JPH0727808A - Noncontact type surface potentiometer - Google Patents
Noncontact type surface potentiometerInfo
- Publication number
- JPH0727808A JPH0727808A JP17304093A JP17304093A JPH0727808A JP H0727808 A JPH0727808 A JP H0727808A JP 17304093 A JP17304093 A JP 17304093A JP 17304093 A JP17304093 A JP 17304093A JP H0727808 A JPH0727808 A JP H0727808A
- Authority
- JP
- Japan
- Prior art keywords
- sensor element
- sample
- detected
- detection electrode
- surface potential
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measurement Of Current Or Voltage (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、PPC(plain paper
copier)、FAX(facsimile) 等に使用されている感光
体などの表面電位を非接触で測定する非接触型表面電位
計に関するものである。BACKGROUND OF THE INVENTION The present invention relates to PPC (plain paper).
The present invention relates to a non-contact type surface electrometer for measuring the surface potential of a photoconductor used for copier), FAX (facsimile), etc. in a non-contact manner.
【0002】[0002]
【従来の技術】図7は非接触で表面電位の測定を行う従
来の表面電位計の測定原理を示す構成図である。同図に
おいて、1は複写機の感光体などの被検出試料で、電源
2により+(正)に帯電されている。2. Description of the Related Art FIG. 7 is a block diagram showing the measurement principle of a conventional surface potential meter which measures the surface potential in a non-contact manner. In the figure, 1 is a sample to be detected such as a photoconductor of a copying machine, which is charged to + (positive) by a power source 2.
【0003】3はセンサ部のケースで、測定用の小窓4
が設けられており、この小窓4の内側に一対の音叉型の
振動子5が配設されている。6は小窓4の内側に配設さ
れた検出電極である。Reference numeral 3 is a case of the sensor section, which is a small window 4 for measurement.
Is provided, and a pair of tuning fork type vibrators 5 are arranged inside the small window 4. Reference numeral 6 is a detection electrode arranged inside the small window 4.
【0004】図8は上記センサ部の構造を模式的に示し
たものである。一対の振動子5は、圧電素子(圧電セラ
ミックス)7が接着された音叉8に一体的に構成されて
おり、圧電素子7には駆動回路9から交流電圧が印加さ
れるようになっている。また、検出電極6の出力はプリ
アンプ10により増幅され、不図示の信号処理回路に入
力されるように構成されている。FIG. 8 schematically shows the structure of the sensor section. The pair of vibrators 5 are integrally formed with a tuning fork 8 to which a piezoelectric element (piezoelectric ceramics) 7 is adhered, and an alternating voltage is applied to the piezoelectric element 7 from a drive circuit 9. The output of the detection electrode 6 is amplified by the preamplifier 10 and input to a signal processing circuit (not shown).
【0005】上記のような表面電位計において、被検出
試料1の表面電位を測定しようとする場合は、ケース3
の小窓4を被検出試料1の表面に向けてセットする。こ
の時、コロナ放電等により被検出試料1の表面に電荷が
あると、その表面より図7の破線で示すような電気力線
Aが検出電極6に向けて出ている。この電気力線Aは、
ケース3の小窓4を通して検出電極6に達しているが、
ここで被検出試料1と検出電極6との間の距離を一定値
に固定しておき、電気力線Aを何らかの方法でチョッパ
し、面積Sの検出電極6に到達する電気力線Aの時間的
変化量を上記信号処理回路に組み込まれたFETのゲー
トに入力して検出することにより、被検出試料1の表面
電位を知ることができる。In the case of measuring the surface potential of the sample 1 to be detected in the surface electrometer as described above, Case 3 is used.
The small window 4 is set toward the surface of the sample to be detected 1. At this time, if there is electric charge on the surface of the sample 1 to be detected due to corona discharge or the like, electric lines of force A as shown by the broken line in FIG. This line of electric force A is
Although it reaches the detection electrode 6 through the small window 4 of the case 3,
Here, the distance between the sample to be detected 1 and the detection electrode 6 is fixed to a constant value, the electric force line A is choppered by some method, and the time of the electric force line A reaching the detection electrode 6 having the area S is determined. The surface potential of the sample to be detected 1 can be known by inputting the amount of dynamic change into the gate of the FET incorporated in the signal processing circuit and detecting the amount.
