JPH06258368A - Surface potential measuring device - Google Patents

Surface potential measuring device

Info

Publication number
JPH06258368A
JPH06258368A JP4955693A JP4955693A JPH06258368A JP H06258368 A JPH06258368 A JP H06258368A JP 4955693 A JP4955693 A JP 4955693A JP 4955693 A JP4955693 A JP 4955693A JP H06258368 A JPH06258368 A JP H06258368A
Authority
JP
Japan
Prior art keywords
surface potential
measured
light
measuring
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4955693A
Other languages
Japanese (ja)
Inventor
Koji Furukawa
川 弘 司 古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP4955693A priority Critical patent/JPH06258368A/en
Publication of JPH06258368A publication Critical patent/JPH06258368A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To obtain high sensitive and precision measurement by making an optical element, containing electro-optical effect, enduce electric charge corresponding to a detection part of an object to be measured, making light beam incident for measurement of out-going light quantity, performing Fourier transformation with the surface potential distribution of the object, while correction being made with broadening function of measuring area, and performing invert Fourier transformation. CONSTITUTION:Light beam L from a light source 26 is diffracted at an input diffraction grating 20, and it comes into an optical wave guide 14. In measuring the surface potential of an object S to be measured, the charged voltage of the object S is, through a probe 24, applied to a grid-like electrode 18, and the wave guide 14 is applied with the voltage corresponding to that, and its refractivity is changed by electro-optical effect for generation of a diffraction grating. The diffraction light and straight advance light of beam L, caused by that, is diffracted at an output diffraction grating 22, for out-going, and measured by a control part 38, to be outputted as a surface potential distribution. A calculation part 33 performs Fourier transformation with the result, then makes correction using a correction function generated from a spreading function of a measuring system, and then with the obtained correction data, invert Fourier transformation is made, so that the corrected result of surface potential distribution is calculated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子写真静電潜像が形
成された電子写真感光体等、帯電体の表面電位の計測装
置に関する。詳しくは、高分解能および高感度な表面電
位計測を高精度に行うことができる表面電位計測装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring the surface potential of a charged body such as an electrophotographic photosensitive member on which an electrophotographic electrostatic latent image is formed. Specifically, the present invention relates to a surface potential measuring device capable of highly accurately and highly sensitively measuring a surface potential.

【0002】[0002]

【従来の技術】製版装置、複写装置、レーザープロッタ
等の各種の画像記録用途において、電子写真方式の画像
記録が行われている。
2. Description of the Related Art Electrophotographic image recording is used in various image recording applications such as a plate making apparatus, a copying machine, and a laser plotter.

【0003】周知のように、電子写真方式による画像記
録は光半導体層と導電性支持体層とを有する電子写真感
光体を用い、この電子写真感光体の光半導体層をコロナ
帯電等により一様帯電した後、光ビーム走査や、原稿か
らの反射光等によって画像露光を行って光半導体上の露
光部分の帯電電荷を逃がして電子写真潜像(以下、静電
潜像とする)を形成し、この静電潜像と逆極性に帯電し
たトナーによって現像を行い、前記静電潜像を可視像化
する。
As is well known, for image recording by electrophotography, an electrophotographic photosensitive member having an optical semiconductor layer and a conductive support layer is used, and the optical semiconductor layer of the electrophotographic photosensitive member is uniformly made by corona charging or the like. After charging, image exposure is performed by light beam scanning, reflected light from the original, etc. to release the charged electric charge of the exposed portion on the optical semiconductor to form an electrophotographic latent image (hereinafter, electrostatic latent image). The electrostatic latent image is visualized by developing with toner charged in the opposite polarity to the electrostatic latent image.

【0004】このような電子写真方式の画像記録におい
て、その形成画像の基礎となるのは前述の静電潜像であ
り、この静電潜像の状態を知ることは電子写真感光体
や、印写プロセス(帯電、露光、現像)の個々の評価や
解析、さらには記録システム全体の評価や解析を行う上
で重要なことである。また、近年は電子写真方式の画像
記録でも高画質化が進んでおり、高精細(高分解能)で
の静電潜像の測定を行う必要が高まっている。
In such an electrophotographic image recording, the basis of the formed image is the above-mentioned electrostatic latent image. To know the state of this electrostatic latent image, it is necessary to know the electrophotographic photosensitive member or the printing image. This is important for evaluating and analyzing individual printing processes (charging, exposure, and development), and also for evaluating and analyzing the entire recording system. Further, in recent years, image quality has been improved even in electrophotographic image recording, and there is an increasing need to measure an electrostatic latent image with high definition (high resolution).

【0005】このような静電潜像等の表面電位分布の計
測は、従来、誘導電流による表面電位計によって行われ
ている。ところが、このような従来の計測方法による表
面電位分布計測では分解能が低く、1〜2mm四方の範囲
の全面の電位しか計測することができない。これに対
し、光ビーム走査による画像記録では、一走査線(1ラ
スター)は通常10〜100μm 程度であるため、この
ような微小部分における表面電位分布の計測が必要とな
るが、前述の装置ではこのような計測を行うことは出来
ず、十分な計測結果を得ることができない。
The surface potential distribution of such an electrostatic latent image is conventionally measured by a surface potential meter using an induced current. However, in the surface potential distribution measurement by such a conventional measuring method, the resolution is low, and it is possible to measure only the potential of the entire surface within the range of 1 to 2 mm square. On the other hand, in image recording by light beam scanning, one scanning line (1 raster) is usually about 10 to 100 μm, so it is necessary to measure the surface potential distribution in such a minute portion. Such a measurement cannot be performed and a sufficient measurement result cannot be obtained.

【0006】また、高精細な表面電位分布の測定方法と
して電子ビームを利用する方法が知られているが、この
方法は空気中で測定を行うことができない上に、静電潜
像の破壊検査となってしまうという欠点があり、さらに
は電子写真感光体の帯電から測定までの時間が長く、酸
化亜鉛や有機感光物を適用する、暗減衰の比較的大きな
電子写真感光体では測定が困難であるという問題点もあ
る。
Further, a method of utilizing an electron beam is known as a method of measuring the surface potential distribution with high precision, but this method cannot measure in the air, and also destructive inspection of the electrostatic latent image. In addition, the time from the charging of the electrophotographic photosensitive member to the measurement is long, and it is difficult to measure with an electrophotographic photosensitive member that applies zinc oxide or an organic photosensitive material and has a relatively large dark decay. There is also the problem that there are.

