JPH07270313A - Measuring method for refractive index and that for nature characteristic - Google Patents

Measuring method for refractive index and that for nature characteristic

Info

Publication number
JPH07270313A
JPH07270313A JP8798494A JP8798494A JPH07270313A JP H07270313 A JPH07270313 A JP H07270313A JP 8798494 A JP8798494 A JP 8798494A JP 8798494 A JP8798494 A JP 8798494A JP H07270313 A JPH07270313 A JP H07270313A
Authority
JP
Japan
Prior art keywords
measured
medium
interference
refractive index
harmonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8798494A
Other languages
Japanese (ja)
Other versions
JP2705752B2 (en
Inventor
Koichi Matsumoto
弘一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6087984A priority Critical patent/JP2705752B2/en
Publication of JPH07270313A publication Critical patent/JPH07270313A/en
Application granted granted Critical
Publication of JP2705752B2 publication Critical patent/JP2705752B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure refractive index of air easily using a bicolor interferrometer. CONSTITUTION:A second harmonic having the light from a laser light source as the base wave is generated by a first wavelength conversion element 3a to be made go through the air a distance 2L and is introduced to a second wavelength conversion element 3b through a second beam splitter 4b. The second harmonic generated from the base wave via an optical path 2 is made to interfere with the harmonic via the optical path 2L to obtain an interference fringe signal. A shutter 9 is opened and the second harmonic reaching the second beam splitter 4b directly from the first beam splitter 4a is made to interfere with the second harmonic via the optical path 2L by means of a second beam splitter 4b to obtain an interference fringe signal. Under such a condition, a distance L is determined from changes in the phase of the interference fringe in scanning with the frequency of a laser light. Then, the refractive index of the air is determined with a data analyzer 8 from the distance L and the orders of the interference fringes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子工業・機械工業等
の精密生産分野におけるレーザ干渉計による位置決めや
寸法精度向上、光関連工業における光学材料の屈折率の
測定や化学工業における液体・気体の屈折率の測定の精
度向上と能率化を期せる屈折率の測定方法と、機械・電
子関連の生産工業における改質表面や塗装の特性の計測
評価に有効な物体の加工表面の性状特性の測定方法に関
する。
FIELD OF THE INVENTION The present invention relates to positioning and dimensional accuracy improvement by a laser interferometer in precision production fields such as electronic industry and mechanical industry, measurement of refractive index of optical materials in optical industry, and liquid / gas in chemical industry. Refractive index measurement method for improving accuracy and efficiency of refractive index measurement, and for measuring and evaluating properties of modified surfaces and coating properties in the mechanical and electronic related production industries. Regarding measurement method.

【0002】[0002]

【従来の技術】従来、長さを測定するための光干渉計に
おいては、空気の屈折率の補正が必要であり、2色法と
いう方法が知られている。この2色法は、光波干渉測長
計の光源として、波長変換素子による第2高調波と基本
波との2色レーザ光を用いて測定することによって、光
波干渉による光学的測長値に基づいて空気の屈折率の補
正を実時間で行うものである。
2. Description of the Related Art Conventionally, in an optical interferometer for measuring length, it is necessary to correct the refractive index of air, and a method called a two-color method is known. This two-color method is based on an optical length measurement value due to light wave interference by measuring with a two-color laser light of a second harmonic wave by a wavelength conversion element and a fundamental wave as a light source of a light wave interferometer. The refractive index of air is corrected in real time.

【0003】ここで、上記した2色法による干渉計等に
おいては、基本波の波長λ1 による干渉測長値をL1
第2高調波の波長λ2 による干渉測長値をL2 、波長λ
2 における空気の屈折率をn2 としたとき、空気の屈折
率n2 は下式のように表される。
Here, in the above-mentioned two-color interferometer, etc., the interferometric length measurement value by the wavelength λ 1 of the fundamental wave is L 1 ,
The interferometric measurement value by the wavelength λ 2 of the second harmonic is L 2 , and the wavelength λ
When the refractive index of air at 2 and n 2, the refractive index n 2 of the air is expressed by the following equation.

【0004】[0004]

【数1】 [Equation 1]

【0005】なお、上記(1)式の係数Aは、{(n2
−1)/(n2 −n1 )}で与えらる定数であることが
知られており、その値は10〜数100程度の値となる
が、干渉縞の位相を精密に測定することによって、比較
的短い長さ領域でも精密な空気の屈折率を求めることが
できる。しかしながら、このためには概略値でよいがL
の値を知る必要があり、例えば移動台に干渉計の反射鏡
を配置して所定の長さだけ走査することが必要である。
The coefficient A in the equation (1) is {(n 2
It is known that it is a constant given by −1) / (n 2 −n 1 )}, and its value is about 10 to several hundreds, but the phase of the interference fringe must be measured accurately. Thus, it is possible to obtain a precise refractive index of air even in a relatively short length region. However, an approximate value is sufficient for this, but L
It is necessary to know the value of, and for example, it is necessary to arrange a reflecting mirror of the interferometer on the moving table and perform scanning for a predetermined length.

【0006】また、上記の2色干渉計においては、干渉
縞信号をコンピュータ等に一旦記録しておき、データ収
集が終了した後、干渉縞の位相の計算を静的に行うもの
であった。
Further, in the above two-color interferometer, the interference fringe signal is temporarily recorded in a computer or the like, and the phase of the interference fringe is statically calculated after the data collection is completed.

