JPH07277834A - Composite ceramic - Google Patents

Composite ceramic

Info

Publication number
JPH07277834A
JPH07277834A JP6085410A JP8541094A JPH07277834A JP H07277834 A JPH07277834 A JP H07277834A JP 6085410 A JP6085410 A JP 6085410A JP 8541094 A JP8541094 A JP 8541094A JP H07277834 A JPH07277834 A JP H07277834A
Authority
JP
Japan
Prior art keywords
solid solution
composite ceramic
peak intensity
type solid
aly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6085410A
Other languages
Japanese (ja)
Inventor
Hidenori Kita
英紀 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Ceramics Research Institute Co Ltd
Original Assignee
Isuzu Ceramics Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Ceramics Research Institute Co Ltd filed Critical Isuzu Ceramics Research Institute Co Ltd
Priority to JP6085410A priority Critical patent/JPH07277834A/en
Publication of JPH07277834A publication Critical patent/JPH07277834A/en
Priority to US08/787,995 priority patent/US6040256A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a composite ceramic excellent in mechanical strength and toughness and having low heat conductivity by forming a solid soln. having a specified compsn. contg. Si, Al, O and N. CONSTITUTION:A powdery mixture consisting of 20-50wt.% (expressed in terms of metallic silicon) Si, 20-49wt.% Al6Si2O13 (mullite) of 2MgO.2Al2O3.5SiO2 (cordierite) and the balance oxides of Y, La, Ce and Dy is compacted. The resultant compact is fired under a reaction in a nitrogen atmosphere at <=1,450 deg.C and it is heated to >=1,700 deg.C to obtain the objective composite ceramic as a compact contg. an SixAlyOzNw type solid soln. This ceramic has 5-15% porosity and <=5W/m.K heat conductivity and contains a phase of the solid soln. in which (x) is >4.69.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は機械的強度と靭性と断熱
性(低熱伝導率)に優れた、主として珪素、アルミニウ
ム、酸素、窒素を含む複合セラミツクスとその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite ceramic mainly containing silicon, aluminum, oxygen and nitrogen which is excellent in mechanical strength, toughness and heat insulation (low thermal conductivity), and a method for producing the same.

【0002】[0002]

【従来の技術】複合セラミツクスは耐熱性、耐熱衝撃
性、耐摩耗性に優れ、機械的強度が高いことから、熱機
関や熱機器の高温・高圧に曝される燃焼室の壁面材や壁
部の構造部材への利用が試みられ、実用に供されている
ものもある。しかし、熱機関や熱機器の熱損失を少くす
るためには、熱伝導率のより低いセラミツクスが要求さ
れる。
2. Description of the Related Art Composite ceramics are excellent in heat resistance, thermal shock resistance, wear resistance, and have high mechanical strength, so that they are used as wall materials and walls of combustion chambers exposed to high temperatures and pressures of heat engines and thermal equipment. Have been tried for practical use, and some have been put to practical use. However, in order to reduce the heat loss of the heat engine or the heat equipment, a ceramic having lower thermal conductivity is required.

【0003】複合セラミツクスとして、特開昭56-13456
8 号公報に開示される技術によれば、80vo%以下の珪
素(Si)と、10〜85vo%のアルミナ(Al
2 3 )と、0〜15vo%の酸化マグネシウム(Mg
O)とからなる粉体を所要の形状に成形し、温度120
0〜1400℃で反応焼成後、温度1500〜1800
℃で加熱すれば、窒化珪素(Si3 N4 )系固溶体を含
む気孔率が5〜15%の焼結成形体が得られる。
Japanese Patent Application Laid-Open No. 56-13456 discloses a composite ceramics.
According to the technique disclosed in Japanese Patent Publication No. 8, silicon (Si) at 80 vo% or less and alumina (Al
2 O 3 ) and 0 to 15 vo% magnesium oxide (Mg
O) and powder are formed into a desired shape and the temperature is 120
After reaction firing at 0 to 1400 ° C, temperature 1500 to 1800
When heated at ℃, a sintered compact having a porosity of 5 to 15% containing a silicon nitride (Si3 N4) solid solution is obtained.