【0007】このような問題点に対し、本出願人は、高
分解能かつ高精度な表面電位の計測が可能な装置とし
て、電気光学効果を有する光学素子を利用した表面電位
計測装置を発明し、先にこれを提案している。例えば、
特願平2−224860号においては、非線形光学結晶
を対向電極で挟持してなる計測ヘッドと、計測に供され
る対向電極と被測定物との間に微細孔を有する静電遮蔽
板を配し、他方の対向電極にはバイアス電源を設けた構
成を有し、非線形光学結晶の、好ましくは対向電極の対
向方向に対して直交する方向に、直線偏光の光ビームを
入射させ、非線形光学結晶を通過した光ビームの偏光の
変化より、被測定物の表面電位を計測する表面電位計測
装置を提案している。
In order to solve such a problem, the applicant of the present invention invented a surface potential measuring device using an optical element having an electro-optical effect as a device capable of measuring the surface potential with high resolution and accuracy. I have proposed this earlier. For example,
In Japanese Patent Application No. 2-224860, a measuring head in which a nonlinear optical crystal is sandwiched between counter electrodes, and an electrostatic shield plate having fine holes between a counter electrode used for measurement and an object to be measured are arranged. Then, the other counter electrode has a configuration in which a bias power supply is provided, and a linearly polarized light beam is made incident on the nonlinear optical crystal, preferably in a direction orthogonal to the facing direction of the counter electrode, We have proposed a surface potential measuring device that measures the surface potential of the object to be measured from the change in the polarization of the light beam that has passed through.

【0008】また、特願平4−281224号において
は、電気光学効果を有する光導波路と、この光導波路上
に形成された格子状電極と、この格子状電極に対応する
部分を通って導波する光ビームを光導波路内に入射させ
る光源と、一端側が格子状電極に接続され、他端側が被
測定物に近接して配される導電性プローブと、格子状電
極に対応する部分を通過した後の、回折した光ビームま
たは回折しなかった光ビームの光量を検出する光検出器
とからなる表面電位計を提供している。
Further, in Japanese Patent Application No. 4-281224, an optical waveguide having an electro-optical effect, a grid electrode formed on the optical waveguide, and a waveguide corresponding to the grid electrode are guided. A light source for injecting a light beam into the optical waveguide, a conductive probe whose one end side is connected to the grid electrode and the other end side is arranged in proximity to the DUT, and the portion corresponding to the grid electrode. And a photodetector for detecting the light quantity of a diffracted light beam or a non-diffracted light beam.

【0009】これらの表面電位計測装置は、対向電極に
近接あるいは密着され微細な孔を有し被測定物に近接す
る遮蔽板、対向電極に接続されるプローブ等を被測定物
に近接して、この測定領域の表面電位に対応した電位を
電気光学効果を有する結晶に誘起することにより、この
結晶を通過する光ビームの偏光や位相、屈折率を変化さ
せ、これを検出することにより被測定物の表面電位を計
測する。
In these surface potential measuring devices, a shield plate which is close to or close to the counter electrode and has fine holes and which is close to the object to be measured, and a probe which is connected to the counter electrode are close to the object to be measured. By inducing a potential corresponding to the surface potential of this measurement region in a crystal having an electro-optical effect, the polarization, phase, and refractive index of the light beam passing through this crystal are changed, and the object to be measured is detected by detecting this. Measure the surface potential of.

【0010】このような電気光学効果を利用した表面電
位計測装置においては、プローブの先端サイズや遮蔽板
の微細孔サイズによって表面電位計測の分解能を調整す
ることができ、数μm四方程度の高分解能での表面電位
の計測を行うことが可能である。
In the surface potential measuring device utilizing such an electro-optical effect, the resolution of the surface potential measurement can be adjusted by the tip size of the probe and the size of the fine holes of the shield plate, and the high resolution of about several μm square. It is possible to measure the surface potential at.

【0011】[0011]

【発明が解決しようとする課題】ところが、プローブの
先端サイズや遮蔽板の微細孔サイズ等を小さくすること
により分解能は高くすることはできるが、それに応じて
表面電位計測の感度も低下してしまうため、両者を両立
して高分解能かつ高感度な表面電位計測を実現するため
には、プローブの先端サイズ等の微細化にも限界があ
る。
However, the resolution can be increased by reducing the tip size of the probe and the size of the fine holes of the shield plate, but the sensitivity of the surface potential measurement is also reduced accordingly. Therefore, in order to realize both high resolution and high sensitivity surface potential measurement while achieving both, there is a limit to miniaturization of the probe tip size and the like.

【0012】また、このような表面電位計測装置におい
ては、高分解能での表面電位の計測を行うためには、被
測定物とプローブ等とを可能な範囲で近接して配置する
のが好ましい。しかしながら、両者をあまり近づける
と、非接触であっても被測定物の表面電位がリークして
しまうため、被測定物を非破壊で、例えば電子写真感光
体等に形成された静電潜像の計測等を非破壊で行うため
には、被測定物とプローブ等との間には若干の距離が必
要である。特に、電子写真感光体に形成された静電潜像
では、表面電位は数百V程度になるため、被測定物とプ
ローブ等との距離を所定以上に保たないと、静電潜像が
破壊されるばかりか、電気光学効果を有する結晶を用い
た計測ヘッドまで破壊されてしまう。
Further, in such a surface potential measuring device, in order to measure the surface potential with high resolution, it is preferable to dispose the object to be measured and the probe or the like as close as possible. However, if the two are brought too close to each other, the surface potential of the measured object leaks even if they are not in contact with each other. Therefore, the measured object is nondestructive, for example, an electrostatic latent image formed on an electrophotographic photoreceptor or the like. In order to perform non-destructive measurement and the like, some distance is required between the object to be measured and the probe or the like. In particular, since the surface potential of an electrostatic latent image formed on an electrophotographic photosensitive member is about several hundreds V, unless the distance between the object to be measured and the probe is kept above a predetermined value, the electrostatic latent image will be formed. Not only is it destroyed, but the measuring head using a crystal having an electro-optical effect is also destroyed.

【0013】そのため、被測定物とプローブ等とは所定
の間隙を有した状態で計測が行われるが、両者に距離を
有するために、被測定物からプローブに検出される電場
に広がりを生じて表面電位分布の計測値がボケてしま
い、表面電位分布の計測結果に誤差を生じ、分解能を低
下させる結果となっている。
Therefore, the measurement is performed with a predetermined gap between the object to be measured and the probe, but since there is a distance between them, the electric field detected by the probe from the object to be measured spreads. The measurement value of the surface potential distribution is blurred, and an error occurs in the measurement result of the surface potential distribution, resulting in a decrease in resolution.

【0014】本発明の目的は、前記従来技術の問題点を
解決することにあり、従来の誘導電流等を利用した表面
電位計測装置に比べ、極めて高分解能、高感度および高
精度な計測が実現できる、電気光学効果を有する光学素
子を利用した表面電位計測装置において、分解能、感度
および精度共により良好な表面電位の計測を実現できる
表面電位計測装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art, and realizes extremely high resolution, high sensitivity and high accuracy of measurement as compared with the conventional surface potential measuring device utilizing an induced current or the like. An object of the present invention is to provide a surface potential measuring device using an optical element having an electro-optical effect, which can realize excellent surface potential measurement because of its resolution, sensitivity and accuracy.