【0006】すなわち、上記電気力線Aのチョッパの一
つの方式として、図7の例では交流方式を用いており、
安定した振動数をもつ音叉8に圧電素子7を貼り付け、
この圧電素子7に交流電圧を印加して振動子5を矢印B
方向に振動させ、これにより電気力線Aをチョッピング
している。この時、静電場における上記被検出試料1と
検出電極6を誘電率εa の空気層が入った電極間隔rの
平板コンデンサと見做すと、このコンデンサの静電容量
Cと電荷Qは、印加電圧(被検出試料1の電位)をVと
すると、C=εa S/r、Q=CVとなる。That is, as one method of the chopper of the electric flux line A, the AC method is used in the example of FIG.
Attach the piezoelectric element 7 to the tuning fork 8 with stable frequency,
AC voltage is applied to the piezoelectric element 7 to move the vibrator 5 to the arrow B
In this way, the lines of electric force A are chopped. At this time, when the sample 1 to be detected and the detection electrode 6 in the electrostatic field are regarded as a flat plate capacitor with an electrode space r containing an air layer having a dielectric constant ε a , the electrostatic capacitance C and the charge Q of this capacitor are When the applied voltage (potential of the sample to be detected 1) is V, C = ε a S / r and Q = CV.
【0007】上式の関係から、電気力線Aのチョッピン
グによるコンデンサの漏れ電流Iの変化を求め、これを
交流信号電圧として検出する。この電流Iは、From the relation of the above equation, the change in the leakage current I of the capacitor due to the chopping of the electric force line A is obtained, and this is detected as the AC signal voltage. This current I is
【0008】[0008]
【数1】 [Equation 1]
【0009】で表される。この時、C=一定とすると、It is represented by At this time, if C = constant,
【0010】[0010]
【数2】 [Equation 2]
【0011】となる。そして、これを交流信号電圧とし
てプリアンプ10により増幅し、被検出試料1の表面電
位を相対的に求めている。[0011] Then, this is amplified as an AC signal voltage by the preamplifier 10 to relatively determine the surface potential of the sample 1 to be detected.
【0012】[0012]
【発明が解決しようとする課題】しかしながら、上記の
ような従来の非接触型表面電位計にあっては、電気力線
の通る小窓に対して検出電極の位置やチョッパ位置がず
れると、出力レベルが所定値より変化し、正確な表面電
位の測定ができないという問題点があった。However, in the above-mentioned conventional non-contact type surface electrometer, when the position of the detection electrode or the position of the chopper deviates from the small window through which the lines of electric force pass, the output is generated. There is a problem in that the level changes from a predetermined value and the surface potential cannot be measured accurately.
【0013】また、小窓を有しているため、実際に機械
に組み込んで使用する際、例えばトナーなどがケース内
に入って圧電式の音叉に悪影響を及ぼし、リークの発生
や感度低下を招くなどの問題点があった。Further, since it has a small window, when it is actually incorporated into a machine for use, for example, toner or the like enters the case and adversely affects the piezoelectric tuning fork, resulting in leakage or deterioration of sensitivity. There were problems such as.
【0014】この発明は、上記のような問題点に着目し
てなされたもので、正確な表面電位の測定ができ、また
防塵構造が可能で、トナー等によるリークの発生を防止
することができ、且つセンサプローブの小型化を図るこ
とができるとともに、センサプローブのクリーニングが
容易な非接触型表面電位計を提供することを目的として
いる。The present invention has been made by paying attention to the above-mentioned problems. It is possible to accurately measure the surface potential, a dustproof structure is possible, and it is possible to prevent the occurrence of leakage due to toner or the like. In addition, it is an object of the present invention to provide a non-contact type surface electrometer which can reduce the size of the sensor probe and can easily clean the sensor probe.
【0015】[0015]
【課題を解決するための手段】この発明の非接触型表面
電位計は、印加電圧に応じて光の屈折率が変化するポッ
ケルス結晶を用いたセンサ素子と、被検出試料の表面に
対向して配置され、前記センサ素子の両側の電極の一方
と電気的に接続された検知電極と、前記センサ素子のポ
ッケルス結晶を通過した光の強度から前記被検出試料の
表面電位を検出する信号処理部とから構成したものであ
る。The non-contact surface electrometer of the present invention comprises a sensor element using a Pockels crystal in which the refractive index of light changes according to an applied voltage, and a sensor element facing the surface of a sample to be detected. A detection electrode that is arranged and electrically connected to one of the electrodes on both sides of the sensor element, and a signal processing unit that detects the surface potential of the sample to be detected from the intensity of light that has passed through the Pockels crystal of the sensor element. It is composed of.