【0004】また、特開昭58-60676号公報に開示される
技術では、窒化珪素の60〜98.9wt%に相当する珪
素に、クロム(Cr)、酸化クロム(Cr2 3 )、窒
化クロム(CrN)の中から選ばれた0.1〜15wt%
の焼結助剤と、希土類元素の酸化物、酸化アルミニウ
ム、酸化ジルコニウム(ZrO2 )の中から選ばれた1
〜25wt%の1種または2種以上の材料とを、粉末にし
て混合したうえ成形し、成形体を反応焼結し、さらに非
酸化雰囲気中で焼結している。
Further, in the technique disclosed in Japanese Patent Laid-Open No. 58-60676, silicon corresponding to 60 to 98.9 wt% of silicon nitride is added to chromium (Cr), chromium oxide (Cr 2 O 3 ) and nitriding. 0.1 to 15 wt% selected from chromium (CrN)
1 selected from oxides of rare earth elements, aluminum oxide, and zirconium oxide (ZrO 2 )
.About.25 wt% of one or more kinds of materials are made into powder, mixed and molded, and the molded body is subjected to reaction sintering and further sintering in a non-oxidizing atmosphere.

【0005】しかし、何れの技術も複合セラミツクスか
らなる焼結成形体の機械的性質即ち靭性を高めることに
傾注しており、熱伝導率の低い複合セラミツクスを得よ
うとするものではなく、実際に上述の各複合セラミツク
スの熱伝導率は格別低いといえるものではない。
However, all of the techniques are focused on enhancing the mechanical properties, that is, the toughness of the sintered compact formed of the composite ceramics, and are not intended to obtain the composite ceramics having a low thermal conductivity. It cannot be said that the thermal conductivity of each composite ceramic is extremely low.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は上述の
問題に鑑み、珪素、アルミニウム、酸素、窒素を主原料
とし、機械的強度と靭性に優れ、かつ熱伝導率の低い複
合セラミツクスを提供することにある。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a composite ceramic which contains silicon, aluminum, oxygen and nitrogen as main raw materials and has excellent mechanical strength and toughness and low thermal conductivity. To do.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の構成は、気孔率が5〜15%であり、Si
x Aly Oz Nw 型の固溶体が形成され、該固溶体にお
けるx の値が4.69を超える相が形成されており、熱
伝導率が5W/m・K以下であるのを特徴とする複合セ
ラミツクスである。
In order to achieve the above object, the structure of the present invention has a porosity of 5 to 15% and Si
An x Aly Oz Nw type solid solution is formed, a phase in which the value of x in the solid solution exceeds 4.69 is formed, and the thermal conductivity is 5 W / m · K or less. is there.

【0008】[0008]

【作用】本発明者は、複合セラミツクスを構成するSi
x Aly Oz Nw 型の固溶体でも、化学量論的組成や存
在量により、熱伝導率が低下する領域があるのを見い出
した。つまり、珪素(Si)と、ムライト(Al6 Si
2 13)またはコージライト(2MgO・2Al2 3
・5SiO2 )と、イツトリウム(Y)、ランタン(L
a)、セリウム(Ce)、ジスプロシウム(Dy)から
選択された物質の酸化物とを、所定の割合に混合してな
る粉末から成形体を作製し、成形体を一旦焼成した後、
温度1550℃以上に焼成すると、Six Aly Oz N
w 型の固溶体におけるx の値が4.69を超える、大き
な非調和性を有する固溶体が生成し、熱伝導率が非常に
低くなる。
The present inventor has made the Si constituting the composite ceramics.
It has been found that even in the x Aly Oz Nw type solid solution, there is a region where the thermal conductivity is lowered due to the stoichiometric composition and the existing amount. In other words, silicon (Si) and mullite (Al 6 Si
2 O 13 ) or cordierite (2MgO · 2Al 2 O 3
・ 5SiO 2 ), yttrium (Y), lanthanum (L)
a), an oxide of a substance selected from cerium (Ce), and dysprosium (Dy) are mixed in a predetermined ratio to prepare a molded body, and after firing the molded body once,
When sintered at a temperature of 1550 ° C or higher, Six Aly Oz N
The value of x in the w-type solid solution exceeds 4.69, and a solid solution with large anharmonicity is formed, and the thermal conductivity becomes very low.

【0009】[0009]

【実施例】本発明では複合セラミツクスの原料として、
金属珪素に換算して20〜50wt%の珪素(Si)と、
20〜49wt%のムライト(Al6 Si2 13)または
コージライト(2MgO・2Al2 3 ・5SiO2
と、残部がイツトリウム(Y)、ランタン(La)、セ
リウム(Ce)、ジスプロシウム(Dy)から選択され
る物質の酸化物[例えば酸化イツトリウム(Y
2 3 )]とを使用し、これらの混合粉末から成形体を
成形する。
EXAMPLES In the present invention, as a raw material for composite ceramics,
20 to 50 wt% of silicon (Si) converted to metallic silicon,
20~49Wt% mullite (Al 6 Si 2 O 13) or cordierite (2MgO · 2Al 2 O 3 · 5SiO 2)
And the balance being an oxide of a substance selected from yttrium (Y), lanthanum (La), cerium (Ce), and dysprosium (Dy) [eg yttrium oxide (Y
2 O 3 )] is used to form a molded body from these mixed powders.

【0010】前記成形体を温度1450℃以下の窒素雰
囲気中で反応焼成し、次いで温度1700℃以上に加熱
して、Six Aly Oz Nw 型の固溶体を含む複合セラ
ミツクスからなる焼結成形体を得る。得られる焼結成形
体の気孔率は5〜15%であり、Six Aly Oz Nw
型の固溶体が形成され、該固溶体におけるx の値は4.
69を超える。気孔率と固溶体におけるx の値を限定し
た理由は、複合セラミツクスの高強度と低熱伝導性を両
立させるために必要な値である。
The molded body is reacted and fired in a nitrogen atmosphere at a temperature of 1450 ° C. or lower, and then heated to a temperature of 1700 ° C. or higher to obtain a sintered molded body made of a composite ceramic containing a solid solution of Six Aly Oz Nw type. The obtained sintered compact has a porosity of 5 to 15%, and Six Aly Oz Nw.
A solid solution of the type is formed, and the value of x in the solid solution is 4.
Over 69. The reason why the porosity and the value of x in the solid solution are limited is the value necessary for achieving both high strength and low thermal conductivity of the composite ceramics.

【0011】図1〜4は珪素(Si)とムライト(Al
6 Si2 13)と酸化イツトリウム(Y2 3 )とβ窒
化珪素(β−Si3 4 )との各粉末の、配合比と反応
焼結温度を変えて作製した各焼結体の特性と生成相の関
係を示す。図1は焼成温度と、α窒化珪素の(100)
面のピーク強度に対する固溶体のピーク強度の割合(ピ
ーク強度比)の関係を表すものであり、線31は酸化イ
ツトリウムを8.4wt/%を含む窒化珪素のSi18A1
0.2 1.2 1.8 の(110)面についてのもの、線3
2はSi4.6911.31 1.316.69の(301)面につ
いてのもの、線33はSi6 Al10214 (2θ=2
3〜26°)に表れるものである。
1 to 4 show silicon (Si) and mullite (Al).
6 Si 2 O 13 ), yttrium oxide (Y 2 O 3 ), and β silicon nitride (β-Si 3 N 4 ) powders of each sintered body prepared by changing the compounding ratio and the reaction sintering temperature. The relationship between the characteristics and the production phase is shown. Figure 1 shows the firing temperature and (100) of α-silicon nitride.
The line 31 represents the relationship between the peak intensity of the solid solution and the peak intensity of the solid solution (peak intensity ratio), and the line 31 is Si 18 A1 of silicon nitride containing 8.4 wt /% yttrium oxide.
0.2 O 1.2 N 1.8 (110) plane, line 3
2 is for the (301) plane of Si 4.69 A 11.31 O 1.31 N 6.69 , and line 33 is Si 6 Al 10 O 21 N 4 (2θ = 2
3 to 26 °).