【0007】上記のような屈折率計は、多くの科学・工
業分野において、空気ゆらぎやその屈折率の補正のため
に利用され始めている。すなわち、先端的電子・機械工
業における部品の高精度化に利用されることのほか、近
来は測定の自動化や工業化のために、測定環境が安定で
ない場所や長い光路での使用の要求も増えているため
に、空気ゆらぎやその屈折率の補正が測定精度に多大な
影響を与えることとなるからである。
The refractometer as described above has begun to be used for correction of air fluctuations and its refractive index in many scientific and industrial fields. That is, in addition to being used to improve the precision of parts in the advanced electronics and machinery industry, recently, due to automation and industrialization of measurement, there is an increasing demand for use in places where the measurement environment is not stable or in long optical paths. Therefore, the fluctuation of air and the correction of its refractive index have a great influence on the measurement accuracy.

【0008】[0008]

【発明が解決しようとする課題】しかし、上記したよう
な2色干渉計を用いて媒質の屈折率を求めるためには、
媒質の長さLの概略値を得る必要があり、干渉計の光路
長を走査するための等速で一定方向へ移動できる移動台
等の手段が別途必要であり、測定系が複雑になってしま
うだけでなく、固体や液体の屈折率の測定が不可能であ
った。しかも、光関連工業や機械・電子・化学などの生
産工業においては、気体だけでなく、液体や固体材料の
屈折率を知ることが重要であるが、上記のような方法で
は、液体や固体材料の屈折率を求めることはできない。
However, in order to obtain the refractive index of the medium using the two-color interferometer as described above,
It is necessary to obtain an approximate value of the length L of the medium, and a means such as a movable table for scanning the optical path length of the interferometer that can move in a fixed direction at a constant speed is additionally required, which complicates the measurement system. In addition, it was impossible to measure the refractive index of solids and liquids. Moreover, it is important to know the refractive index of not only gas but also liquid and solid materials in the manufacturing industry such as optical industry and machinery, electronics, chemistry, etc. It is not possible to determine the refractive index of.

【0009】また、最近進展が著しい材料の高機能化技
術、超精密化技術における精密加工表面の性状特性の計
測評価や、実装において求められる塗装の特性等を知
り、評価に充てることが極めて重要となっているが、上
記のような方法においては、干渉縞の位相測定を静的に
行っていたため、干渉計のレーザビームを被測定物体の
表面の垂直方向に走査し、当該物体の加工表面等の性状
特性や塗装の一様性を計測・評価する場合のように、2
次元的な領域での分布特性の測定に応用することもでき
なかった。
Further, it is extremely important to know the measurement and evaluation of the property characteristics of the precision processed surface in the technology for highly functionalized materials and the ultra-precision technology, which have made remarkable progress in recent years, and the characteristics of the coating required for mounting, and devote them to the evaluation. However, in the above method, the phase of the interference fringes was statically measured, so the laser beam of the interferometer was scanned in the direction perpendicular to the surface of the measured object, and the processed surface of the object was scanned. Such as when measuring and evaluating the property characteristics such as
It could not be applied to the measurement of distribution characteristics in a dimensional area.

【0010】そこで、本発明は、気体・液体・固体の屈
折率の測定を簡便に行える屈折率の測定方法と性状特性
の測定方法を提供するものである。
Therefore, the present invention provides a method of measuring a refractive index and a method of measuring a property, which can easily measure a refractive index of a gas, a liquid or a solid.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る屈折率の測定方法においては、光源よ
り得た光を基本波とし、被測定媒質を通過する前の基本
波から生じさせた高調波と、非測定媒質を通過した基本
波から生じさせた高調波とを干渉させ、該干渉によって
生じた干渉縞信号に基づいて干渉縞の次数を求め、上記
光源の周波数を変化させることに基づく干渉縞の変化に
基づいて被測定媒質の長さを求め、上記干渉縞の次数と
被測定媒質の長さとを用いて被測定媒質の屈折率を測定
するようにした。
In order to solve the above problems, in the refractive index measuring method according to the present invention, light obtained from a light source is used as a fundamental wave, and the fundamental wave before passing through the medium to be measured is used. The generated harmonics interfere with the harmonics generated from the fundamental wave that has passed through the non-measuring medium, the order of the interference fringes is obtained based on the interference fringe signal generated by the interference, and the frequency of the light source is changed. The length of the medium to be measured is obtained based on the change in the interference fringes based on the above, and the refractive index of the medium to be measured is measured using the order of the interference fringes and the length of the medium to be measured.

【0012】また、本発明に係る性状特性の測定方法に
おいては、光源からの基本波を被測定媒質表面へ照射
し、被測定媒質表面で反射された反射光から生じさせた
高調波と、被測定媒質表面で反射された反射光の周波数
をシフトさせた基本波とをヘテロダイン干渉させ、該干
渉によって生じた干渉縞信号に基づいて干渉縞の位相を
求め、該干渉縞の位相に基づいて被測定媒質表面の性状
特性を測定するようにした。
In the property measuring method according to the present invention, the fundamental wave from the light source is applied to the surface of the medium to be measured, and the harmonics generated from the reflected light reflected by the surface of the medium to be measured are The frequency of the reflected light reflected on the surface of the measurement medium is subjected to heterodyne interference with the fundamental wave, the phase of the interference fringe is determined based on the interference fringe signal generated by the interference, and the phase of the interference fringe is determined based on the phase of the interference fringe. The property characteristic of the surface of the measurement medium was measured.