【0015】[0015]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、電気光学効果を有する光学素子と、前記
光学素子に電気的に接触して、かつ電気的に被測定物に
近接する電極と、前記光学素子に入射する光ビームを射
出する光源と、前記光学素子より射出した光ビームの光
量を測定する計測手段と、前記計測手段で測定された光
量より得られた前記被測定物の表面電位分布をフーリエ
変換し、フーリエ変換した結果を計測系の有する計測領
域の広がり関数によって補正した後、これを逆フーリエ
変換して表面電位分布の計測結果とする算出部とを有す
ることを特徴とする表面電位計測装置を提供する。
In order to achieve the above-mentioned object, the present invention provides an optical element having an electro-optical effect, an element electrically contacting the optical element, and an element electrically close to an object to be measured. Electrode, a light source for emitting a light beam incident on the optical element, a measuring unit for measuring the light amount of the light beam emitted from the optical element, and the measured object obtained from the light amount measured by the measuring unit. Fourier transform of the surface potential distribution of the object, after correcting the result of the Fourier transform by the spread function of the measurement region of the measurement system, and then inverse Fourier transform this to obtain a measurement result of the surface potential distribution. A surface potential measuring device is provided.

【0016】[0016]

【発明の作用】本発明は、非線形光学結晶等の電気光学
効果を有する光学素子を利用し、この光学素子に帯電体
の被検出部分に応じた電荷を誘起して、この光学素子を
通過した光ビームの偏光、位相、屈折率等の変化を計測
することにより、帯電体の表面電位を計測する表面電位
計測装置であって、得られた表面電位分布の計測結果を
フーリエ変換し、フーリエ変換した結果を計測系による
計測領域の広がり関数によって補正した後、これを逆フ
ーリエ変換して表面電位分布の計測結果とする。
INDUSTRIAL APPLICABILITY The present invention utilizes an optical element having an electro-optical effect such as a non-linear optical crystal, induces a charge corresponding to the detected portion of the charged body in the optical element, and passes the optical element. A surface potential measuring device for measuring the surface potential of a charged body by measuring changes in the polarization, phase, refractive index, etc. of a light beam. The obtained surface potential distribution measurement result is Fourier transformed and Fourier transformed. After correcting the result by the spread function of the measurement region by the measurement system, the result is inverse Fourier transformed to obtain the measurement result of the surface potential distribution.

【0017】電気光学効果を有する光学素子を利用した
表面電位計測装置は、電極に接続され被測定物である帯
電体に対面するプローブ等のサイズや被測定物との距離
等を調節することにより、従来の誘導電流による表面電
位計に比べて極めて高分解能、高感度および高精度での
表面電位の計測を実現できる。しかしながら、これらの
調整による高分解能化や高感度化等には限界があり、ま
た、帯電体とは非接触での計測であるために、プローブ
等が検出する電場に広がりが生じて、表面電位分布の計
測結果にボケを生じ、分解能や感度低下の原因となって
いるのは前述のとおりである。
A surface potential measuring device using an optical element having an electro-optical effect is obtained by adjusting the size of a probe or the like facing an electrified body which is an object to be measured and a distance to the object to be measured which is connected to an electrode. , It is possible to realize surface potential measurement with extremely high resolution, high sensitivity, and high precision as compared with the conventional surface potential meter using induced current. However, there is a limit to the improvement of resolution and sensitivity by these adjustments, and since the measurement is performed without contact with the charged body, the electric field detected by the probe or the like expands and the surface potential is increased. As described above, the measurement result of the distribution is blurred and causes the deterioration of the resolution and the sensitivity.

【0018】これに対して、本発明の表面電位計測装置
は、前記電場の広がり、すなわちプローブ等による計測
領域の広がりを関数化して、この関数およびフーリエ変
換を利用して計測結果の補正を行う。そのため、電場の
広がりによるボケのない、高分解能で高感度、かつ高精
度な表面電位分布の計測を行うことができ、電子写真感
光体に形成された静電潜像の計測等を高精度に行うこと
ができる。
On the other hand, in the surface potential measuring apparatus of the present invention, the spread of the electric field, that is, the spread of the measurement region by the probe or the like is made into a function, and the measurement result is corrected by using this function and Fourier transform. . Therefore, the surface potential distribution can be measured with high resolution, high sensitivity, and high accuracy without blurring due to the spread of the electric field, and the electrostatic latent image formed on the electrophotographic photosensitive member can be measured with high accuracy. It can be carried out.

【0019】[0019]

【実施例】以下、本発明の表面電位計測装置について、
添付の図面に示される好適実施例をもとに詳細に説明す
る。
EXAMPLES Hereinafter, the surface potential measuring device of the present invention will be described.
A detailed description is given based on the preferred embodiments shown in the accompanying drawings.

【0020】図1に、本発明の表面電位計測装置の一例
の側面図を、図2に同平面図をそれぞれ概念的に示す。
図1および図2に示される表面電位計測装置10(以
下、計測装置10とする)は、基本的に、測定光として
の光ビームLを射出する光源26と、電気光学効果を有
する光学素子を用いて形成された計測ヘッド30と、計
測ヘッド30を通過して屈折した光ビームL1 の光量を
計測する計測手段を構成する光電変換素子32および電
圧計34、および電圧計34の出力より表面電位を算出
する算出部36等を有する制御部38とより構成され
る。
FIG. 1 is a side view of an example of the surface potential measuring device of the present invention, and FIG. 2 is a conceptual plan view of the same.
The surface potential measuring device 10 (hereinafter referred to as the measuring device 10) shown in FIGS. 1 and 2 basically includes a light source 26 that emits a light beam L as a measurement light and an optical element having an electro-optical effect. The measurement head 30 formed by using the photoelectric conversion element 32, the voltmeter 34, and the output of the voltmeter 34, which constitute the measurement means for measuring the light amount of the light beam L 1 that has passed through the measurement head 30 and is refracted, It is composed of a control unit 38 having a calculation unit 36 for calculating the potential.

【0021】計測ヘッド30は、基本的に、図2に示さ
れる結晶方位で配置された、電気光学効果を有するLiNb
O3(ニオブ酸リチウム)基盤12上部に形成されたプロ
トン交換光導波路14(以下、光導波路14とする)
と、光導波路14上に形成されたSiO2膜からなるバッフ
ァ層16と、バッファ層16上に形成された格子状電極
18と、光導波路14上に光ビームLの進行方向で格子
状電極18を挟むように配備された光入力用線状回折格
子(以下、入力用LGCとする)20および光出力用線
状回折格子(以下、出力用LGCとする)22と、格子
状電極18に一端が接続され、他端側が電子写真感光体
等の帯電体である被測定物Sに近接して配置される導電
性プローブ24とより構成される。なお、本実施例にお
いては、格子状電極18の導電性プローブ24(以下、
プローブとする)に接続しない側の端部は接地されてい
るが、測定目的に応じてバイアス電位を印加してもよ
い。
The measuring head 30 is basically a LiNb having an electro-optical effect, which is arranged in the crystal orientation shown in FIG.
O 3 (lithium niobate) substrate 12 formed on a proton exchange optical waveguide 14 (hereinafter referred to as optical waveguide 14)
A buffer layer 16 made of a SiO 2 film formed on the optical waveguide 14, a grid electrode 18 formed on the buffer layer 16, and a grid electrode 18 on the optical waveguide 14 in the traveling direction of the light beam L. A linear diffraction grating for optical input (hereinafter, referred to as LGC for input) 20 and a linear diffraction grating for optical output (hereinafter, referred to as LGC for output) 22 that are arranged so as to sandwich the two electrodes, and one end of the grid electrode 18. Are connected to each other, and the other end of the conductive probe 24 is arranged close to the object S to be measured S which is a charged body such as an electrophotographic photoreceptor. In the present embodiment, the conductive probe 24 of the grid electrode 18 (hereinafter,
The end on the side not connected to the probe) is grounded, but a bias potential may be applied depending on the measurement purpose.

【0022】図示例の計測装置10において、光ビーム
Lを射出する He-Neレーザ等の光源26は、平行光であ
る光ビームLが基盤12の斜めにカットされた端面12
aを通過し、光導波路14を透過して入力用LGC20
に入射するように配置されている。従って、光源26よ
り射出された光ビームLは、入力用LGC20で回折し
て光導波路14内に入射し、この光導波路14を矢印A
方向に進行する。
In the measuring apparatus 10 of the illustrated example, a light source 26 such as a He-Ne laser that emits a light beam L has an end face 12 in which a light beam L that is parallel light is obliquely cut on a substrate 12.
a and then the optical waveguide 14 and the input LGC 20
It is arranged to be incident on. Therefore, the light beam L emitted from the light source 26 is diffracted by the input LGC 20 and enters the optical waveguide 14, and the optical waveguide 14 is indicated by the arrow A.
Proceed in the direction.

【0023】この進行に伴い、光ビームL(導波光)は
光導波路14内の格子状電極18に対応する部分を通過
して導波するが、格子状電極18に電圧が印加されてい
ない状態では、光ビームLは光導波路14内を屈折する
ことなく直進して、図2のレーザ光L2 に示されるよう
に計測ヘッド30より射出する。一方、被測定物Sの表
面電位の計測時にプローブ24の一端が被測定物Sに近
接されている際には、被測定物Sの帯電電位に応じた電
圧が格子状電極18に印加され、光導波路14にはこれ
に応じた電圧が印加される。光導波路14に電圧が印加
されると、電気光学効果を有する光導波路14は印加さ
れた電圧に応じて屈折率が変化して格子状電極18に応
じた回折格子が形成され、光ビームLはこの回折格子に
よって回折される。
With this progress, the light beam L (guided light) is guided through the portion corresponding to the grid electrode 18 in the optical waveguide 14, but no voltage is applied to the grid electrode 18. Then, the light beam L travels straight in the optical waveguide 14 without being refracted and is emitted from the measuring head 30 as shown by the laser light L 2 in FIG. On the other hand, when one end of the probe 24 is close to the measured object S when measuring the surface potential of the measured object S, a voltage according to the charging potential of the measured object S is applied to the grid electrode 18, A voltage corresponding to this is applied to the optical waveguide 14. When a voltage is applied to the optical waveguide 14, the optical waveguide 14 having an electro-optical effect changes its refractive index according to the applied voltage, and a diffraction grating corresponding to the grid electrode 18 is formed. It is diffracted by this diffraction grating.

【0024】このようにして、光導波路14内で回折さ
れた(屈折した)光ビームL1 、および回折されず直進
した光ビームL2 (0次光)は、出力用LCG22によ
って下方に回折され、基板12の斜めにカットされた端
面12bを経て計測ヘッド30より射出される。
In this manner, the light beam L 1 diffracted (refracted) in the optical waveguide 14 and the light beam L 2 (0th order light) that has not been diffracted and travels straight are diffracted downward by the output LCG 22. , Is emitted from the measurement head 30 via the end surface 12b of the substrate 12 that is obliquely cut.

【0025】計測ヘッド30より射出した光ビームL1
は制御部38によって計測され、被測定物Sの表面電位
計測結果として出力される。制御部38は、基本的に、
フォトダイオード等の光電変換素子32、電圧計34、
算出部36、電源40、および抵抗42より構成され
る。
Light beam L 1 emitted from the measuring head 30
Is measured by the control unit 38 and output as the surface potential measurement result of the object S to be measured. The control unit 38 basically
A photoelectric conversion element 32 such as a photodiode, a voltmeter 34,
It is composed of a calculation unit 36, a power supply 40, and a resistor 42.

【0026】制御部38において、計測ヘッド30より
射出した光ビームL1 は光電変換素子32に受光され
る。光電変換素子32の一端側は電源40に接続され、
他端側は光電変換素子32と共に計測手段を構成する電
圧計34、および抵抗42に接続されている。この電圧
計34は、光電変換素子32と抵抗42との間の電圧を
計測する。この電圧は、回折された光ビームL1 の光量
に対応し、この光量は格子状電極18に印加された電圧
すなわち被測定物Sの表面電位に対応する。従って、こ
の電圧計34による計測結果より、被測定物Sの表面電
位を計測することができる。
In the control unit 38, the light beam L 1 emitted from the measuring head 30 is received by the photoelectric conversion element 32. One end of the photoelectric conversion element 32 is connected to the power source 40,
The other end side is connected to a voltmeter 34, which constitutes a measuring means together with the photoelectric conversion element 32, and a resistor 42. The voltmeter 34 measures the voltage between the photoelectric conversion element 32 and the resistor 42. This voltage corresponds to the amount of light of the diffracted light beam L 1 , and this amount of light corresponds to the voltage applied to the grid electrode 18, that is, the surface potential of the measured object S. Therefore, the surface potential of the measured object S can be measured from the measurement result of the voltmeter 34.

【0027】電圧計34による計測結果は、算出部36
に転送される。算出部36は、電圧計34からの測定値
より被測定物Sの表面電位分布を算出し、計算した表面
電位分布を、補正関数とフーリエ変換とを利用して補正
し、被測定物Sの表面電位分布として出力する。なお、
本発明においては、電圧計34において被測定物Sの表
面電位分布を算出し、これを算出部36に転送するもの
であってもよい。
The measurement result obtained by the voltmeter 34 is calculated by the calculation unit 36.
Transferred to. The calculation unit 36 calculates the surface potential distribution of the measured object S from the measured value from the voltmeter 34, corrects the calculated surface potential distribution using a correction function and Fourier transform, and calculates the measured surface potential of the measured object S. Output as surface potential distribution. In addition,
In the present invention, the voltmeter 34 may calculate the surface potential distribution of the measured object S and transfer it to the calculation unit 36.

【0028】本発明の計測装置10のように、被測定物
Sとプローブ24とを非接触で表面電位の計測を行う計
測系においては、プローブ24と被測定物Sとの間隙に
おいて電場の広がり、つまりプローブ24による計測領
域に広がりを生じてしまい、完全な線を計測しても、線
巾に若干の広がりが生じてしまう。本発明においては、
計測装置10の計測系における線像の広がり関数(図
3)より補正関数を作成し、計測結果の補正を行う。図
3に示されるような計測装置10の計測系の広がり関数
は、印刷物等におけるMTF(Modulation Transfer Fa
nction)と同様に得ることができる。
In the measuring system for measuring the surface potential of the object S to be measured and the probe 24 in a non-contact manner like the measuring apparatus 10 of the present invention, the electric field spreads in the gap between the probe 24 and the object S to be measured. That is, the measurement area of the probe 24 is expanded, and even if a complete line is measured, the line width is slightly expanded. In the present invention,
A correction function is created from the spread function of the line image (FIG. 3) in the measurement system of the measurement device 10, and the measurement result is corrected. The spread function of the measuring system of the measuring device 10 as shown in FIG.
nction) can be obtained.

【0029】補正関数は、この広がり関数をフーリエ変
換して図4に示されるような関数を得、その逆数を取る
ことによって作成される。図3の広がり関数をフーリエ
変換すると、図4に示されるようなこの計測系の各(空
間)周波数における応答性を示す、つまりどの周波数ま
で分離することが可能かを示す関数となるが、このよう
な非接触での計測系では、前記電場の広がりによって、
ある周波数以上の領域は全く計測できない(伝達されな
い)。つまり、ある線巾より狭い領域(周波数の高い領
域)は計測できない。
The correction function is created by Fourier-transforming this spread function to obtain a function as shown in FIG. 4 and taking the reciprocal thereof. When the spread function of FIG. 3 is Fourier-transformed, it becomes a function showing the responsivity at each (spatial) frequency of this measurement system as shown in FIG. 4, that is, to which frequency can be separated. In such a non-contact measurement system, due to the spread of the electric field,
Regions above a certain frequency cannot be measured (transmitted) at all. In other words, the area narrower than a certain line width (area with high frequency) cannot be measured.

【0030】ここで、前述のように図4の関数はこの計
測系における周波数に対する応答性を示し、すなわち、
全周波数領域に均一な信号を入力しても、各周波数にお
いては、このような出力信号になることが示される。従
って、この関数の逆数は元の入力信号となるはずである
ので、この関数の逆数をとることにより、この計測系に
おける計測領域の広がりに対応する補正関数を作成する
ことができる。
Here, as described above, the function of FIG. 4 shows the response to the frequency in this measurement system, that is,
It is shown that even if a uniform signal is input in the entire frequency range, such an output signal is obtained at each frequency. Therefore, since the reciprocal of this function should be the original input signal, by taking the reciprocal of this function, it is possible to create a correction function corresponding to the spread of the measurement region in this measurement system.

【0031】本発明の計測装置10において、このよう
な補正関数を用いた表面電位の計測結果の補正は、下記
のようにして行われる。前述のように、算出部36にお
いては、電圧計34による電圧の計測結果より、補正前
の表面電位分布の計測結果を得る。ここで、被測定物S
が図5に示されるような表面電位分布を有するもので、
計測された補正前の計測結果が図6のようなものであっ
た場合に、算出部36においては、この結果をフーリエ
変換して、図7に示されるような、横軸が周波数となっ
た関数を得る。この図7に示される関数に、前述の補正
関数を掛け合わせて、図8に示されるような補正データ
1を得る。
In the measuring device 10 of the present invention, the correction of the surface potential measurement result using such a correction function is performed as follows. As described above, in the calculation unit 36, the measurement result of the surface potential distribution before correction is obtained from the measurement result of the voltage by the voltmeter 34. Here, the measured object S
Has a surface potential distribution as shown in FIG.
When the measured measurement result before correction is as shown in FIG. 6, the calculation unit 36 Fourier transforms this result, and the horizontal axis as shown in FIG. 7 becomes the frequency. Get the function. The function shown in FIG. 7 is multiplied by the above-mentioned correction function to obtain the correction data 1 as shown in FIG.

【0032】ここで、図4に示される関数は、ある周波
数以上は0となっているので、これより得られた補正関
数を掛け合せた図8に示される補正データ1は、高周波
数領域のノイズが大幅に増大されてしまっている。この
ノイズの補正を行うために、補正データ1に図11に示
されるような(ローパス)フィルタを掛け合わせ、図9
に示される補正データ2を得る。
Since the function shown in FIG. 4 is 0 above a certain frequency, the correction data 1 shown in FIG. 8 obtained by multiplying the correction function obtained from this is noise in the high frequency region. Has been greatly increased. In order to correct this noise, the correction data 1 is multiplied by a (low-pass) filter as shown in FIG.
The correction data 2 shown in is obtained.

【0033】本発明の計測装置10において、補正デー
タ1を修正するためのフィルタの形状は基本的には矩形
であるが、これではノイズ等を好適にカットすることが
できない場合が多いので、 cut&error 等によって良好
な形状を検討して、良好なフィルタを作製すればよい。
また、副数種のフィルタを用意して、目的等に応じて適
宜選択して使用するものであってよい。
In the measuring apparatus 10 of the present invention, the shape of the filter for correcting the correction data 1 is basically rectangular, but in many cases noise and the like cannot be suitably cut, so cut & error. A good filter may be manufactured by examining a good shape by the above method.
In addition, a few kinds of filters may be prepared and appropriately selected and used according to the purpose.

【0034】このようにして得られた補正データ2を逆
フーリエ変換することにより、図10に示されるよう
な、補正された表面電位分布の計測結果(最終出力)を
得る。
By inverse Fourier transforming the correction data 2 thus obtained, the corrected measurement result (final output) of the surface potential distribution as shown in FIG. 10 is obtained.

