030A JPS62287030A (en) 1987-12-12
JPH0621306B2 true JPH0621306B2 (en) 1994-03-23

Family

ID=15059669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13150886A Expired - Fee Related JPH0621306B2 (en) 1986-06-06 1986-06-06 Zinc-based alloy for molds

Country Status (1)

Country Link
JP (1) JPH0621306B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195121A (en) * 1992-01-17 1993-08-03 Mitsui Mining & Smelting Co Ltd Alloy for pressing die
US5945066A (en) * 1997-11-20 1999-08-31 Griffin; James D. Zinc-copper based alloy and castings made therefrom
JP2005187288A (en) * 2003-12-26 2005-07-14 Hitachi Chem Co Ltd Metal-impregnated carbon sliding material

Also Published As

Publication number Publication date
JPS62287030A (en) 1987-12-12

Similar Documents

Publication Publication Date Title
EP0175183B1 (en) Copper alloys having an improved combination of strength and conductivity
JPH08134581A (en) Production of magnesium alloy
JP2651975B2 (en) Gamma titanium aluminide and its manufacturing method
CN100552071C (en) High-density zinc-base alloy counterbalance and preparation method thereof
JPS60215735A (en) Al-base alloy and heat treatment thereof
US4377424A (en) Mold of precipitation hardenable copper alloy for continuous casting mold
CA2165373A1 (en) Alloys containing insoluble phases & method of manufacture thereof
JPH0621306B2 (en) Zinc-based alloy for molds
JPS6128739B2 (en)
JP2790383B2 (en) Al-Mg alloy rolled sheet for cryogenic forming
CA1176084A (en) Process for using scrap aluminum materials
US4859417A (en) Copper-based metal alloy of improved type, particularly for the construction of electronic components
US3630725A (en) Method of preparing an aluminum alloy
JP2020158844A (en) Scroll member and method for manufacturing scroll forging
JP2000008134A (en) Modification of microstructure of mother alloy and nonferrous metal alloy and production of mother alloy
US5980656A (en) Copper alloy with magnesium addition
CN114990393B (en) Die-casting aluminum alloy material produced by fully reclaimed materials and preparation method thereof
JPH05195121A (en) Alloy for pressing die
JPS59197543A (en) Tough abrasion resistant copper alloy
JP2752971B2 (en) High strength and heat resistant aluminum alloy member and method of manufacturing the same
JPH04198442A (en) High toughness zinc-base alloy
US3508916A (en) Cu base die casting alloy
JPH0941057A (en) Zinc alloy for thixocasting and injection molding
US20230043878A1 (en) Cast Alloy
CN1081720A (en) Aluminium alloy iron-phase nodulizer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees