JP3673597B2 - Surface electrometer - Google Patents

Surface electrometer Download PDF

Info

Publication number
JP3673597B2
JP3673597B2 JP10938096A JP10938096A JP3673597B2 JP 3673597 B2 JP3673597 B2 JP 3673597B2 JP 10938096 A JP10938096 A JP 10938096A JP 10938096 A JP10938096 A JP 10938096A JP 3673597 B2 JP3673597 B2 JP 3673597B2
Authority
JP
Japan
Prior art keywords
measurement
tuning fork
measurement electrode
vibrator
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10938096A
Other languages
Japanese (ja)
Other versions
JPH09292426A (en
Inventor
茂雄 畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10938096A priority Critical patent/JP3673597B2/en
Publication of JPH09292426A publication Critical patent/JPH09292426A/en
Application granted granted Critical
Publication of JP3673597B2 publication Critical patent/JP3673597B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、物体の表面電位を非接触で測定する表面電位計に関し、例えば複写機等の電子写真装置において感光体の表面電位を検知するために使用される表面電位計に関するものである。
【0002】
【従来の技術】
電子写真装置の感光体などの表面電位を非接触で測定する表面電位計としては、いわゆるチョッパー方式の電位計と容量変動方式の電位計が主に知られている。
【0003】
チョッパー方式の電位計は、測定対象物と測定電極の間に導電性の振動物体を配置し、この振動物体による測定電極への電気力線の入射量を増減させて測定対象物の電界強度を測定するものであり、また容量変動方式の電位計は、測定電極自体を物理的に振動させ、測定対象物体とこの測定電極の間の電界分布を変化させて電界強度を測定するものであり、両方式とも信号受信処理に関しては同様の内容となっている。
【0004】
図2は従来のチョッパー方式の表面電位計の概略構成を示す図である。同図において、1は測定対象物8からの電気力線を受ける測定電極、2はその測定対象物8から測定電極1へ入射する電気力線をA方向に振動してチョッピングする音叉型振動子、3は測定電極1に誘起される微小交流信号をインピーダンス変換して増幅するための増幅素子、4は音叉型振動子2に振動を与える圧電素子である。
【0005】
また、5は回路基板、6は圧電素子4への駆動信号、測定電極1からの受信信号、及び電源を入出力するための接続コネクタ、7は測定対象物8から測定電極1へB方向に入射する電気力線、9は上記の回路基板5を収納するシールドケースである。
【0006】
図3は上記回路基板5上に構成されたインピーダンス変換回路の概略を示す図である。ここでは、入力側の抵抗11を例えば100MΩとして増幅素子3にFETを用いたソースフォロワ回路によりインピーダンス変換を行っている。また、出力側の抵抗12,13は、例えばそれぞれ100Ω、20KΩとしている。なお、これらの抵抗等の部品は回路基板5上に印刷されるかあるいディスクリートチップ部品で半田付けされた構成となっている。
【0007】
また図4は上記構成の電位計の外形を示す斜視図である。図示のように、回路基板5はシールドケース9に収容されており、またケース側面にはコネクタ6が配置され、前面には測定用の小窓(開口部)が設けられている。
【0008】
次に、上記構成の電位計の動作について説明する。まず、外部から供給される圧電素子駆動信号により圧電素子4及び音叉型振動子2が共鳴状態となり、機械振動が生じる。その結果測定対象物8からシールドケース9の測定窓を通過して測定電極1に入射する電気力線の量がその音叉型振動子2の振動に合わせて増減する。これにより、測定電極1と図3に示す入力側の抵抗10に微弱な交流誘導電流が発生し、これが電圧信号として増幅素子3であるFETのゲートに印加される。
【0009】
このとき、FET回路は上述のようにソースフォロワ回路となっているので、増幅度1のインピーダンス変換が行われ、FETのソースより電圧信号が出力される。そして、この信号がコネクタ6を介して外部の信号処理回路(図示せず)に転送され、その後の処理が行われ、測定対象物8の表面電位が検出される。
【0010】
ここで、上記増幅素子3を有したインピーダンス変換回路の出力信号の大きさは測定対象物8の表面電位の大きさに比例するので、いかにS/N比の高いこの初段の増幅信号を後処理回路に転送できるかが、表面電位計としての基本性能を決定することとなる。
【0011】
【発明が解決しようとする課題】
ところで近年、装置の小型化への要求が高まる中、例えば複写機に搭載される表面電位計においても、設置スペースの関係上一層の小型化、薄型化が求められている。従来ではそのような小型化、薄型化への要求に対し、測定電極の小型化(高さ方向)、振動子の小型化、また振動子の振動方向を測定対象物に対して横方向にするといった手段で対応していた。さらに、測定電極の小型化に伴うS/N比の劣化を補うため、測定電極を測定対象物にできるだけ近付けるように配置していた。
【0012】
しかしながら、上記のような従来の表面電位計にあっては、図5に示すように、測定電極の小型化に伴ってその検出表面積が小さくなり、測定対象物からシールドケースの測定窓を通って入射する総電気力線に対して直接音叉型振動子に飛込んでしまう電気力線の比率が大きくなっていた。
【0013】
さらに、音叉型振動子と測定電極の測定面との距離が縮まり、両者間の結合容量が大きくなることによって、一旦測定電極に誘起された微小交流信号が音叉から逃げてしまっていた。なおここで、音叉型振動子も測定電極の位置方向と同様に測定対象物方向に位置させるという案もあるが、それによってシールドケースから音叉型振動子の先端が飛出してしまい、表面電位計の小型化要求には対応できない。
【0014】
また、音叉型振動子の先端部にごみ等の絶縁物(不純物)が付着していると、その影響で音叉型振動子の先端部の電位が本来はGNDでなければならないところ、ある電位に帯電してしまい、これが測定電極にノイズ分として混入していた。
【0015】
このため、結果的にS/Nの信号分(S)が小さくなってしまい、もしくはノイズ分(N)が大きくなってしまい、表面電位計としての基本的性能が悪化する傾向にあるという問題点があった。
【0016】
本発明は、上記のような問題点に着目してなされたもので、測定信号のS/N比が高く、基本的性能が向上した非接触式の表面電位計を提供することを目的としている。
【0017】
【課題を解決するための手段】
上記目的を達成するため、本発明は、表面電位計を次の(1)、(2)のとおりに構成する。
(1)測定対象物からの電気力線を受ける測定電極と、前記測定電極をフォーク部分の内側でかつ該フォーク部分の先端部分と近接した位置に有し、該フォーク部分の先端部分から該測定電極に入る電気力線の量を時間的に変化させる音叉型振動子とを備えた表面電位計であって、
前記音叉型振動子は、前記フォーク部分の大部分が互いに平行に対向しており、該フォーク部分の先端部分がハの字型の形状に形成されている表面電位計。
(2)前記(1)に記載の表面電位計において、
前記測定電極に誘起された微小信号を電圧信号にインピーダンス変換する変換素子を有する表面電位計。
【0019】
【発明の実施の形態】
図1は本発明に係る非接触式の表面電位計の概略構成図であり、図2と同一符号は同一構成部分を示している。
【0020】
図1において、1は表面電位を測定すべき感光体などの測定対象物8の電界を受け、その電気力線7が入射する測定電極、10はその測定対象物8から測定電極1へ入射する電気力線7をチョッピングして測定電極1に入る電気力線7の量を時間的に変化させるチョッパー部の音叉型振動子で、固定部10aと反対側のフォーク部10bの両先端部分10cが互いに近付くように且つ上記測定電極1から離れるように折り曲げられてハの字型の形状になるように形成されている。
【0021】
また、3は上記測定電極1に誘起される微小交流信号を電圧信号にインピーダンス変換して増幅するための増幅素子(変換素子)、4は音叉型振動子2に振動を与える圧電素子、5は上記インピーダンス変換回路などが構成された回路基板、6は圧電素子4への駆動信号、測定電極1からの受信信号、及び電源を入出力するための接続コネクタ、9は上記の回路基板5を収容したシールドケースである。
【0022】
なお、上記増幅素子3を有したインピーダンス変換回路は、図3と同様であるので説明は省略する。また、全体をシールドケース9で覆った外観形状は、音叉型振動子10のハの字型の先端部分10cを除いて図4と同様であり、前面には測定窓が設けられている。
【0023】