【0035】本発明の計測装置10において、補正関数
は表面電位の計測毎に毎回作成する必要はなく、被測定
物Sとプローブ24との距離の変更、プローブ24の変
更等、計測系に変更があった場合に新規な補正関数を作
成すればよい。また、補正関数の作成や計測結果の補正
を行う際のフーリエ変換におけるフーリエ級数は、フー
リエ変換を行うコンピュータの能力等に応じて適当なも
のを適宜決定すればよい。
In the measuring apparatus 10 of the present invention, the correction function does not have to be created every time the surface potential is measured, but the distance between the object S to be measured S and the probe 24 is changed, and the probe 24 is changed. If there is, a new correction function may be created. Further, the Fourier series in the Fourier transform when creating the correction function or correcting the measurement result may be appropriately determined according to the capability of the computer that performs the Fourier transform.

【0036】以上説明した計測装置10は、電気光学効
果を有する光導波路に光ビームLを入射して、その屈折
(回折)を調べることによって被測定物Sの表面電位を
計測するものであったが、本発明の表面電位計測装置は
上記態様に限定はされず、電気光学効果を有する光学素
子に被測定物Sの被検出部分の表面電位に応じた電荷を
印加し、これに光ビームを入射して、屈折率、位相、偏
光等の変化を調べることにより表面電位を計測する各種
の装置を代表として、各種の表面電位計測装置に利用可
能である。
The measuring device 10 described above measures the surface potential of the object to be measured S by injecting the light beam L into the optical waveguide having the electro-optical effect and examining its refraction (diffraction). However, the surface potential measuring device of the present invention is not limited to the above-mentioned aspect, and charges corresponding to the surface potential of the detected portion of the object S to be measured are applied to the optical element having the electro-optical effect, and a light beam is applied thereto. It can be used for various surface potential measuring devices as a representative of various devices that measure the surface potential by being incident and examining changes in the refractive index, phase, polarization and the like.

【0037】具体的には、特開平4−105072号公
報に開示される、非線形光学結晶と、この非線形光学結
晶を両側からはさみ、その一方が被測定物である帯電体
と対面して配置され、他方に前記帯電体に対するバイア
ス電源が配備される対向電極と、この対向電極の対面配
置された一方と前記帯電体との間に配置された微細な開
口を有する静電遮蔽板と、非線形光学結晶に直線偏光の
光ビームを射出する手段と、非線形光学結晶を通過した
光ビームの偏光の測定手段とを有して構成される表面電
位計測装置;
Specifically, the non-linear optical crystal disclosed in Japanese Unexamined Patent Publication No. 4-105072 and the non-linear optical crystal are sandwiched from both sides, and one of them is arranged to face a charged body as an object to be measured. A counter electrode provided with a bias power source for the charged body on the other side, an electrostatic shield plate having a minute aperture arranged between the charged body and one of the counter electrodes facing each other, A surface potential measuring device having a means for emitting a linearly polarized light beam to the crystal and a means for measuring the polarization of the light beam that has passed through the nonlinear optical crystal;

【0038】本出願人による特願平3−211988号
明細書に開示される、電気光学効果を有する結晶を、い
ずれか一方が被測定物である帯電体に対面して配される
対向電極で挟持してなる計測ヘッドと、この結晶の屈折
率変化の温度依存性が小さい結晶軸方向と同方向の直線
偏光の光ビームを射出する光源と、この光源より射出さ
れた光ビームを、計測ヘッドを通過する計測光と通過し
ない参照光とに分離し、前記計測光が計測ヘッドを通過
した後に再度この計測光と参照光とを合成し干渉させる
干渉計(マッハツェンダー干渉計)と、干渉計によって
合成され干渉する光ビームの光量計測手段(位相検波)
と、光量計測手段によって得られた測定結果より被測定
物の表面電位を算出する演算手段とを有して構成される
表面電位計測装置;
A crystal having an electro-optical effect disclosed in Japanese Patent Application No. 3-211988 filed by the applicant of the present invention is used as a counter electrode arranged so that one of them faces a charged body as an object to be measured. The measurement heads sandwiched between them, a light source that emits a linearly polarized light beam in the same direction as the crystal axis direction in which the temperature dependence of the refractive index change of this crystal is small, and the light beam emitted from this light source An interferometer (Mach-Zehnder interferometer) that separates the measuring light that passes through and the reference light that does not pass through, and again combines the measuring light and the reference light after the measuring light passes through the measuring head to cause interference. Light intensity measuring means (phase detection)
And a surface potential measuring device configured to include a calculating means for calculating the surface potential of the object to be measured from the measurement result obtained by the light quantity measuring means;

【0039】本出願人による特願平3−225946号
明細書に開示される、直線偏光の光ビームを射出する光
源と、電気光学効果を有する結晶をいずれか一方が被測
定物である帯電体に対面して配される対向電極で挟持し
てなる計測ヘッドと、反射面を計測ヘッドに向け光ビー
ムの進行方向に計測ヘッドを挟んで配される2枚の半透
鏡によって構成される共振器(ファブリ・ペロ共振器)
と、光ビームの進行方向の下流側に配される半透鏡を透
過した光ビームの光量を測定する手段と、得られた光量
測定結果より、被測定物の表面電位を算出する演算手段
とを有して構成される表面電位計測装置;
A charged body in which one of a light source for emitting a linearly polarized light beam and a crystal having an electro-optical effect, which is disclosed in Japanese Patent Application No. 3-225946 by the present applicant, is an object to be measured. A resonator composed of a measuring head sandwiched by opposing electrodes arranged facing each other, and two semi-transparent mirrors arranged with the reflecting surface facing the measuring head and sandwiching the measuring head in the traveling direction of the light beam. (Fabry-Perot resonator)
A means for measuring the light quantity of the light beam transmitted through the semi-transparent mirror arranged on the downstream side in the traveling direction of the light beam, and a calculating means for calculating the surface potential of the object to be measured from the obtained light quantity measurement result. Surface potential measuring device configured to have;