【0013】[0013]

【実施例】次に、本発明に係る屈折率の測定方法の実施
例を添付図面に基づいて詳細に説明する。
Embodiments of the method for measuring the refractive index according to the present invention will now be described in detail with reference to the accompanying drawings.

【0014】先ず、屈折率の測定方法における基本原理
を概説する。いま、波長λ1 とλ2における媒質の屈折
率を夫々n1 ,n2 とすると、予めλ2 に変換されて伝
搬する波と、λ1 のままで伝搬した後にλ2 に変換され
る波との干渉における光路差を2ΔLとすると、往路あ
るいは復路分の光路差ΔLは下式(2)として求められ
る。なお、Lは媒質の長さである。
First, the basic principle of the refractive index measuring method will be outlined. Now, the wave when the wavelength lambda 1 and lambda respectively n 1 the refractive index of the medium in the 2, n 2, which is converted and waves propagating converted in advance lambda 2, the lambda 2 after propagating remains lambda 1 Assuming that the optical path difference due to the interference with the optical path is 2ΔL, the optical path difference ΔL for the outward path or the return path can be obtained by the following equation (2). Note that L is the length of the medium.

【0015】[0015]

【数2】 [Equation 2]

【0016】また、2ΔLは干渉の方程式である下式
(3)で与えられる。なお、Mは干渉縞の次数である。
2ΔL is given by the following equation (3) which is an equation of interference. Note that M is the order of the interference fringes.

【0017】[0017]

【数3】 [Equation 3]

【0018】上記の(3)式において、干渉縞の次数M
を精密に測定することで、光路差2ΔLを得ると、上記
(2)式から波長λ2 における媒質の屈折率n2 が求め
られる。すなわち、単一の波長λ2 による干渉縞だけの
測定で良いので、高い分解能で干渉縞の端数(位相)を
測定することが可能である。しかしながら、媒質の長さ
Lと干渉縞の次数Mの整数部とが未知数であるために、
正しい屈折率n2 を直接求めることができない。
In the above equation (3), the order M of the interference fringes
The By precisely measured and obtain an optical path difference 2.DELTA.L, (2) the refractive index of the medium at the wavelength lambda 2 from the formula n 2 is obtained. That is, since it is sufficient to measure only the interference fringes having a single wavelength λ2, it is possible to measure the fraction (phase) of the interference fringes with high resolution. However, since the length L of the medium and the integer part of the order M of the interference fringes are unknowns,
It is not possible to directly obtain the correct refractive index n 2 .

【0019】そこで、先ず媒質の長さLを求める原理を
説明する。いま、2Lの光路差の干渉計において、光源
の周波数をΔνだけシフトさせた場合、下式(4)が成
立する。なお、cは光速度,mは光源の周波数がシフト
したときに形成される干渉縞の次数である。
Therefore, first, the principle of determining the length L of the medium will be described. Now, in an interferometer with an optical path difference of 2 L, when the frequency of the light source is shifted by Δν, the following expression (4) is established. Note that c is the speed of light and m is the order of the interference fringes formed when the frequency of the light source shifts.

【0020】[0020]

【数4】 [Equation 4]

【0021】上記(4)式より明らかなように、予めΔ
νを知ってmを測定すると、Lが求められるのである。
例えば、Δνを10GHzとし、mの端数(位相)の測
定精度を1/300とすると、Lの決定精度は50μm
となり、必要十分な精度を得ることができる。
As is clear from the above equation (4), Δ
Knowing ν and measuring m, L is obtained.
For example, if Δν is 10 GHz and the measurement accuracy of the fraction (phase) of m is 1/300, the accuracy of determining L is 50 μm.
Therefore, necessary and sufficient accuracy can be obtained.

【0022】また、媒質の屈折率を求めるためには、干
渉縞の次数Mが必要であるが、干渉縞の測定で得られる
のは、Mの端数部(位相)のみであり、Mの整数部を別
途求める必要がある。斯くするためには、媒質の厚さL
が大幅に異なるものを数種類用意し、先ず薄いものの測
定によって屈折率の概略値を得ておき、次に厚いものを
測定したときのMの整数部を先の値を利用して一義的に
決定すればよい。
Further, in order to obtain the refractive index of the medium, the order M of the interference fringes is necessary, but what is obtained by measuring the interference fringes is only the fractional part (phase) of M, and an integer of M. It is necessary to request a separate section. To do so, the thickness L of the medium
Prepare several kinds of materials that differ significantly, first obtain a rough value of the refractive index by measuring the thin one, and then determine the integer part of M when measuring the thicker one uniquely using the previous value do it.

【0023】上述したように、媒質の長さLと干渉縞の
次数Mを求めることで、上記(2)〜(4)式から波長
λ2 における媒質の屈折率n2 を簡便に得ることができ
るのである。
As described above, by obtaining the length L of the medium and the order M of the interference fringes, the refractive index n 2 of the medium at the wavelength λ 2 can be easily obtained from the above equations (2) to (4). You can do it.

【0024】上記原理に基づく屈折率の測定方法を具現
化した屈折率計の第1実施例を図1により説明する。
A first embodiment of a refractometer which embodies a method of measuring a refraction index based on the above principle will be described with reference to FIG.