上記構成の表面電位計において、音叉型振動子10のハの字型の形状の両先端部分10cは、音叉の中心線に沿って測定対象物8よりB方向に入射する電気力線7の量を時間的に変化させるように、測定対象物8から見て水平方向(A方向)に物理的に振動する。そして、この音叉型振動子10の先端部分10cと近接した位置に相対向して、且つ上記電気力線7の入射方向(B方向)とは反対側の音叉型振動子10の固定部10a側に測定電極1が設けられており、上記フォーク部10bの両先端部分10cの間を通る電気力線7を吸収して該測定電極1に誘起される微小交流信号から測定対象物8の表面電位が測定される。
【0024】
ここで本実施例では、音叉型振動子10の先端形状をハの字型に形成しているので、音叉型振動子10の振動振幅量はほぼ従来と同様のままで、測定対象物8から音叉型振動子10に逃げ込む(飛び込む)電気力線7の量が激減する。また、音叉型振動子10の先端と測定電極1間の距離を離して結合容量を小さくしているので、測定電極1に誘起された微小交流信号が音叉型振動子10から逃げる量が激減する。
【0025】
さらに、音叉型振動子10の先端部が絶縁物等の付着によりある電位に帯電した場合でも、音叉型振動子10と測定電極1の距離が離れているので、測定電極1に混入するノイズ分も減少する。
【0026】
よって、S/N比における信号分(S)を大きく、ノイズ分(N)を小さくすることができ、表面電位計としての基本的性能を大幅に向上することが可能となる。
【0027】
従来では、装置の小型化に対応すべく測定電極を小型化しているので、測定電極の検出表面積が小さくなり、測定対象物から表面電位計の測定窓から入射される総電気力線に対して、音叉型振動子に直接飛び込んで当る電気力線の比率が大きくなっていた。
【0028】
さらに、音叉型振動子と測定電極の測定面の距離が縮まり、両者間の結合容量が大きくなることによって、一旦測定電極に誘起された微小交流信号が音叉型振動子に逃げてしまっていた。
【0029】
また、音叉型振動子の先端にごみ等の絶縁物(不純物)が付着していると、その影響で音叉型振動子先端部の電位が本来はGNDでなければならないところ、ある電位に帯電してしまい、測定電極にノイズ分として混入していた。
【0030】
よって、結果的にS/N比の信号分(S)が小さくなってしまい、もしくはノイズ分(N)が大きくなってしまい、表面電気計の基本的性能は悪化する傾向にあった。
【0031】
しかし本実施例では、上述のように音叉型振動子10の先端部をハの字型の形状にしているので、音叉型振動子10の開口部を広くすることができ、測定対象物8から音叉型振動子10に逃げ込む電気力線7の量を激減させることができ、また音叉型振動子10と測定電極面の距離を離しているので、両者間の結合容量を小さくすることができ、測定電極1に誘起された微小交流信号の音叉型振動子10に逃げ込む量を激減させることができる。
【0032】
よって測定信号のS/N比を高めることができ、表面電位計としての基本的性能を向上させることができる。
【0033】
【発明の効果】
以上説明したように、本発明によれば、音叉型振動子の両先端部分を互いに近付くように且つ測定電極から離れるように形成したため、測定対象物から音叉型振動子に飛び込んで当たる電気力線の量が減少するとともに、音叉型振動子と測定電極の間の結合容量が小さくなり、また測定電極に混入するノイズ分も減少し、測定信号のS/N比が高くなり、基本的性が向上するという効果がある。
【図面の簡単な説明】
【図1】 本発明に係る表面電位計の概略構成図
【図2】 従来例を示す概略構成図
【図3】 インピーダンス変換回路の一例を示す回路図
【図4】 表面電位計の外観形状を示す斜視図
【図5】 測定部を拡大して示す構成図
【符号の説明】
1 測定電極
3 増幅素子(変換素子)
4 圧電素子
5 回路基板
7 電気力線
8 測定対象物
10 音叉型振動子
10a 固定部
10b フォーク部
10c 先端部分
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface potential meter that measures the surface potential of an object in a non-contact manner, and relates to a surface potential meter used to detect the surface potential of a photoreceptor in an electrophotographic apparatus such as a copying machine.
[0002]
[Prior art]
As surface electrometers for measuring the surface potential of a photoconductor of an electrophotographic apparatus in a non-contact manner, so-called chopper type electrometers and capacitance variation type electrometers are mainly known.
[0003]
A chopper-type electrometer measures the electric field strength of a measurement object by placing a conductive vibrating object between the measurement object and the measurement electrode, and increasing or decreasing the amount of electric field lines incident on the measurement electrode by the vibration object. The capacitance variation type electrometer measures the electric field strength by physically vibrating the measurement electrode itself and changing the electric field distribution between the measurement object and the measurement electrode. Both types have the same contents regarding signal reception processing.
[0004]
FIG. 2 is a diagram showing a schematic configuration of a conventional chopper type surface potential meter. In the figure, reference numeral 1 is a measurement electrode that receives electric lines of force from the measurement object 8, and 2 is a tuning fork vibrator that vibrates and chops electric lines of force incident on the measurement electrode 1 from the measurement object 8 in the A direction. Reference numeral 3 denotes an amplifying element for amplifying the minute alternating current signal induced in the measurement electrode 1 by impedance conversion, and 4 denotes a piezoelectric element for applying vibration to the tuning fork vibrator 2.
[0005]
In addition, 5 is a circuit board, 6 is a drive signal to the piezoelectric element 4, a received signal from the measurement electrode 1, and a connector for inputting / outputting a power source, and 7 is a measurement object 8 to the measurement electrode 1 in the B direction. An incident electric field line 9 is a shield case for housing the circuit board 5.
[0006]
FIG. 3 is a diagram showing an outline of an impedance conversion circuit configured on the circuit board 5. Here, impedance conversion is performed by a source follower circuit in which the input side resistor 11 is set to 100 MΩ, for example, and an FET is used as the amplifying element 3. Further, the resistors 12 and 13 on the output side are, for example, 100Ω and 20KΩ, respectively. These components such as resistors are printed on the circuit board 5 or soldered with discrete chip components.