【0016】また、上記センサ素子の検知電極と接続さ
れた電極の面積より検知電極の面積の方が大きく、且つ
比例関係を有するように構成したものである。Further, the area of the sensing electrode is larger than the area of the electrode connected to the sensing electrode of the above-mentioned sensor element, and has a proportional relationship.
【0017】[0017]
【作用】この発明の非接触型表面電位計においては、光
学式のセンサが使用されているので、機械的な位置関係
の影響を受けることなく測定でき、また防塵構造とする
ことができる。In the non-contact type surface electrometer of the present invention, since the optical sensor is used, the measurement can be performed without being affected by the mechanical positional relationship, and the dustproof structure can be obtained.
【0018】また、検知電極のみのセンサプローブと他
の部分とを分けることができるので、センサプローブの
小型化を図ることができ、センサプローブのクリーニン
グも容易である。Further, since the sensor probe having only the detection electrode and the other portion can be separated, the sensor probe can be downsized and the sensor probe can be easily cleaned.
【0019】[0019]
【実施例】図1はこの発明の一実施例による非接触型表
面電位計の概略構成を示す図である。図において、1は
表面電位を測定すべき被検出試料、11は印加電圧に応
じて光の屈曲率が変化するポッケルス(Pockels) 結晶を
用いたセンサ素子で、両側に電極12a,12bが平行
に設けられている。1 is a diagram showing a schematic configuration of a non-contact type surface electrometer according to an embodiment of the present invention. In the figure, 1 is a sample to be measured whose surface potential is to be measured, 11 is a sensor element using a Pockels crystal in which the bending ratio of light changes according to an applied voltage, and electrodes 12a and 12b are arranged in parallel on both sides. It is provided.
【0020】13は被検出試料1の表面に対向して配置
される検知電極で、センサ素子11の両側の電極12
a,12bの一方の電極12aとリード線14により電
気的に接続されており、センサ素子11の他方の電極1
2bは接地されている。15はセンサ素子11内のポッ
ケルス結晶を通過した光の強度から被検出試料1の表面
電位を検出する信号処理部である。Reference numeral 13 denotes a detection electrode which is arranged so as to face the surface of the sample to be detected 1 and which is located on both sides of the sensor element 11.
a and 12b, which are electrically connected to one electrode 12a of the sensor element 11 by the lead wire 14, and the other electrode 1 of the sensor element 11
2b is grounded. A signal processing unit 15 detects the surface potential of the sample 1 to be detected from the intensity of light that has passed through the Pockels crystal in the sensor element 11.
【0021】上記検知電極13は、例えば銅,真鍮,ア
ルミニウム等の金属板で形成され、その端部に上記リー
ド線14が接続されている。そして、この検知電極13
が被検出試料1と平行に距離r1をもって配置され、被
検出試料1の表面電位に応じた電圧がこの検知電極13
を介してセンサ素子11に印加され、その印加電圧に応
じてセンサ素子11内を通過した出射光の強度が変化す
る。したがって、この出射光の強度より被検出試料1の
表面電位を信号処理部15にて求めることができる。The detection electrode 13 is formed of, for example, a metal plate of copper, brass, aluminum or the like, and the lead wire 14 is connected to the end portion thereof. And this detection electrode 13
Are arranged in parallel with the sample to be detected 1 with a distance r1, and a voltage corresponding to the surface potential of the sample to be detected 1 is detected by the detection electrode 13.
The intensity of the emitted light that has been applied to the sensor element 11 through the sensor element 11 and has passed through the sensor element 11 changes according to the applied voltage. Therefore, the signal processing unit 15 can obtain the surface potential of the sample to be detected 1 from the intensity of the emitted light.