【0012】図2は酸化イツトリウムを8.4wt/%含
む複合セラミツクスの、焼成温度と気孔率の関係を表
す。図3の線41は酸化イツトリウム2.0wt/%を含
む複合セラミツクスの焼成温度と熱伝導率の関係を表
し、線42は酸化イツトリウム8.4wt/%を含む複合
セラミツクスの焼成温度と熱伝導率の関係を表す。図4
は同複合セラミツクスの焼成温度と機械的強度との関係
を表す。図5は同複合セラミツクスのX線回折パターン
を示す。
FIG. 2 shows the relationship between the firing temperature and the porosity of the composite ceramic containing yttrium oxide at 8.4 wt /%. Line 41 in FIG. 3 represents the relationship between the firing temperature and the thermal conductivity of the composite ceramic containing yttrium oxide 2.0 wt /%, and the line 42 represents the firing temperature and the thermal conductivity of the composite ceramic containing yttrium oxide 8.4 wt /%. Represents the relationship. Figure 4
Represents the relationship between the firing temperature and the mechanical strength of the composite ceramic. FIG. 5 shows an X-ray diffraction pattern of the composite ceramic.

【0013】図1,2から明らかなように、焼成温度が
高くなるにしたがい、焼結体はSi 1.8 Al0.2 1.2
1.8 型からSi6 Al10214 型へ変化し、かつS
6Al10214 型の含有量が増加し、また気孔率p
が減少する。しかし、図3に示すように、熱伝導率λは
焼成温度が高くなるにしたがい、次第に高くなるが、最
高値を示した後は次第に低下することが解る。温度15
50℃までの上昇に伴う熱伝導率λの増大は、気孔率p
の減少に起因し、温度1550℃以上での焼成温度の上
昇に伴う熱伝導率λの低下は、大きな非調和性を発生す
る固溶体の生成によるものである。
As is apparent from FIGS. 1 and 2, the firing temperature is
The higher the temperature, the more the sintered body becomes Si 1.8Al0.2O1.2
N1.8Mold from Si6AlTenOtwenty oneNFourChange to type and S
i6AlTenOtwenty oneNFourThe mold content increases, and the porosity p
Is reduced. However, as shown in FIG. 3, the thermal conductivity λ is
The higher the firing temperature, the higher the firing temperature.
It can be seen that after showing a high price, it gradually decreases. Temperature 15
The increase in the thermal conductivity λ with the increase up to 50 ° C. is due to the porosity p
Due to the decrease in the temperature above the firing temperature above 1550 ° C
The decrease in thermal conductivity λ with increasing temperature causes large anharmonicity.
This is due to the formation of a solid solution.

【0014】図4に線51で示すように、焼成温度が高
くなるにしたがい、4点曲げ強度Kicが向上し、かつ図
4に線52,53で示すように、酸化イツトリウム(Y
2 3 )の添加量がないものよりも、破壊靭性σが向上
する。しかし、酸化イツトリウム(Y2 3 )の添加量
が15wt%を超える複合セラミツクスは、大気中で温度
1000℃に加熱すると亀裂が発生した。この亀裂発生
の原因は、α窒化珪素の(分散相/母相)差によるもの
と考えられる。
As shown by the line 51 in FIG. 4, as the firing temperature increases, the four-point bending strength Kic increases, and as shown by the lines 52 and 53 in FIG. 4, yttrium oxide (Y
The fracture toughness σ is improved as compared with the case where the amount of 2 O 3 ) is not added. However, the composite ceramics containing more than 15 wt% of yttrium oxide (Y 2 O 3 ) cracked when heated to a temperature of 1000 ° C. in the atmosphere. It is considered that the cause of this crack generation is due to the difference in (dispersed phase / matrix) of α-silicon nitride.