[0007]
FIG. 4 is a perspective view showing the outer shape of the electrometer having the above configuration. As shown in the figure, the circuit board 5 is housed in a shield case 9, a connector 6 is disposed on the side of the case, and a small window (opening) for measurement is provided on the front.
[0008]
Next, the operation of the electrometer having the above configuration will be described. First, the piezoelectric element 4 and the tuning fork type vibrator 2 are brought into a resonance state by a piezoelectric element driving signal supplied from the outside, and mechanical vibration is generated. As a result, the amount of electric lines of force that pass from the measurement object 8 through the measurement window of the shield case 9 and enter the measurement electrode 1 increases or decreases in accordance with the vibration of the tuning fork vibrator 2. Thereby, a weak AC induced current is generated in the measurement electrode 1 and the input-side resistor 10 shown in FIG. 3, and this is applied as a voltage signal to the gate of the FET which is the amplifying element 3.
[0009]
At this time, since the FET circuit is a source follower circuit as described above, impedance conversion with an amplification factor of 1 is performed and a voltage signal is output from the source of the FET. Then, this signal is transferred to an external signal processing circuit (not shown) via the connector 6, and the subsequent processing is performed to detect the surface potential of the measurement object 8.
[0010]
Here, since the magnitude of the output signal of the impedance conversion circuit having the amplifying element 3 is proportional to the magnitude of the surface potential of the measuring object 8, the first stage amplified signal having a high S / N ratio is post-processed. Whether it can be transferred to the circuit determines the basic performance of the surface electrometer.
[0011]
[Problems to be solved by the invention]
Incidentally, in recent years, as the demand for downsizing of the apparatus has increased, for example, surface electrometers mounted on copying machines are required to be further downsized and thinned due to the installation space. Conventionally, in response to such demands for miniaturization and thinning, the measurement electrode is downsized (height direction), the vibrator is downsized, and the vibration direction of the vibrator is transverse to the measurement object. It was handled by such means. Furthermore, in order to compensate for the deterioration of the S / N ratio accompanying the downsizing of the measurement electrode, the measurement electrode is arranged as close as possible to the measurement object.
[0012]
However, in the conventional surface electrometer as described above, as shown in FIG. 5, the detection surface area decreases as the measurement electrode becomes smaller, and the measurement object passes through the measurement window of the shield case. The ratio of the electric lines of force that jump directly into the tuning fork type vibrator with respect to the incident total electric lines of force was large.
[0013]
Further, the distance between the tuning fork vibrator and the measurement surface of the measurement electrode is shortened, and the coupling capacitance between the two is increased, so that a minute AC signal once induced on the measurement electrode escapes from the tuning fork. Here, there is also a proposal that the tuning fork vibrator is positioned in the direction of the measurement object as well as the direction of the measurement electrode. However, the tip of the tuning fork vibrator jumps out of the shield case, and the surface potentiometer Cannot meet the demands for downsizing.
[0014]
In addition, if an insulator (impurity) such as dust adheres to the tip of the tuning fork vibrator, the potential at the tip of the tuning fork vibrator must be GND due to the influence. It was charged and this was mixed in the measurement electrode as noise.