【0022】図2は上述の非接触型表面電位計の測定原
理を示す構成図である。被検出試料1は、電源2により
正または負(ここでは正とする)に帯電されている。ま
たセンサ素子11は、上述のように印加電圧(被検出試
料1の表面電位)に応じて光の屈曲率(透過率)が変化
する。このセンサ素子11は、等方性光弾性結晶特に単
軸晶系のLiTaO3 ,LiNbO3 等のポッケルス(P
ockels) 結晶と偏光子,波長板,検光子で構成されてお
り、電圧が印加されると、その印加電圧に応じて光の屈
曲率が線形的に変化し、これを通過した出射光の強度が
印加電圧に依存する性質を有している。FIG. 2 is a block diagram showing the measuring principle of the above-mentioned non-contact type surface electrometer. The sample 1 to be detected is charged positively or negatively (here, positive) by the power supply 2. Further, in the sensor element 11, the bending ratio (transmittance) of light changes according to the applied voltage (surface potential of the sample 1 to be detected) as described above. This sensor element 11 is composed of isotropic photoelastic crystal, especially uniaxial crystal system LiTaO 3 , LiNbO 3 or other Pockels (P
ockels) It consists of a crystal, a polarizer, a wave plate, and an analyzer. When a voltage is applied, the bending ratio of the light changes linearly according to the applied voltage, and the intensity of the emitted light that passes through it. Has the property of depending on the applied voltage.
【0023】また、図2中、16はセンサ素子11の内
部を通過した光を受光するフォトダイオード(PD)を
有した受光部、17は受光部16の出力を増幅するアン
プで、増幅された信号は信号処理回路(演算部を含む)
18に入力され、この信号処理回路18にてセンサ素子
11からの光の強度から被検出試料1の表面電位が検出
される。Further, in FIG. 2, 16 is a light receiving portion having a photodiode (PD) for receiving the light passing through the inside of the sensor element 11, and 17 is an amplifier for amplifying the output of the light receiving portion 16. Signals are signal processing circuits (including arithmetic unit)
The signal is input to 18, and the signal processing circuit 18 detects the surface potential of the sample 1 to be detected from the intensity of light from the sensor element 11.
【0024】図3は図2の表面電位計による測定動作を
示す図である。センサ素子11と被検出試料1との位置
関係は図3の(a)に示すようになっており、センサ素
子11を電界中に置き、その端面より偏光子を通して光
を入射させ、出射光の強度を測定する。FIG. 3 is a diagram showing a measuring operation by the surface electrometer of FIG. The positional relationship between the sensor element 11 and the sample to be detected 1 is as shown in FIG. 3 (a). The sensor element 11 is placed in an electric field, light is made incident through the polarizer from its end face, and the emitted light Measure the strength.
【0025】この時、入射光はまず偏光子を通して直線
偏光に変換され、センサ素子11内の長さLの結晶の内
部を通過して楕円偏光に変換される。図3の(b)はそ
の様子を示したものであり、X−Z面に例えば45°の
波長入の直線偏波光を入射させると、この直線偏波光が
X方向とY方向の屈曲率nX ,ny の違いにより上記結
晶内部を通過する際、楕円偏光に変換される。At this time, the incident light is first converted into linearly polarized light through the polarizer, passes through the inside of the crystal having the length L in the sensor element 11, and is converted into elliptically polarized light. FIG. 3B shows such a state. When linearly polarized light having a wavelength of 45 ° is incident on the XZ plane, the linearly polarized light is bent in the X-direction and the Y-direction at a bending ratio n. When passing through the inside of the crystal due to the difference between X and ny , it is converted into elliptically polarized light.