【0015】[0015]

【発明の効果】本発明は上述のように、焼結された複合
セラミツクスとして、気孔率が5〜15%であるSix
Aly Oz Nw 型の固溶体におけるx の値が4.69を
超える相が形成されたものであり、上記固溶体の存在に
より機械的強度と靭性を損うことなく、熱伝導率の低い
複合セラミツクスが低コストで得られる。
As described above, the present invention provides a sintered composite ceramic having a porosity of 5 to 15%.
A phase in which the value of x exceeds 4.69 is formed in the Aly Oz Nw type solid solution, and the presence of the solid solution does not impair the mechanical strength and toughness and results in a low composite ceramic with low thermal conductivity. It comes at a cost.

【0016】したがつて、例えば内燃機関の燃焼室を区
画するシリンダ、シリンダヘツド、ピストンなどの壁面
材または構造部材に、本発明による複合セラミツクスを
採用すれば、内燃機関の無冷却・断熱化により熱サイク
ル効率を向上できる。
Therefore, for example, if the composite ceramics of the present invention is applied to wall materials or structural members such as cylinders, cylinder heads and pistons that partition the combustion chamber of an internal combustion engine, the internal combustion engine can be cooled and insulated. The heat cycle efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る複合セラミツクスの焼成温度とピ
ーク強度比との関係を表す線図である。
FIG. 1 is a diagram showing a relationship between a firing temperature and a peak intensity ratio of a composite ceramic according to the present invention.

【図2】同複合セラミツクスの焼成温度と気孔率との関
係を表す線図である。
FIG. 2 is a diagram showing a relationship between firing temperature and porosity of the composite ceramics.

【図3】同複合セラミツクスの焼成温度と熱伝導率との
関係を表す線図である。
FIG. 3 is a diagram showing the relationship between the firing temperature and the thermal conductivity of the composite ceramic.

【図4】同複合セラミツクスの焼成温度と機械的強度と
の関係を表す線図である。
FIG. 4 is a diagram showing the relationship between the firing temperature and the mechanical strength of the composite ceramic.

【図5】同複合セラミツクスのX線回折パターンを表す
線図である。
FIG. 5 is a diagram showing an X-ray diffraction pattern of the composite ceramics.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】気孔率が5〜15%であり、Six Aly
Oz Nw 型の固溶体が形成され、該固溶体におけるx の
値が4.69を超える相が形成されており、熱伝導率が
5W/m・K以下であることを特徴とする、複合セラミ
ツクス。
1. A porosity of 5 to 15%, Six Aly
An Oz Nw type solid solution is formed, a phase in which the value of x exceeds 4.69 is formed, and the thermal conductivity is 5 W / m · K or less.
【請求項2】前記Six Aly Oz Nw 型の固溶体がS
6 Al10214 である、請求項1に記載の複合セラ
ミツクス。
2. The Six Aly Oz Nw type solid solution is S
The composite ceramic according to claim 1, which is i 6 Al 10 O 21 N 4 .
【請求項3】Six Aly Oz Nw 型の固溶体からX線
回折設時反射されるピーク強度が、α窒化硅素の(10
0)面から反射されるピーク強度を1とするとき、x =
4.69の固溶体の(301)面から反射されるピーク
強度と、x =6の固溶体のうちで2θの値が23〜26
℃の間で反射されるピーク強度との和が1.75よりも
大きいことを特徴とする、請求項1,2に記載の複合セ
ラミツクス。
3. The peak intensity reflected from a Six Aly Oz Nw type solid solution at the time of X-ray diffraction is (10) of α silicon nitride.
When the peak intensity reflected from the (0) plane is 1, x =
The peak intensity reflected from the (301) plane of the 4.69 solid solution and the value of 2θ of the solid solution of x = 6 are 23 to 26.
The composite ceramics according to claims 1 and 2, characterized in that the sum with the peak intensity reflected between ° C is greater than 1.75.
【請求項4】請求項1,2に記載の複合セラミツクス
に、イツトリウム(Y)、ランタン(La)、セリウム
(Ce)、ジスプロシウム(Dy)の元素群から選ばれ
た少くとも1種以上の元素で、これの酸化物重量に換算
したものが、15wt%を越えない範囲で含まれている、
請求項1〜3に記載の複合セラミツクス。
4. The composite ceramic according to claim 1, wherein at least one element selected from the group of elements yttrium (Y), lanthanum (La), cerium (Ce) and dysprosium (Dy). Then, the amount converted to the oxide weight of this is included in the range not exceeding 15 wt%,
The composite ceramic according to claim 1.
【請求項5】金属珪素に換算して20〜50wt%の珪素
(Si)と、20〜49wt%のAl6 Si2 13(ムラ
イト)または2MgO・2Al2 3 ・5SiO2 (コ
ージライト)と、残部がイツトリウム(Y)、ランタン
(La)、セリウム(Ce)、ジスプロシウム(Dy)
の酸化物とからなる混合粉末から成形体を成形し、該成
形体を温度1450℃以下の窒素雰囲気中で反応焼成
し、次いで温度1700℃以上に加熱して、Six Al
y Oz Nw 型の固溶体を含む成形体を得ることを特徴と
する複合セラミツクスの製造方法。
5. 20 to 50 wt% of silicon (Si) in terms of metallic silicon and 20 to 49 wt% of Al 6 Si 2 O 13 (mullite) or 2MgO.2Al 2 O 3 .5SiO 2 (cordierite). And the balance is yttrium (Y), lanthanum (La), cerium (Ce), dysprosium (Dy)
A molded body is molded from a mixed powder consisting of the oxide of the above, and the molded body is reacted and fired in a nitrogen atmosphere at a temperature of 1450 ° C. or lower, and then heated to a temperature of 1700 ° C. or higher to give Six Al.
A method for producing a composite ceramic, which comprises obtaining a molded product containing a y Oz Nw type solid solution.
JP6085410A 1993-10-12 1994-03-31 Composite ceramic Pending JPH07277834A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6085410A JPH07277834A (en) 1994-03-31 1994-03-31 Composite ceramic
US08/787,995 US6040256A (en) 1993-10-12 1997-01-23 Method for producing a reaction sintered ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6085410A JPH07277834A (en) 1994-03-31 1994-03-31 Composite ceramic