[0015]
As a result, the S / N signal component (S) becomes small or the noise component (N) becomes large, and the basic performance as a surface electrometer tends to deteriorate. was there.
[0016]
The present invention has been made paying attention to the above problems, and has as its object to provide a non-contact type surface electrometer with a high S / N ratio of measurement signals and improved basic performance. .
[0017]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention , a surface electrometer is configured as described in (1) and (2) below.
(1) A measurement electrode that receives a line of electric force from a measurement object, and the measurement electrode is located inside the fork portion and in a position close to the tip portion of the fork portion, and the measurement is performed from the tip portion of the fork portion. A surface potentiometer including a tuning fork vibrator that temporally changes the amount of electric lines of force entering an electrode,
The tuning fork vibrator is a surface electrometer in which most of the fork portions face each other in parallel, and a tip portion of the fork portion is formed in a C-shape.
(2) In the surface electrometer according to (1),
A surface electrometer having a conversion element for impedance-converting a minute signal induced in the measurement electrode into a voltage signal.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic configuration diagram of a non-contact type surface electrometer according to the present invention, and the same reference numerals as those in FIG. 2 denote the same components.
[0020]
In FIG. 1, reference numeral 1 denotes an electric field of a measurement object 8 such as a photoconductor whose surface potential is to be measured. It is a tuning fork type vibrator of a chopper part that changes the amount of the electric force line 7 that chops the electric force line 7 and enters the measuring electrode 1 with time, and both end portions 10c of the fork part 10b opposite to the fixed part 10a It is formed so as to be bent in such a way as to be close to each other and away from the measurement electrode 1 so as to have a square shape.
[0021]
Reference numeral 3 denotes an amplifying element (converting element) for impedance-converting a minute alternating current signal induced in the measurement electrode 1 into a voltage signal, and 4 is a piezoelectric element that applies vibration to the tuning-fork vibrator 2. A circuit board on which the impedance conversion circuit or the like is configured, 6 is a connection signal for inputting / outputting a drive signal to the piezoelectric element 4, a reception signal from the measurement electrode 1, and a power supply, and 9 is a circuit board that houses the circuit board 5. Shield case.
[0022]
The impedance conversion circuit having the amplifying element 3 is the same as that shown in FIG. The appearance of the entire case covered with the shield case 9 is the same as that of FIG. 4 except for the C-shaped tip portion 10c of the tuning fork vibrator 10, and a measurement window is provided on the front surface.
[0023]
In the surface potentiometer having the above-described configuration, both the tip portions 10c of the C-shaped shape of the tuning fork vibrator 10 are the amount of electric force lines 7 incident in the B direction from the measuring object 8 along the center line of the tuning fork. Is physically vibrated in the horizontal direction (A direction) as viewed from the measuring object 8 so as to change with time. The tuning fork vibrator 10 has a fixed portion 10a side opposite to the tip portion 10c of the tuning fork vibrator 10 and opposite to the incident direction (B direction) of the electric force lines 7. Is provided with a measuring electrode 1, which absorbs electric lines of force 7 passing between both tip portions 10 c of the fork portion 10 b and generates a surface potential of the measuring object 8 from a minute AC signal induced in the measuring electrode 1. Is measured.
[0024]