【0026】ここで、図3の(a)のようにセンサ素子
11を直接電界中に置いた場合、被検出試料1の表面が
帯電された時に、静電容量によりセンサ素子11の両端
に電位差が生じる。この時の等価回路を図4の(a)に
示す。そして、被検出試料1とセンサ素子11との間の
空気層のコンデンサ容量をC1、センサ素子11のコン
デンサ容量をC2とすれば、これらの直列つなぎと見な
すことができ、図4の(b)に示す各々の電位差V1と
V2の関係は、被検出試料1とセンサ素子11の反対側
の電極面との間の距離をr、結晶の厚さをdとすると、Here, when the sensor element 11 is directly placed in an electric field as shown in FIG. 3A, when the surface of the sample 1 to be detected is charged, a potential difference is generated across the sensor element 11 due to electrostatic capacitance. Occurs. The equivalent circuit at this time is shown in FIG. If the capacitor capacity of the air layer between the sample to be detected 1 and the sensor element 11 is C1 and the capacitor capacity of the sensor element 11 is C2, these can be regarded as a series connection, and FIG. The relationship between the respective potential differences V1 and V2 shown in FIG. 3 is that when the distance between the sample to be detected 1 and the electrode surface on the opposite side of the sensor element 11 is r and the thickness of the crystal is d,
【0027】[0027]
【数3】 [Equation 3]
【0028】にて表わすことができる。Can be represented by
【0029】すなわち、上記被検出試料1と電極12b
との間の距離rを一定として、被検出試料1の表面電位
が変化すると、電極12a,12b間の電位も変化し、
この電位の大きさに応じて光が光路長Lのセンサ素子1
1の内部を通過した時の出射光の強度が変化する。した
がって、このセンサ素子11の出射光の強度を検出し、
その検出電圧を求めれば、上記r,Lの値がわかってい
るので、被検出試料1の表面電位を知ることができる。That is, the sample to be detected 1 and the electrode 12b
When the surface potential of the sample 1 to be detected changes while the distance r between the electrodes is constant, the potential between the electrodes 12a and 12b also changes,
According to the magnitude of this potential, the sensor element 1 whose light has an optical path length L
The intensity of the emitted light when passing through the inside of 1 changes. Therefore, by detecting the intensity of the light emitted from the sensor element 11,
If the detected voltage is obtained, the values of r and L are known, so that the surface potential of the sample 1 to be detected can be known.
【0030】以上、光学式の表面電位計の測定原理につ
いて説明したが、本実施例では図1に示すように、新た
に検知電極13を設けており、且つ図3の(a)の場合
と電位差が同じ効果を持つようにしている。The measurement principle of the optical surface electrometer has been described above. However, in this embodiment, as shown in FIG. 1, a detection electrode 13 is newly provided, and in addition to the case of FIG. The potential difference has the same effect.
【0031】すなわち、上記検知電極13を被検出試料
1に対向して配置した時、被検出試料1の表面電位によ
ってセンサ素子11の両端に電位差が生じる。この電位
差は、検知電極13の表面積に依存し、被検出試料1か
ら出る電気力線の受ける量によって決まる。That is, when the detection electrode 13 is arranged so as to face the sample 1 to be detected, a potential difference is generated across the sensor element 11 due to the surface potential of the sample 1 to be detected. This potential difference depends on the surface area of the detection electrode 13 and is determined by the amount of electric force lines emitted from the sample 1 to be detected.
【0032】そして、検知電極13の接続されたセンサ
素子11の電極12aの表面積S1と検知電極13の面
積S2との間には相関関係があり、面積S1より面積S
2の方が大きく、且つ比例関係を有している。There is a correlation between the surface area S1 of the electrode 12a of the sensor element 11 connected to the detection electrode 13 and the area S2 of the detection electrode 13, and the area S1 is larger than the area S1.
2 is larger and has a proportional relationship.
【0033】例えば、LiTaO3 の結晶で厚さt=
0.5mmのセンサ素子11の電極12aの面積S1=1
12mm2 、電極間距離r1=0.5mm、印加電圧V=3
00Vの条件下にて、検知電極13の面積S2とセンサ
素子11の印加電圧V2との関係は表1のようになる。For example, a crystal of LiTaO 3 has a thickness t =
Area S1 = 1 of the electrode 12a of the sensor element 11 of 0.5 mm
12 mm 2 , inter-electrode distance r1 = 0.5 mm, applied voltage V = 3
Table 1 shows the relationship between the area S2 of the detection electrode 13 and the applied voltage V2 of the sensor element 11 under the condition of 00V.
【0034】[0034]
【表1】 [Table 1]
【0035】このような構成とすることにより、図5に
示すように、検知電極13のみのセンサプローブ19
と、光学系(センサ素子11)及び信号処理部15から
なる本体20とに分離し、それらをリード線14によっ
て結線した光学式の表面電位計を実現することができ
る。With this structure, as shown in FIG. 5, the sensor probe 19 having only the detection electrode 13 is provided.
It is possible to realize an optical surface electrometer which is separated into a main body 20 including an optical system (sensor element 11) and a signal processing unit 15 and connected by a lead wire 14.