【0025】この干渉計において、レーザ光源1より出
力されたレーザ光は、第1レンズ2aを経た後に第1波
長変換素子3aに入射し、該入射光を基本波とする第2
高調波が発生され、第2レンズ2bによってコリメート
され、この第2高調波の一部は第1ビームスプリッタ4
aによって反射されて第2ビームスプリッタ4bへ向
い、ほとんどの光(約96%程度)は上記第1ビームス
プリッタ4aを透過する。該第1ビームスプリッタ4a
を透過した基本波と第2高調波は空気中を伝搬して反射
鏡5で反射され、往路と略々平行な伝搬路を経て第2ビ
ームスプリッタ4bへ至る。なお、図面に示す反射鏡5
は、2枚の鏡面より構成するものとし、これら二面当た
るレーザ光の反射角を適宜に調整(例えば2枚の鏡を9
0゜に配置すると共に、レーザ光の入射角を45゜に設
定)することで、往路と復路とを略々平行にする。ま
た、本実施例における媒質の長さLは、第1ビームスプ
リッタ4aから反射鏡5に到達するまでの距離である。
In this interferometer, the laser light output from the laser light source 1 enters the first wavelength conversion element 3a after passing through the first lens 2a, and the second light having the incident light as a fundamental wave.
A harmonic is generated and collimated by the second lens 2b, and a part of this second harmonic is generated by the first beam splitter 4
Most of the light (about 96%) is reflected by a toward the second beam splitter 4b and passes through the first beam splitter 4a. The first beam splitter 4a
The fundamental wave and the second harmonic wave that have passed through are transmitted through the air and are reflected by the reflecting mirror 5, and reach the second beam splitter 4b through a propagation path that is substantially parallel to the forward path. The reflecting mirror 5 shown in the drawing
Is composed of two mirror surfaces, and the reflection angle of the laser light which strikes these two surfaces is adjusted appropriately (for example, two mirrors are
By arranging the laser beam at 0 ° and setting the incident angle of the laser beam at 45 °, the forward path and the return path are made substantially parallel. The length L of the medium in this embodiment is the distance from the first beam splitter 4a to the reflecting mirror 5.

【0026】上記第2ビームスプリッタ4bへ到達した
基本波と第2高調波の大部分(約96%程度)は第2ビ
ームスプリッタ4bを透過し、第2集光レンズ2bを経
て第2波長変換素子3bの中心部に集光されて、基本波
の一部が第2高調波に変換される。斯くして、第2波長
変換素子3bに入射した第2高調波と第2波長変換素子
3b内で変換された第2高調波とが干渉することとな
り、該第2高調波の干渉に基づく干渉縞信号のみを第1
フィルタ6aによって選択透過させ、第1光電検出器7
aによって干渉縞信号を光電検出する。そして、第1光
電検出器7aによって光電検出された干渉縞検出信号は
データ解析装置8へ供給され、光路の長さLと関連した
干渉縞の位相(端数)が測定される。
Most of the fundamental wave and the second harmonic wave (about 96%) that have reached the second beam splitter 4b are transmitted through the second beam splitter 4b, passed through the second condenser lens 2b, and converted into the second wavelength. The light is focused on the center of the element 3b, and a part of the fundamental wave is converted into the second harmonic. Thus, the second harmonic wave incident on the second wavelength conversion element 3b and the second harmonic wave converted in the second wavelength conversion element 3b interfere with each other, and the interference based on the interference of the second harmonic wave. Stripe signal only first
The first photoelectric detector 7 is selectively transmitted by the filter 6a.
The interference fringe signal is photoelectrically detected by a. Then, the interference fringe detection signal photoelectrically detected by the first photoelectric detector 7a is supplied to the data analyzer 8, and the phase (fractional fraction) of the interference fringe associated with the length L of the optical path is measured.

【0027】なお、上記の測定を行う際には、第1,第
2ビームスプリッタ4a,4b間に設けたシャッタ9を
閉じておくものとし、第1ビームスプリッタ4aで反射
された基本波と第2高調波が第2ビームスプリッタ4b
へ到達することがないようにしてある。
When performing the above measurement, the shutter 9 provided between the first and second beam splitters 4a and 4b is closed, and the fundamental wave reflected by the first beam splitter 4a and the first The second harmonic is the second beam splitter 4b
I try not to reach.

【0028】次いで、上記シャッタ9を開くと、第1ビ
ームスプリッタ4aで反射される基本波および第2高調
波は第2ビームスプリッタ4bへ到達し、反射鏡5で反
射された基本波および第2高調波と干渉し、第2フィル
タ6bを選択的に透過した第2高調波の干渉縞信号のみ
が第2光電検出器7bで光電検出され、光電検出信号を
データ解析装置8へ供給する。そして、レーザ光源1の
光周波数をドライバ10によって予め定めたΔνだけ走
査し、このときに発生する干渉縞の位相変化を測定する
ことにより、光路の長さLを決定するのである。また、
この測定値Lと上記のようにして得られた干渉縞の端数
(位相)の測定値とから、空気の屈折率を算出すること
により、媒質たる空気の屈折率を求めることができるの
である。なお、干渉縞の整数部を求めるには、反射鏡5
の配設位置を変えるだけでよいので、従来の2色干渉計
のように、媒質の長さを定速度で変化させながら測定す
るような煩雑さがない。
Next, when the shutter 9 is opened, the fundamental wave and the second harmonic reflected by the first beam splitter 4a reach the second beam splitter 4b, and the fundamental wave and the second harmonic reflected by the reflecting mirror 5 are reached. Only the interference fringe signal of the second harmonic that interferes with the harmonic and selectively passes through the second filter 6b is photoelectrically detected by the second photoelectric detector 7b, and the photoelectric detection signal is supplied to the data analyzer 8. Then, the optical frequency of the laser light source 1 is scanned by the driver 10 by a predetermined Δν, and the phase change of the interference fringes generated at this time is measured to determine the length L of the optical path. Also,
The refractive index of air as a medium can be obtained by calculating the refractive index of air from the measured value L and the measured value of the fraction (phase) of the interference fringes obtained as described above. In addition, in order to obtain the integer part of the interference fringe, the reflection mirror 5
Since it suffices to change the arrangement position of No. 3, there is no need to perform the measurement while changing the length of the medium at a constant speed unlike the conventional two-color interferometer.

【0029】図2に示す第2実施例は、固体の屈折率を
測定するための屈折率計であり、上記第1実施例と同様
の構成については、同一の符号を付して説明を省略す
る。
The second embodiment shown in FIG. 2 is a refractometer for measuring the refractive index of a solid. The same components as those in the first embodiment are designated by the same reference numerals and their description is omitted. To do.

【0030】第1ビームスプリッタ4aへ到達した光
(基本波と第2高調波)の一部は、該第1ビームスプリ
ッタ4aによって反射され、開状態の第1シャッタ9a
及び第3レンズ2cを介して、基本波を反射する第1ダ
イクロイックミラー11aへ到達し、該第1ダイクロイ
ックミラー11aを透過した第2高調波の大部分は第2
波長変換素子3bの中心部に集光され、ビームスプリッ
タ4へ至る。一方、第1ビームスプリッタ4aを透過し
た大部分の光(基本波と第2高調波)は透光性の被測定
媒質12中を伝搬し、反射鏡5で反射された後に再び被
測定媒質12中を伝搬し、第4レンズ2dを介して基本
波を透過する第2ダイクロイックミラー11bへ到達す
る。
A part of the light (fundamental wave and second harmonic) reaching the first beam splitter 4a is reflected by the first beam splitter 4a, and the first shutter 9a in the open state.
And, most of the second harmonic wave that reaches the first dichroic mirror 11a that reflects the fundamental wave through the third lens 2c and is transmitted through the first dichroic mirror 11a is the second dichroic mirror 11a.
The light is condensed at the center of the wavelength conversion element 3b and reaches the beam splitter 4. On the other hand, most of the light (fundamental wave and second harmonic) that has passed through the first beam splitter 4a propagates in the transmissive medium 12 to be measured, is reflected by the reflecting mirror 5, and then is again measured medium 12. It propagates through and reaches the second dichroic mirror 11b that transmits the fundamental wave through the fourth lens 2d.

【0031】上記第2ダイクロイックミラー11bへ到
達した基本波は、その周波数特性から第2ダイクロイッ
クミラー11bを透過し、開状態の第2シャッタ9bを
介して第1ダイクロイックミラー11aへ到達し、該第
1ダイクロイックミラー11aで反射され、第2波長変
換素子3bの中心部に集光され、ビームスプリッタ4へ
至る。一方、第2ダイクロイックミラー11bへ到達し
た第2高調波は、その波長特性から第2ダイクロイック
ミラー11bで反射し、反射鏡13によって進行方向を
変化させられて音響光学変調器14に到達し、該音響光
学変調器14によって光周波数がシフトされ、ビームス
プリッタ4に至る。なお、本実施例におけるビームスプ
リッタ4は透過率と反射率が略々半々であるハーフミラ
ーを用いるものとしてある。
The fundamental wave reaching the second dichroic mirror 11b passes through the second dichroic mirror 11b due to its frequency characteristic, reaches the first dichroic mirror 11a via the second shutter 9b in the open state, and The light is reflected by the 1-dichroic mirror 11a, condensed on the central portion of the second wavelength conversion element 3b, and reaches the beam splitter 4. On the other hand, the second harmonic wave that has reached the second dichroic mirror 11b is reflected by the second dichroic mirror 11b due to its wavelength characteristic, is changed in traveling direction by the reflection mirror 13, and reaches the acousto-optic modulator 14, The optical frequency is shifted by the acousto-optic modulator 14 and reaches the beam splitter 4. The beam splitter 4 in this embodiment uses a half mirror whose transmittance and reflectance are approximately half and half.

【0032】上記のような3つの異なるルートから得ら
れた三種類の第2高調波がビームスプリッタ4で干渉す
ることによりビート信号が発生され、該ビート信号は第
5レンズ2eを経てフィルタ6へ至り、該フィルタ6を
通過した第2高調波のビート信号のみが光電検出器7へ
到達して光電検出され、光電検出信号が2位相型ロック
イン増幅器等の位相測定器15へ供給される。そして、
位相測定器15はドライブ発振器16からのドライブ信
号を参照信号として干渉縞の位相を測定し、測定値をデ
ータ解析装置8へ供給する。
A beat signal is generated by interference of the three kinds of second harmonics obtained from the three different routes as described above in the beam splitter 4, and the beat signal is passed through the fifth lens 2e to the filter 6. Then, only the beat signal of the second harmonic wave that has passed through the filter 6 reaches the photoelectric detector 7 and is photoelectrically detected, and the photoelectric detection signal is supplied to the phase measuring device 15 such as a two-phase lock-in amplifier. And
The phase measuring device 15 measures the phase of the interference fringe using the drive signal from the drive oscillator 16 as a reference signal, and supplies the measured value to the data analysis device 8.