Here, in the present embodiment, the tip shape of the tuning fork vibrator 10 is formed in a C shape, so that the vibration amplitude amount of the tuning fork vibrator 10 remains almost the same as in the past, and from the measurement object 8. The amount of electric force lines 7 that escape (jump into) the tuning fork vibrator 10 is drastically reduced. Further, since the coupling capacitance is reduced by increasing the distance between the tip of the tuning fork vibrator 10 and the measurement electrode 1, the amount of the minute AC signal induced in the measurement electrode 1 escaping from the tuning fork vibrator 10 is drastically reduced. .
[0025]
Furthermore, even when the tip of the tuning fork vibrator 10 is charged to a certain potential due to adhesion of an insulator or the like, the distance between the tuning fork vibrator 10 and the measurement electrode 1 is far away, so that the noise component mixed in the measurement electrode 1 can be reduced. Also decreases.
[0026]
Therefore, the signal component (S) in the S / N ratio can be increased and the noise component (N) can be decreased, and the basic performance as a surface electrometer can be greatly improved.
[0027]
Conventionally, the measurement electrode is miniaturized in order to cope with the miniaturization of the apparatus, so that the detection surface area of the measurement electrode is reduced, and the total electric force lines incident from the measurement window of the surface potential meter from the measurement object are reduced. The ratio of the lines of electric force that jump directly into the tuning fork type vibrator was large.
[0028]
Furthermore, the distance between the tuning fork vibrator and the measurement electrode measurement surface is shortened, and the coupling capacitance between the two is increased, so that a minute AC signal once induced in the measurement electrode escapes to the tuning fork vibrator.
[0029]
In addition, if an insulator (impurity) such as dust adheres to the tip of the tuning fork vibrator, the electric potential at the tip of the tuning fork vibrator must be GND, which is charged to a certain potential. As a result, noise was mixed in the measurement electrode.
[0030]
Therefore, as a result, the signal component (S) of the S / N ratio becomes small or the noise component (N) becomes large, and the basic performance of the surface electrometer tends to deteriorate.
[0031]
However, in this embodiment, since the tip of the tuning fork vibrator 10 is formed in a C shape as described above, the opening of the tuning fork vibrator 10 can be widened, The amount of the electric force lines 7 that escape to the tuning fork vibrator 10 can be drastically reduced, and since the distance between the tuning fork vibrator 10 and the measurement electrode surface is increased, the coupling capacity between the two can be reduced, It is possible to drastically reduce the amount of the minute AC signal induced in the measurement electrode 1 that escapes to the tuning fork vibrator 10.
[0032]
Therefore, the S / N ratio of the measurement signal can be increased, and the basic performance as a surface electrometer can be improved.
[0033]
【The invention's effect】
As described above, according to the present invention, since both tip portions of the tuning fork vibrator are formed so as to be close to each other and away from the measurement electrode, the electric lines of force that jump from the measurement object to the tuning fork vibrator As the amount of noise decreases, the coupling capacitance between the tuning fork vibrator and the measurement electrode decreases, the amount of noise mixed into the measurement electrode also decreases, the S / N ratio of the measurement signal increases, and the basicity is reduced. There is an effect of improving.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a surface electrometer according to the present invention. FIG. 2 is a schematic configuration diagram showing a conventional example. FIG. 3 is a circuit diagram showing an example of an impedance conversion circuit. Fig. 5 is a perspective view showing an enlarged view of the measurement unit.
1 Measuring electrode 3 Amplifying element (conversion element)
4 Piezoelectric element 5 Circuit board 7 Line of electric force 8 Measurement object 10 Tuning fork type vibrator 10a Fixing part 10b Fork part 10c Tip part