【0040】本出願人による特願平3−230306号
明細書に開示される、背面電極、および互いに電気的に
絶縁される計測電極と接地される接地電極とによって、
非線形光学結晶を挟持してなる計測ヘッドと、直線偏光
の計測光および補償光を射出し、計測光を非線形光学結
晶の計測電極に対応して、補償光を非線形光学結晶の接
地電極に対応して入射せしめる光ビーム光学系と、非線
形光学結晶を通過した計測光および補償光の光量をそれ
ぞれ測定する光量測定手段と、両者の光量差より、被測
定物の表面電位を算出する演算手段とを有して構成され
る表面電位計測装置;同明細書に開示される、背面電
極、および互いに電気的に絶縁される計測電極と接地さ
れる接地電極とによって、非線形光学結晶を挟持してな
る計測ヘッドと、直線偏光の計測光および補償光を射出
し、計測光を非線形光学結晶の計測電極に対応して、補
償光を非線形光学結晶の接地電極に対応して入射せしめ
る光ビーム光学系と、非線形光学結晶を通過した計測光
および補償光の光量をそれぞれ測定する光量測定手段
と、補償光の光量が常に一定値となるように背面電極に
電圧を印加する電圧印加手段と、計測光の光量より被測
定物の表面電位を算出する演算手段とを有して構成され
る表面電位計測装置;同明細書に開示される、被測定物
と対面する計測電極、および背面電極によって非線形光
学結晶を挟持してなる計測ヘッドと、計測電極と背面電
極とをショートかつ接地自在とする手段と、非線形光学
結晶に直線偏光の光ビームを射出する光ビーム光源と、
非線形光学結晶を通過した光ビームの光量を測定する光
量測定手段と、ショート時と非ショート時との光ビーム
の光量差より、非検体の表面電位を算出する演算手段と
を有して構成される表面電位計測装置;同明細書に開示
される、被測定物と対面する計測電極、および背面電極
によって非線形光学結晶を挟持してなる計測ヘッドと、
計測電極と背面電極とをショートかつ接地自在とする手
段と、非線形光学結晶に直線偏光の光ビームを射出する
光ビーム光源と、非線形光学結晶を通過した光ビームの
光量を測定する光量測定手段と、ショート時の光ビーム
の光量が常に一定値となるように背面電極に電圧を印加
する電圧印加手段と、非ショート時の光ビームの光量よ
り被測定物の表面電位を算出する演算手段とを有して構
成される表面電位計測装置;等が好適に例示される。
By the back electrode and the measurement electrode electrically insulated from each other and the ground electrode grounded, which is disclosed in Japanese Patent Application No. 3-230306 by the applicant,
A measurement head with a nonlinear optical crystal sandwiched between it and a linearly polarized measurement light and a compensation light are emitted, the measurement light corresponds to the measurement electrode of the nonlinear optical crystal, and the compensation light corresponds to the ground electrode of the nonlinear optical crystal. A light beam optical system that makes the incident light incident, a light amount measuring unit that measures the light amounts of the measurement light and the compensation light that have passed through the nonlinear optical crystal, and a calculation unit that calculates the surface potential of the DUT from the difference in the light amounts of the two. Surface potential measuring device configured to have; Non-linear optical crystal sandwiched by a back electrode, a measurement electrode electrically insulated from each other, and a ground electrode disclosed in the specification. A head and a light beam optical system that emits linearly polarized measuring light and compensating light, and makes the measuring light incident on the measuring electrode of the nonlinear optical crystal and the compensating light incident on the ground electrode of the nonlinear optical crystal. Light quantity measuring means for measuring the light quantities of the measuring light and the compensating light that have passed through the nonlinear optical crystal, a voltage applying means for applying a voltage to the back electrode so that the light quantity of the compensating light is always a constant value, and a light quantity of the measuring light A surface potential measuring device configured to have a calculating means for calculating the surface potential of the object to be measured; a non-linear optical crystal formed by a measurement electrode facing the object to be measured and a back electrode disclosed in the specification. A sandwiched measuring head, a means for short-circuiting and grounding the measuring electrode and the back electrode, and a light beam light source for emitting a linearly polarized light beam to a nonlinear optical crystal,
A light amount measuring unit that measures the light amount of the light beam that has passed through the nonlinear optical crystal, and a calculation unit that calculates the surface potential of the non-analyte from the light amount difference of the light beam when short-circuited and when not short-circuited. A surface potential measuring device; a measuring head disclosed in the same specification, which comprises a measuring electrode facing an object to be measured, and a non-linear optical crystal sandwiched by a back electrode;
A means for short-circuiting and grounding the measurement electrode and the back electrode, a light beam light source for emitting a linearly polarized light beam to the nonlinear optical crystal, and a light quantity measuring means for measuring the light quantity of the light beam passing through the nonlinear optical crystal. A voltage applying means for applying a voltage to the back electrode so that the light quantity of the light beam at the time of short circuit is always a constant value, and a calculating means for calculating the surface potential of the object to be measured from the light quantity of the light beam at the time of non-short circuit. A surface potential measuring device having the same; and the like are preferably exemplified.

【0041】以上、本発明の表面電位計測装置について
説明したが、本発明は上記実施例に限定はされず、本発
明の要旨を逸脱しない範囲において、各種の改良および
変更を行ってもよいのはもちろんである。
Although the surface potential measuring device of the present invention has been described above, the present invention is not limited to the above-mentioned embodiments, and various improvements and changes may be made without departing from the gist of the present invention. Of course.

【0042】[0042]

【発明の効果】以上詳細に説明したように、本発明の表
面電位計測装置によれば、誘導電流等を利用した従来の
表面電位計測装置に比べ、極めて高分解能、高感度およ
び高精度な計測が実現できる、電気光学効果を有する光
学素子を利用した表面電位計測装置において、分解能、
感度および精度共により良好な表面電位分布の計測を実
現できる。
As described above in detail, according to the surface potential measuring device of the present invention, the measurement of remarkably high resolution, high sensitivity and high precision is made as compared with the conventional surface potential measuring device utilizing the induced current or the like. In a surface potential measuring device using an optical element having an electro-optical effect, the resolution,
It is possible to realize good measurement of the surface potential distribution due to both sensitivity and accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の表面電位計測装置の一例の側面を概念
的に示す図である。
FIG. 1 is a view conceptually showing a side surface of an example of a surface potential measuring device of the present invention.

【図2】図1に示される表面電位計測装置の平面を概念
的に示す図である。
FIG. 2 is a diagram conceptually showing a plane of the surface potential measuring device shown in FIG.

【図3】図1に示される表面電位計測装置の広がり関数
のグラフである。
FIG. 3 is a graph of a spreading function of the surface potential measuring device shown in FIG.

【図4】図3に示される関数をフーリエ変換して得られ
る関数のグラフである。
FIG. 4 is a graph of a function obtained by Fourier transforming the function shown in FIG.

【図5】被測定物の表面電位分布の一例である。FIG. 5 is an example of a surface potential distribution of an object to be measured.

【図6】図1に示される表面電位計測装置において図5
に示される被測定物の表面電位分布を計測した際の補正
前の計測結果である。
6 is a diagram showing the surface potential measuring device shown in FIG.
3 is a measurement result before correction when measuring the surface potential distribution of the measured object shown in FIG.

【図7】図6に示される計測結果をフーリエ変換して得
られる関数のグラフである。
7 is a graph of a function obtained by Fourier transforming the measurement result shown in FIG.

【図8】図7に示される関数に補正関数を掛け合せて得
られる関数のグラフである。
8 is a graph of a function obtained by multiplying the function shown in FIG. 7 by a correction function.