【0036】このため、従来のように機械的な位置のず
れによる影響はなく、簡単に正確な表面電位の測定がで
き、また防塵構造が可能で、トナー等によるリークの発
生を防止することができる。Therefore, there is no influence of mechanical displacement as in the conventional case, the surface potential can be easily and accurately measured, a dustproof structure is possible, and leakage due to toner or the like can be prevented. it can.
【0037】また、上記のように検知電極13のみのセ
ンサプローブ19と他の光学系及び信号処理系を含む本
体20とに分離できるので、被検出試料1の表面近くに
センサプローブ19を近づけることが可能であり、セン
サプローブ19の小型化を図ることができるとともに、
センサプローブ19のクリーニングが容易である。Since the sensor probe 19 having only the detection electrode 13 and the main body 20 including other optical system and signal processing system can be separated as described above, the sensor probe 19 should be brought close to the surface of the sample 1 to be detected. It is possible to reduce the size of the sensor probe 19, and
Cleaning of the sensor probe 19 is easy.
【0038】図6は上記センサプローブ19の一例を示
す外観図である。このセンサプローブ19は、樹脂枠2
1に検知電極13が嵌め込まれた構成となっており、検
知電極13の一端とリード線14とが接続されている。
また、樹脂枠21には、取り付け時の固定用のビス止め
穴22が設けられている。FIG. 6 is an external view showing an example of the sensor probe 19. This sensor probe 19 has a resin frame 2
1 has a configuration in which the detection electrode 13 is fitted, and one end of the detection electrode 13 and the lead wire 14 are connected.
Further, the resin frame 21 is provided with a screw fixing hole 22 for fixing at the time of mounting.
【0039】[0039]
【発明の効果】以上のように、この発明によれば、光学
式のセンサ素子を使用し、また検知電極を設けて、これ
とセンサ素子を接続した構成としたため、機械的な位置
のずれによる影響はなく、簡単に正確な表面電位の測定
ができ、また防塵構造とすることができるという効果が
ある。As described above, according to the present invention, the optical sensor element is used, and the detection electrode is provided and the sensor element is connected to the detection electrode. There is no effect, and the surface potential can be measured easily and accurately, and a dustproof structure can be obtained.
【0040】また、検知電極のみのセンサプローブと他
の光学系及び信号処理系を含む本体とに分離できるの
で、センサプローブの小型化を図ることができるととも
に、センサプローブのクリーニングが容易になるという
効果がある。Further, since the sensor probe having only the detection electrode and the main body including the other optical system and the signal processing system can be separated, the sensor probe can be downsized and the sensor probe can be easily cleaned. effective.
【図1】 この発明の一実施例を示す概略構成図FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.
【図2】 図1の電位計の測定原理を示す構成図FIG. 2 is a block diagram showing the measurement principle of the electrometer of FIG.
【図3】 図2の電位計の測定動作を示す説明図FIG. 3 is an explanatory diagram showing a measurement operation of the electrometer of FIG.
【図4】 図3のセンサ素子の等価回路図FIG. 4 is an equivalent circuit diagram of the sensor element of FIG.
【図5】 図1の電位計の全体構成を示すブロック図5 is a block diagram showing the overall configuration of the electrometer of FIG.
【図6】 図5のセンサプローブの一例を示す外観図6 is an external view showing an example of the sensor probe of FIG.
【図7】 従来例を示す構成図FIG. 7 is a configuration diagram showing a conventional example.
【図8】 図7のセンサ部の構造を示す斜視図8 is a perspective view showing the structure of the sensor unit of FIG.
1 被検出試料 11 センサ素子 12a,12b 電極 13 検知電極 14 リード線 15 信号処理部 19 センサプローブ 20 本体 DESCRIPTION OF SYMBOLS 1 Detected sample 11 Sensor element 12a, 12b Electrode 13 Detection electrode 14 Lead wire 15 Signal processing part 19 Sensor probe 20 Main body
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成6年4月7日[Submission date] April 7, 1994
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】請求項2[Name of item to be corrected] Claim 2
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0016[Correction target item name] 0016
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0016】また、上記センサ素子の電極の面積より検
知電極の面積の方が大きく、且つ比例関係を有するよう
に構成したものである。Furthermore, it is large area of area than the detection electrode of the electrodes of the sensor element, which is constituted and to have a proportional relationship.