Claims (2)

測定対象物からの電気力線を受ける測定電極と、前記測定電極をフォーク部分の内側でかつ該フォーク部分の先端部分と近接した位置に有し、該フォーク部分の先端部分から該測定電極に入る電気力線の量を時間的に変化させる音叉型振動子を備えた表面電位計であって、
前記音叉型振動子は、前記フォーク部分の大部分が互いに平行に対向しており、該フォーク部分の先端部分がハの字型の形状に形成されていることを特徴とする表面電位計。
A measurement electrode that receives electric lines of force from a measurement object, and the measurement electrode is located inside the fork portion and in a position close to the tip portion of the fork portion, and enters the measurement electrode from the tip portion of the fork portion. a surface potential meter and a tuning fork resonator which temporally changing the amount of electrical power lines,
In the tuning fork vibrator, most of the fork portions face each other in parallel, and a tip portion of the fork portion is formed in a C-shaped shape .
請求項1に記載の表面電位計において、
前記測定電極に誘起された微小信号を電圧信号にインピーダンス変換する変換素子を有することを特徴とする表面電位計。
The surface potential meter according to claim 1,
Front surface electrometer characterized and Turkey that having a conversion element for impedance conversion of the induced small signal to the measuring electrode to a voltage signal.
JP10938096A 1996-04-30 1996-04-30 Surface electrometer Expired - Fee Related JP3673597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10938096A JP3673597B2 (en) 1996-04-30 1996-04-30 Surface electrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10938096A JP3673597B2 (en) 1996-04-30 1996-04-30 Surface electrometer