Publications (1)

Publication Number Publication Date
JPH07277834A true JPH07277834A (en) 1995-10-24

Family

ID=13858040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6085410A Pending JPH07277834A (en) 1993-10-12 1994-03-31 Composite ceramic

Country Status (1)

Country Link
JP (1) JPH07277834A (en)

Similar Documents

Publication Publication Date Title
JP2533992B2 (en) Aluminum titanate ceramics and manufacturing method thereof
CS275993B6 (en) Self-supporting composite body and process for preparing thereof
US5015610A (en) Porous ceramic composite with dense surface
GB2066800A (en) Sic-si3n4 composite system
JP2599195B2 (en) Aluminum titanate-based ceramics, method for producing the same and use thereof
JPH07277834A (en) Composite ceramic
JP3091085B2 (en) Rare earth silicate based sintered body and method for producing the same
Samanta et al. Near net shape SiC–mullite composites from a powder precursor prepared through an intermediate Al-hydroxyhydrogel
US5635120A (en) Process for forming a mullite-zirconia engine part
US5139977A (en) Porous ceramic composite with dense surface
JPH05319937A (en) Functionally gradient material
JPH0694390B2 (en) Silicon nitride sintered body
JP3445345B2 (en) High heat-resistant water sialon-based sintered body
JP3216332B2 (en) Fiber-reinforced aluminum titanate sintered body and method for producing the same
JP4064640B2 (en) Corrosion-resistant ceramics and method for producing the same
US6040256A (en) Method for producing a reaction sintered ceramic
JPS6345173A (en) High toughness ceramic sintered body and manufacture
WO1987006928A1 (en) Zirconia ceramic materials
JPH05238829A (en) Sintered silicone nitride ceramic
JPS5953235B2 (en) Manufacturing method of silicon nitride sintered body
JPH01115867A (en) Ceramic sintered form and production thereof
JPH0782016A (en) High-strength and low-thermal expansion ceramic and its production
JPH11278921A (en) Engine part and its production
JPH054859A (en) Zirconium phosphate ceramics material and production thereof
JPH07215768A (en) Silicon nitride sintered compact and its production