【手続補正3】[Procedure 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0019[Correction target item name] 0019
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0019】[0019]
【実施例】図1はこの発明の一実施例による非接触型表
面電位計の概略構成を示す図である。図において、1は
表面電位を測定すべき被検出試料、11は印加電圧に応
じて光の屈折率が変化するポッケルス(Pockel
s)結晶を用いたセンサ素子で、両側に電極12a,1
2bが平行に設けられている。1 is a diagram showing a schematic configuration of a non-contact type surface electrometer according to an embodiment of the present invention. In the figure, 1 is the detected sample to be measured the surface potential, 11 refraction index of the light changes depending on the voltage applied Pockels (Pockel
s) A sensor element using a crystal, electrodes 12a, 1 on both sides
2b are provided in parallel.
【手続補正4】[Procedure amendment 4]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0022[Name of item to be corrected] 0022
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0022】図2は上述の非接触型表面電位計の測定原
理を示す構成図である。被検出試料1は、電源2により
正または負(ここでは正とする)に帯電されている。ま
たセンサ素子11は、上述のように印加電圧(被検出試
料1の表面電位)に応じて光の屈折率(透過率)が変化
する。このセンサ素子11は、三方晶系の単軸結晶Li
TaO3,LiNbO3等のポッケルス(Pockel
s)結晶と偏光子,波長板,検光子で構成されており、
電圧が印加されると、その印加電圧に応じて光の屈折率
が線形的に変化し、これを通過した出射光の強度が印加
電圧に依存する性質を有している。FIG. 2 is a block diagram showing the measuring principle of the above-mentioned non-contact type surface electrometer. The sample 1 to be detected is charged positively or negatively (here, positive) by the power supply 2. The sensor element 11, refraction of the light (transmittance) changes depending on the voltage applied as described above (the surface potential of the detection sample 1). The sensor element 11 is a trigonal uniaxial crystal Li.
Pockels such as TaO 3 and LiNbO 3
s) It consists of a crystal, a polarizer, a wave plate, and an analyzer.
When a voltage is applied, it has a property of light refraction index of the in accordance with the applied voltage linearly changes, the intensity of outgoing light that has passed through it depends on the applied voltage.
【手続補正5】[Procedure Amendment 5]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0025[Name of item to be corrected] 0025
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0025】この時、入射光はまず偏光子を通して直線
偏光に変換され、センサ素子11内の長さLの結晶の内
部を通過して楕円偏光に変換される。図3の(b)はそ
の様子を示したものであり、X−Z面に例えば45°の
波長入の直線偏波光を入射させると、この直線偏波光が
X方向とZ方向の屈折率nX ,n Z の違いにより上記結
晶内部を通過する際、楕円偏光に変換される。At this time, the incident light is first converted into linearly polarized light through the polarizer, passes through the inside of the crystal having the length L in the sensor element 11, and is converted into elliptically polarized light. Figure. 3 (b) is limited to showing its state, when the incident linearly polarized light of wavelength incident in the X-Z plane for example 45 °, refraction index the linearly polarized light in the X direction and the Z-direction When passing through the inside of the crystal due to the difference between n X and n Z , it is converted into elliptically polarized light.
【手続補正6】[Procedure correction 6]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0026[Correction target item name] 0026
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0026】ここで、図3の(a)のようにセンサ素子
11を直接電界中に置いた場合、被検出試料1の表面が
帯電された時に、静電誘導によりセンサ素子11の両端
に電位差が生じる。この時の等価回路を図4の(a)に
示す。そして、被検出試料1とセンサ素子11との間の
空気層のコンデンサ容量をC1、センサ素子11のコン
デンサ容量をC2とすれば、これらの直列つなぎと見な
すことができ、図4の(b)に示す各々の電位差V1と
V2の関係は、被検出試料1とセンサ素子11の反対側
の電極面との間の距離をr、結晶の厚さをd、ポッケル
ス素子の比誘電率をεとすると、Here, when the sensor element 11 is directly placed in an electric field as shown in FIG. 3A, when the surface of the sample 1 to be detected is charged, electrostatic induction induces a potential difference across the sensor element 11. Occurs. The equivalent circuit at this time is shown in FIG. If the capacitor capacity of the air layer between the sample to be detected 1 and the sensor element 11 is C1 and the capacitor capacity of the sensor element 11 is C2, these can be regarded as a series connection, and FIG. The relationship between the potential differences V1 and V2 shown in Fig. 4 is that the distance between the sample to be detected 1 and the electrode surface on the opposite side of the sensor element 11 is r, the thickness of the crystal is d 2 , and the Pockel
If the relative permittivity of the element is ε ,
【手続補正7】[Procedure Amendment 7]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0027[Name of item to be corrected] 0027
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0027】[0027]
【数3】 [Equation 3]
【手続補正8】[Procedure Amendment 8]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図3[Name of item to be corrected] Figure 3
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図3】 [Figure 3]
Claims (2)
ポッケルス結晶を用いたセンサ素子と、被検出試料の表
面に対向して配置され、前記センサ素子の両側の電極の
一方と電気的に接続された検知電極と、前記センサ素子
のポッケルス結晶を通過した光の強度から前記被検出試
料の表面電位を検出する信号処理部とからなる非接触型
表面電位計。1. A sensor element using a Pockels crystal in which the refractive index of light changes according to an applied voltage, and one of electrodes on both sides of the sensor element, which is arranged so as to face the surface of a sample to be detected, is electrically connected to the sensor element. A non-contact type surface electrometer comprising a detection electrode connected to the sensor element and a signal processing unit for detecting the surface potential of the sample to be detected from the intensity of light passing through the Pockels crystal of the sensor element.
の面積より検知電極の面積の方が大きく、且つ比例関係
を有していることを特徴とする請求項1記載の非接触型
表面電位計。2. The non-contact type surface potential according to claim 1, wherein the area of the sensing electrode is larger than the area of the electrode connected to the sensing electrode of the sensor element and has a proportional relationship. Total.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17304093A JPH0727808A (en) | 1993-07-13 | 1993-07-13 | Noncontact type surface potentiometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17304093A JPH0727808A (en) | 1993-07-13 | 1993-07-13 | Noncontact type surface potentiometer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0727808A true JPH0727808A (en) | 1995-01-31 |
Family
ID=15953095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17304093A Pending JPH0727808A (en) | 1993-07-13 | 1993-07-13 | Noncontact type surface potentiometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0727808A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0194270A (en) * | 1987-10-06 | 1989-04-12 | Murata Mfg Co Ltd | Surface potential detector |
-
1993
- 1993-07-13 JP JP17304093A patent/JPH0727808A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0194270A (en) * | 1987-10-06 | 1989-04-12 | Murata Mfg Co Ltd | Surface potential detector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS642898B2 (en) | ||
US4524322A (en) | Fiber optic system for measuring electric fields | |
JPH0194270A (en) | Surface potential detector | |
US4147981A (en) | Electrostatic voltmeter probe positioned on the outside of a housing and vibrated by a piezoelectric transducer within the housing | |
WO1993012435A1 (en) | Optical voltage and electric field sensor based on the pockels effect | |
JPH0727808A (en) | Noncontact type surface potentiometer | |
JPH067142B2 (en) | Electrostatic voltage sensor | |
US5635831A (en) | Optical voltage and electric field sensor based on the pockels effect | |
JP3489701B2 (en) | Electric signal measuring device | |
JPH06207958A (en) | Noncontact surface electrometer | |
JPH0763803A (en) | Non-contact type surface potentiometer | |
JPH08304498A (en) | Non-contact surface voltage meter and method for measuring surface voltage | |
JPH06258368A (en) | Surface potential measuring device | |
JPH09127168A (en) | Non-contact type surface electrometer and surface potential measuring method | |
JP3673597B2 (en) | Surface electrometer | |
JPS5824721B2 (en) | Itaatsutounokeisokuuchi | |
JPH07104019A (en) | Method and device for measuring surface potential | |
JPS6055274A (en) | Surface potential sensor | |
JPH09251036A (en) | Optical electric-field sensor and transformer for optical instrument using sensor thereof | |
JPH0560818A (en) | Optical electric field measuring instrument | |
JPS6055273A (en) | Surface potential sensor | |
SU1663405A1 (en) | Method of detection of part deformations | |
JPS59204772A (en) | Surface potential meter | |
JPS5915864A (en) | Apparatus for detecting surface potential | |
SU504318A1 (en) | Method for determining defects in the active element of a piezoceramic converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19960123 |