【0033】測定に際しては、先ず、第1シャッタ9a
を閉じると共に第2シャッタ9bを開き、ヘテロダイン
干渉によって生ずる干渉縞の端数(位相)を測定し、干
渉縞の次数を求める。次いで、第1シャッタ9aを開く
と共に第2シャッタ9bを閉じた状態でレーザ光源1の
光周波数をドライバ10により走査し、この時に発生す
る干渉縞の位相変化を測定することにより被測定媒質1
2の長さLを求める。斯くして、干渉縞の次数と被測定
媒質12の長さLとから被測定媒質12の屈折率が得ら
れるのである。なお、本第2実施例においては、被測定
媒質12とは異なる媒質(例えば空気)中をレーザ光が
通ることとなるために、若干の誤差が生じるが、被測定
媒質12を置かない状態での測定値を以てプリセットす
ることができる。また、被測定媒質としての気体や液体
を収納するために用いる容器によって生じる誤差も同様
にプリセット可能である。
In the measurement, first, the first shutter 9a
Is closed and the second shutter 9b is opened, the fraction (phase) of the interference fringes generated by the heterodyne interference is measured, and the order of the interference fringes is obtained. Then, the driver 10 scans the optical frequency of the laser light source 1 with the first shutter 9a opened and the second shutter 9b closed, and the phase change of the interference fringes generated at this time is measured to measure the medium 1 to be measured.
Find the length L of 2. In this way, the refractive index of the measured medium 12 can be obtained from the order of the interference fringes and the length L of the measured medium 12. In the second embodiment, since the laser light passes through a medium (for example, air) different from the medium to be measured 12, some error occurs, but the medium to be measured 12 is not placed. It can be preset with the measured value of. Further, the error caused by the container used to store the gas or the liquid as the medium to be measured can be preset as well.

【0034】図3に示す第3実施例は、加工表面の性状
特性を測定するための性状特性測定装置であり、上記第
1,第2実施例と同様の構成については、同一の符号を
付して説明を省略する。
The third embodiment shown in FIG. 3 is a property measuring apparatus for measuring the property of the machined surface. The same components as those in the first and second embodiments are designated by the same reference numerals. And the description is omitted.

【0035】第2レンズ2bによってコリメートされた
光(基本波と第2高調波)は、ステージ17に定置され
た被測定媒質12′の表面へ照射され、該被測定媒質1
2′の表面で反射された反射光は、第1反射鏡13aお
よび第3レンズ2cを介してダイクロイックミラー11
へ至る。該ダイクロイックミラー11を透過した第2高
調波は音響光学変調器14に入射して、光周波数シフト
を受けた後、第2反射鏡13bを経てビームスプリッタ
4へ到達する。一方、ダイクロイックミラー11の表面
で反射した基本波は第2波長変換素子3bの中心部に集
光され、第3反射鏡13cを経てビームスプリッタ4へ
到達する。
The light (fundamental wave and second harmonic) collimated by the second lens 2b is applied to the surface of the medium to be measured 12 'fixed on the stage 17, and the medium to be measured 1 is measured.
The reflected light reflected by the surface of 2'is passed through the first reflecting mirror 13a and the third lens 2c, and then the dichroic mirror 11 is formed.
To The second harmonic wave that has passed through the dichroic mirror 11 enters the acousto-optic modulator 14, undergoes an optical frequency shift, and then reaches the beam splitter 4 through the second reflecting mirror 13b. On the other hand, the fundamental wave reflected on the surface of the dichroic mirror 11 is condensed on the central portion of the second wavelength conversion element 3b and reaches the beam splitter 4 via the third reflecting mirror 13c.

【0036】上記のようにしてビームスプリッタ4へ至
った2種類の第2高調波が干渉することによりビート信
号が発生し、該ビート信号は第4レンズ2dを経て基本
波除去用のフィルタ7を透過して、検出器8によって光
電検出され、該検出信号は位相測定器15によって位相
測定され、データ解析装置8へ供給される。ここで、ス
テージ17を移動させつつ、レーザビームにより被測定
媒質12′の表面を走査すると、表面の分散特性に応じ
てビート信号の位相が変化し、イオンビームなどによる
改質表面の性状特性を測定することができる。
A beat signal is generated by the interference of the two kinds of second harmonics that have reached the beam splitter 4 as described above, and the beat signal passes through the fourth lens 2d and passes through the filter 7 for removing the fundamental wave. The light is transmitted and photoelectrically detected by the detector 8. The detected signal is phase-measured by the phase measuring device 15 and supplied to the data analysis device 8. Here, when the surface of the measured medium 12 'is scanned with the laser beam while moving the stage 17, the phase of the beat signal changes according to the dispersion characteristic of the surface, and the property characteristic of the modified surface by the ion beam or the like is changed. Can be measured.

【0037】なお、上記した各実施例においては、非線
形光学結晶であるKTiOPO4 等を波長変換素子とし
て用いることにより、基本波から第2高調波を発生させ
て測定に供するものとしたが、第3高調波や第4高調波
等のより高次の高調波を用いて屈折率の測定や性状特性
の測定を行うようにしても良い。斯くすれば、干渉縞の
端数(位相)の測定精度が更に高まるので、高精度の屈
折率・性状特性の測定に一層好適なものとなる。
In each of the above embodiments, the nonlinear optical crystal such as KTiOPO 4 is used as the wavelength conversion element to generate the second harmonic from the fundamental wave for the measurement. You may make it measure a refractive index and a property characteristic using higher harmonics, such as a 3rd harmonic and a 4th harmonic. By doing so, the accuracy of measurement of the fraction (phase) of the interference fringes is further enhanced, which is more suitable for highly accurate measurement of the refractive index and property characteristics.

【0038】[0038]

【発明の効果】以上説明したように、本発明に係る屈折
率の測定方法においては、被測定媒質を通過する前の基
本波より生じさせた高調波と被測定媒質を通過した後の
基本波より生じさせた高調波とを干渉させて得た干渉縞
信号に基づいて、精度の高い干渉縞の次数を得ることが
できると共に、光源の光周波数を所定幅だけ変化させた
ときの干渉縞の位相変化に基づいて被測定媒質の長さを
簡便に求めることができ、高精度且つ簡便に得られた干
渉縞の次数と被測定媒質の長さとを用いて、被測定媒質
の屈折率を求められるのである。しかも、被測定媒質の
長さを求めるために大がかりな測定系を必要としないの
で、安価な屈折率測定装置の供給が可能になると共に、
被測定媒質の性質に依存することなく、気体・液体・固
体のいずれであっても測定対象とすることができる。
As described above, in the refractive index measuring method according to the present invention, the harmonic generated from the fundamental wave before passing through the medium to be measured and the fundamental wave after passing through the medium to be measured. Based on the interference fringe signal obtained by interfering with the generated higher harmonics, it is possible to obtain a highly accurate order of the interference fringes and also to obtain the interference fringes when the optical frequency of the light source is changed by a predetermined width. The length of the medium to be measured can be easily obtained based on the phase change, and the refractive index of the medium to be measured is obtained by using the order of the interference fringes and the length of the medium to be measured, which are obtained with high accuracy and ease. Be done. Moreover, since a large-scale measurement system is not required to obtain the length of the medium to be measured, it becomes possible to supply an inexpensive refractive index measuring device,
Regardless of the property of the medium to be measured, any of gas, liquid, and solid can be measured.

【0039】また、本発明に係る性状特性の測定方法に
おいては、ヘテロダイン干渉によって生じさせた干渉縞
信号に基づいて干渉縞の位相を求め、該干渉縞の位相に
基づいて被測定媒質表面の性状特性を測定するものとし
たので、光源から被測定媒質表面までの距離を一定に保
持した状態で走査することにより、2次元的な領域での
性状特性を簡便に得ることができる。
Further, in the property measuring method according to the present invention, the phase of the interference fringe is determined based on the interference fringe signal generated by the heterodyne interference, and the property of the surface of the medium to be measured is determined based on the phase of the interference fringe. Since the characteristic is measured, the characteristic characteristic in the two-dimensional region can be easily obtained by scanning while keeping the distance from the light source to the surface of the medium to be measured constant.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例に係る屈折率測定装置の概略構成を
示す機能ブロック図である。
FIG. 1 is a functional block diagram showing a schematic configuration of a refractive index measuring device according to a first embodiment.

【図2】第2実施例に係る屈折率測定装置の概略構成を
示す機能ブロック図である。
FIG. 2 is a functional block diagram showing a schematic configuration of a refractive index measuring device according to a second embodiment.

【図3】第3実施例に係る加工表面の性状特性測定装置
の概略構成を示す機能ブロック図である。
FIG. 3 is a functional block diagram showing a schematic configuration of a machined surface property characteristic measuring apparatus according to a third embodiment.

【符号の説明】[Explanation of symbols]

1 レーザ光源 3a 第1波長変換素子 3b 第2波長変換素子 4a 第1ビームスプリッタ 4b 第2ビームスプリッタ 5 反射鏡 7a 第1光電検出器 7b 第2光電検出器 8 データ解析装置 10 ドライバ 1 Laser Light Source 3a First Wavelength Conversion Element 3b Second Wavelength Conversion Element 4a First Beam Splitter 4b Second Beam Splitter 5 Reflector 7a First Photoelectric Detector 7b Second Photoelectric Detector 8 Data Analysis Device 10 Driver

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光源より得た光を基本波とし、被測定媒
質を通過する前の基本波から生じさせた高調波と、非測
定媒質を通過した基本波から生じさせた高調波とを干渉
させ、該干渉によって生じた干渉縞信号に基づいて干渉
縞の次数を求め、上記光源の周波数を変化させることに
基づく干渉縞の変化に基づいて被測定媒質の長さを求
め、上記干渉縞の次数と被測定媒質の長さとを用いて被
測定媒質の屈折率を測定するようにしたことを特徴とす
る屈折率の測定方法。
1. A light obtained from a light source is used as a fundamental wave, and a harmonic generated from a fundamental wave before passing through a medium to be measured and a harmonic generated from a fundamental wave passing through a non-measuring medium interfere with each other. Then, the order of the interference fringes is obtained based on the interference fringe signal generated by the interference, and the length of the medium to be measured is obtained based on the change of the interference fringes caused by changing the frequency of the light source. A refractive index measuring method, characterized in that the refractive index of the medium to be measured is measured using the order and the length of the medium to be measured.
【請求項2】 基本波あるいは高調波の周波数をシフト
させることで、ヘテロダイン干渉を生ぜしめ、該ヘテロ
ダイン干渉による干渉縞を用いて、干渉縞の位相の測定
精度を高めるようにしたことを特徴とする請求項1に記
載の屈折率の測定方法。
2. The frequency of a fundamental wave or a harmonic wave is shifted to generate heterodyne interference, and the interference fringes due to the heterodyne interference are used to improve the accuracy of measuring the phase of the interference fringes. The method for measuring the refractive index according to claim 1.
【請求項3】 高調波は、非線形光学結晶によって生ぜ
しめた第2高調波であることを特徴とする請求項1又は
請求項2に記載の屈折率の測定方法。
3. The method for measuring the refractive index according to claim 1, wherein the higher harmonic wave is a second higher harmonic wave generated by a nonlinear optical crystal.
【請求項4】 光源からの基本波を被測定媒質表面へ照
射し、被測定媒質表面で反射された反射光から生じさせ
た高調波と、被測定媒質表面で反射された反射光の周波
数をシフトさせた基本波とをヘテロダイン干渉させ、該
干渉によって生じた干渉縞信号に基づいて干渉縞の位相
を求め、該干渉縞の位相に基づいて被測定媒質表面の性
状特性を測定するようにしたことを特徴とする性状特性
の測定方法。
4. A fundamental wave from a light source is applied to the surface of the medium to be measured, and the harmonics generated from the reflected light reflected on the surface of the medium to be measured and the frequency of the reflected light reflected on the surface of the medium to be measured are displayed. Heterodyne interference with the shifted fundamental wave, the phase of the interference fringe is determined based on the interference fringe signal generated by the interference, and the property characteristic of the surface of the medium to be measured is measured based on the phase of the interference fringe. A method for measuring property characteristics characterized by the above.
JP6087984A 1994-03-31 1994-03-31 Method of measuring refractive index and method of measuring property characteristics Expired - Lifetime JP2705752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6087984A JP2705752B2 (en) 1994-03-31 1994-03-31 Method of measuring refractive index and method of measuring property characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6087984A JP2705752B2 (en) 1994-03-31 1994-03-31 Method of measuring refractive index and method of measuring property characteristics

Publications (2)

Publication Number Publication Date
JPH07270313A true JPH07270313A (en) 1995-10-20
JP2705752B2 JP2705752B2 (en) 1998-01-28

Family

ID=13930089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6087984A Expired - Lifetime JP2705752B2 (en) 1994-03-31 1994-03-31 Method of measuring refractive index and method of measuring property characteristics

Country Status (1)

Country Link
JP (1) JP2705752B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4051443B2 (en) * 2003-03-20 2008-02-27 独立行政法人産業技術総合研究所 Method and apparatus for accurately measuring group refractive index of optical material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350705A (en) * 1986-08-21 1988-03-03 Chino Corp Apparatus for measuring film thickness
JPH0431746A (en) * 1990-05-28 1992-02-03 Res Dev Corp Of Japan Apparatus for detecting phase image using heterodyne-detecting light receiving device
JPH04121642A (en) * 1990-09-12 1992-04-22 Brother Ind Ltd Light integrated type heterodyne interference refractive index distribution measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350705A (en) * 1986-08-21 1988-03-03 Chino Corp Apparatus for measuring film thickness
JPH0431746A (en) * 1990-05-28 1992-02-03 Res Dev Corp Of Japan Apparatus for detecting phase image using heterodyne-detecting light receiving device
JPH04121642A (en) * 1990-09-12 1992-04-22 Brother Ind Ltd Light integrated type heterodyne interference refractive index distribution measuring device

Also Published As

Publication number Publication date
JP2705752B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
KR100328007B1 (en) Superheterodyne method and apparatus for measuring the refractive index of air using multiple-pass interferometry
KR100322938B1 (en) Superheterodyne interferometry and method for compensating the refractive index of air using electronic frequency multiplication
US6882432B2 (en) Frequency transform phase shifting interferometry
US5187543A (en) Differential displacement measuring interferometer
US8659761B2 (en) Method and apparatus for measuring displacement of a sample using a wire grid polarizer to generate interference light
EP0281385A2 (en) Plane mirror interferometer
US7030995B2 (en) Apparatus and method for mechanical phase shifting interferometry
US5218424A (en) Flying height and topography measuring interferometer
TW201502491A (en) Method for measuring refractive index, refractive index measuring device, and method for producing optical element
Lin et al. Measurement of small displacement based on surface plasmon resonance heterodyne interferometry
Makosch et al. Surface profiling by electro-optical phase measurements
JPH06229922A (en) Very accurate air refractometer
Jungerman et al. Phase sensitive scanning optical microscope
US5074666A (en) High stability interferometer for measuring small changes in refractive index and measuring method using the interferometer
Ishii et al. New method for interferometric measurement of gauge blocks without wringing onto a platen
JP2002333371A (en) Wavemeter
CN115597511A (en) Grating pitch measuring device and method
JP2705752B2 (en) Method of measuring refractive index and method of measuring property characteristics
KR102079588B1 (en) Method measuring thickness and refractive index of planar samples based on fabry-perot interferometer
JP4613310B2 (en) Surface shape measuring device
JPS61155902A (en) Interference measuring apparatus
JPH05272913A (en) Highly-accurate gage interferometer
JP3493329B2 (en) Planar shape measuring device, planar shape measuring method, and storage medium storing program for executing the method
US20060250619A1 (en) Method and system for interferometric height measurment
WO1998008047A1 (en) Superheterodyne method and apparatus for measuring the refractive index of air using multiple-pass interferometry

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term