【図9】図8に示される関数にフィルタを掛けて得られ
る関数のグラフである。
9 is a graph of a function obtained by filtering the function shown in FIG.

【図10】図1に示される表面電位計測装置における補
正後の表面電位計測結果の一例である。
10 is an example of a corrected surface potential measurement result in the surface potential measurement device shown in FIG.

【図11】図1に示される表面電位計測装置に利用され
るフィルタの一例である。
FIG. 11 is an example of a filter used in the surface potential measuring device shown in FIG.

【符号の説明】[Explanation of symbols]

10 表面電位計測装置 12 基板 14 光導波路 16 バッファ層 18 格子状電極 20 光入力用線状回折格子(入力用LGC) 22 光出力用線状回折格子(出力用LGC) 24 導電性プローブ 26 光源 30 計測ヘッド 32 光電変換素子 34 電圧計 36 算出部 38 制御部 40 電源 42 抵抗 L 光ビーム S 被測定物 10 Surface Potential Measuring Device 12 Substrate 14 Optical Waveguide 16 Buffer Layer 18 Lattice Electrode 20 Optical Input Linear Diffraction Grating (Input LGC) 22 Optical Output Linear Diffraction Grating (Output LGC) 24 Conductive Probe 26 Light Source 30 Measuring head 32 Photoelectric conversion element 34 Voltmeter 36 Calculation unit 38 Control unit 40 Power supply 42 Resistance L Light beam S Object to be measured

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電気光学効果を有する光学素子と、 前記光学素子に電気的に接触して、かつ電気的に被測定
物に近接する電極と、 前記光学素子に入射する光ビームを射出する光源と、 前記光学素子より射出した光ビームの光量を測定する計
測手段と、 前記計測手段で測定された光量より得られた前記被測定
物の表面電位分布をフーリエ変換し、フーリエ変換した
結果を計測系の有する計測領域の広がり関数によって補
正した後、これを逆フーリエ変換して表面電位分布の計
測結果とする算出部とを有することを特徴とする表面電
位計測装置。
1. An optical element having an electro-optical effect, an electrode electrically contacting the optical element and electrically proximate to an object to be measured, and a light source for emitting a light beam incident on the optical element. A measuring means for measuring the light quantity of the light beam emitted from the optical element, and Fourier transforming the surface potential distribution of the object to be measured obtained from the light quantity measured by the measuring means, and measuring the result of the Fourier transform. A surface potential measuring device, comprising: a correction unit that corrects the spread function of a measurement region included in the system and then performs an inverse Fourier transform on the spread function to obtain a measurement result of the surface potential distribution.
JP4955693A 1993-03-10 1993-03-10 Surface potential measuring device Withdrawn JPH06258368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4955693A JPH06258368A (en) 1993-03-10 1993-03-10 Surface potential measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4955693A JPH06258368A (en) 1993-03-10 1993-03-10 Surface potential measuring device

Publications (1)

Publication Number Publication Date
JPH06258368A true JPH06258368A (en) 1994-09-16

Family

ID=12834481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4955693A Withdrawn JPH06258368A (en) 1993-03-10 1993-03-10 Surface potential measuring device

Country Status (1)

Country Link
JP (1) JPH06258368A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239664A (en) * 2003-02-04 2004-08-26 Fuji Photo Film Co Ltd Electrophoresis apparatus
JP2004245637A (en) * 2003-02-12 2004-09-02 Fuji Photo Film Co Ltd Apparatus for measuring surface potential
JP2006162457A (en) * 2004-12-08 2006-06-22 Canon Inc Electric potential measuring device and image forming apparatus
JP2009222521A (en) * 2008-03-14 2009-10-01 Fuji Xerox Co Ltd Surface potential sensor unit, surface potential sensor, and surface potential sensor array
JP2013197557A (en) * 2012-03-23 2013-09-30 Sumitomo Bakelite Co Ltd Method of measuring potential of semiconductor element
CN108445310A (en) * 2018-06-05 2018-08-24 沈阳工业大学 A kind of polymer surfaces charge and trap level characteristic measuring device and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239664A (en) * 2003-02-04 2004-08-26 Fuji Photo Film Co Ltd Electrophoresis apparatus
JP2004245637A (en) * 2003-02-12 2004-09-02 Fuji Photo Film Co Ltd Apparatus for measuring surface potential
JP2006162457A (en) * 2004-12-08 2006-06-22 Canon Inc Electric potential measuring device and image forming apparatus
JP2009222521A (en) * 2008-03-14 2009-10-01 Fuji Xerox Co Ltd Surface potential sensor unit, surface potential sensor, and surface potential sensor array
JP2013197557A (en) * 2012-03-23 2013-09-30 Sumitomo Bakelite Co Ltd Method of measuring potential of semiconductor element
CN108445310A (en) * 2018-06-05 2018-08-24 沈阳工业大学 A kind of polymer surfaces charge and trap level characteristic measuring device and method
CN108445310B (en) * 2018-06-05 2023-10-27 沈阳工业大学 Device and method for measuring surface charge and trap energy level characteristics of polymer

Similar Documents

Publication Publication Date Title
JP2571385B2 (en) Voltage detector
US4878017A (en) High speed D.C. non-contacting electrostatic voltage follower
Prunet et al. Exact calculation of the optical path difference and description of a new birefringent interferometer
JPH06258368A (en) Surface potential measuring device
JP3513247B2 (en) Frequency shifter and optical displacement measuring device using the same
JP5089982B2 (en) Non-invasive electric field detection and measurement device and method
JP2661822B2 (en) Surface potential measuring device
JPH11231005A (en) Surface charge measuring device
JPH0552891A (en) Measuring apparatus for surface potential
JPH0572241A (en) Device for measuring surface potential
JPH04105072A (en) Measuring device for surface potential
JPH0572240A (en) Device for measuring surface potential
Rickermann et al. A high resolution real-time temporal heterodyne interferometer for refractive index topography
JPH05307057A (en) Method and device for measuring electric field over surface of photosensitive body
JPH06130105A (en) Surface potential meter
JPH07181211A (en) Surface potential measuring apparatus
JPH07181210A (en) Method and apparatus for measuring surface potential
JPH0212852A (en) Integrated circuit diagnosing apparatus
Warde et al. Resolution of electro-optic spatial phase modulators: Measurement techniques
JP2932586B2 (en) Interference device
JPH08122383A (en) Surface potential sensor
JP2875141B2 (en) Speed measuring device and speed measuring method
JP2007503574A (en) Device and method for non-invasive detection and measurement of media properties
Yang et al. Electric-field imaging using optical techniques
JPH08320325A (en) Apparatus for measuring physical quantity

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000530