Publications (2)

Publication Number Publication Date
JPH09292426A JPH09292426A (en) 1997-11-11
JP3673597B2 true JP3673597B2 (en) 2005-07-20

Family

ID=14508784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10938096A Expired - Fee Related JP3673597B2 (en) 1996-04-30 1996-04-30 Surface electrometer

Country Status (1)

Country Link
JP (1) JP3673597B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177800B1 (en) * 1998-11-10 2001-01-23 Xerox Corporation Method and apparatus for using shuttered windows in a micro-electro-mechanical system
JP2003090852A (en) * 2001-09-19 2003-03-28 Tdk Corp Probe and surface potential detection device

Also Published As

Publication number Publication date
JPH09292426A (en) 1997-11-11

Similar Documents

Publication Publication Date Title
US4720682A (en) Surface electric potential sensor
US5212451A (en) Single balanced beam electrostatic voltmeter modulator
US7019540B2 (en) Electrostatic capacitance detection circuit and microphone device
US7005865B2 (en) Circuit and method for impedance detection
EP1424563B1 (en) Capacitance measuring circuit, capacitance measuring instrument, and microphone device
EP1426771B1 (en) Impedance measuring circuit and capacitance measuring circuit
JP3673597B2 (en) Surface electrometer
KR100341966B1 (en) Impedance-to-voltage converter and converting method
JPH0145873B2 (en)
JPS6290564A (en) Apparatus for detecting surface potential
JPS5915864A (en) Apparatus for detecting surface potential
JP2003329717A (en) Surface electrometer
JPH0523151U (en) Electrostatic voltmeter
JP2518506B2 (en) Potential sensor
JP2730361B2 (en) Surface potential detector
JPS6365906B2 (en)
JPH0636001B2 (en) Surface potential sensor
JPS6055274A (en) Surface potential sensor
JP2004212212A (en) Impedance detecting apparatus and impedance detecting method
JPS59204772A (en) Surface potential meter
JPH06109786A (en) Surface electrometer
JPS6055273A (en) Surface potential sensor
JPH0449587Y2 (en)
JPH08160080A (en) Non-contact type signal measuring probe
JPH07325118A (en) Zero reference calibration system for surface electrometer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees