JPH07268452A - Electrically conductive spring material and its production - Google Patents

Electrically conductive spring material and its production

Info

Publication number
JPH07268452A
JPH07268452A JP5903994A JP5903994A JPH07268452A JP H07268452 A JPH07268452 A JP H07268452A JP 5903994 A JP5903994 A JP 5903994A JP 5903994 A JP5903994 A JP 5903994A JP H07268452 A JPH07268452 A JP H07268452A
Authority
JP
Japan
Prior art keywords
alloy
conductive spring
spring material
temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5903994A
Other languages
Japanese (ja)
Inventor
Yuichi Taniguchi
口 裕 一 谷
Michio Endo
藤 道 雄 遠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5903994A priority Critical patent/JPH07268452A/en
Publication of JPH07268452A publication Critical patent/JPH07268452A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain a material constituted of an Fe-Cu alloy and having high spring limit value and high electrical conductivity. CONSTITUTION:A material contg., by weight, 30 to 70% Cu, 0.2 to 5.0% Al, 3.0 to 9.0% Cr, and the balance Fe with inevitable impurities is subjected to aging treatment at 300 to 500 C for 30 to 180 min. This is the electrically conductive spring material furthermore contg., as alloy components, respectively 0.1 to 3.0% of one or >=two kinds among Mn, Si and Zn.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導電性と強度の双方に
優れた導電性バネ材料およびその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive spring material excellent in both conductivity and strength and a method for manufacturing the same.

【0002】[0002]

【従来の技術】バネ接点材料は、スイッチやコネクター
に広く使用され、電気伝導度と強度の双方の特性が要求
される。これらの材料は、一般には、リン青銅や洋白の
Cuを主成分とするCu系材料と、42合金(42%N
i−Fe)やコバール金属のFeを主成分とするFe系
材料の2つに大別される。
2. Description of the Related Art Spring contact materials are widely used in switches and connectors and are required to have both electrical conductivity and strength. These materials are generally Cu-based materials containing phosphor bronze or nickel-white Cu as a main component and 42 alloy (42% N
i-Fe) and Fe-based materials whose main component is Fe of Kovar metal.

【0003】Cu系材料は、主に導電性を重視する用
途、またFe系材料は強度を重視する用途にそれぞれ適
用されるが、これら2つの特性を併せもつ材料は、見当
らない。特にCuを主体としたバネ接点材料は、電気伝
導度は良好であるが、強度が乏しいため最近の電子部品
の小型化に伴って一層の強度向上が求められている。こ
れに応えた材料としてベリリウム銅が挙げられるが、J
IS1720に規定されるこの合金は、非常に高価であ
るため使用分野が限定されている。
Cu-based materials are mainly used for the purpose of emphasizing conductivity, and Fe-based materials are applied for the purpose of emphasizing the strength, but no material having these two characteristics is found. In particular, a spring contact material mainly composed of Cu has good electric conductivity, but is poor in strength, so that further improvement in strength is required in accordance with recent miniaturization of electronic parts. Beryllium copper can be cited as a material that meets this requirement.
This alloy specified in IS1720 is very expensive and thus has limited fields of use.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上述した現
状に鑑み、電気伝導度と強度とを併せ持ったバネ接点材
料およびその製造方法を提供することを目的としてい
る。
SUMMARY OF THE INVENTION In view of the above situation, it is an object of the present invention to provide a spring contact material having both electric conductivity and strength and a method for manufacturing the spring contact material.

【0005】[0005]

【課題を解決するための手段】電気伝導度を挙げるには
添加元素を少なくし、限りなく純Cuに近ずけることが
望ましい。一方、強度向上のためにはマトリックスに歪
を加えたり、転位の動きを抑えるために、種々の元素を
添加して合金化する必要がある。このように、電気伝導
度と強度の2つの特性を同時に得るには相反する方法を
取らざるを得ず、実現は非常に難しい。本発明者等は、
このような課題を解決するため、電気伝導度の良い相と
強度の高い相の2相からなる合金の設計に着目し、Cu
−Fe系合金にその可能性を見い出した。
In order to increase the electric conductivity, it is desirable to reduce the number of additive elements so as to approach pure Cu as much as possible. On the other hand, in order to improve the strength, it is necessary to add strain to the matrix or to add various elements to form an alloy in order to suppress the movement of dislocations. As described above, in order to obtain the two characteristics of electric conductivity and strength at the same time, there is no choice but to take contradictory methods, which is very difficult to realize. The present inventors
In order to solve such a problem, attention has been paid to the design of an alloy composed of two phases, that is, a phase having good electric conductivity and a phase having high strength.
The possibility was found in the -Fe alloy.

【0006】本発明者等は、FeとCuは二相分離を起
す元素であって、常温では殆んど固溶せず、1000℃
でもCu中へのFeの固溶は3%程度にとどまること、
すなわち、金属組織としてはFe相とCu相の混合体と
なっていて、その混合割合は温度の影響をあまり受け
ず、ほぼ一定であることに注目した。そして、本発明は
導電性をCu相により、また強度をFe相により確保す
ることによって完成に至ったのである。
The inventors of the present invention have found that Fe and Cu are elements that cause two-phase separation.
However, the solid solution of Fe in Cu should be about 3%,
That is, it was noted that the metallic structure was a mixture of Fe phase and Cu phase, and the mixing ratio thereof was not affected by temperature so much and was almost constant. Then, the present invention has been completed by securing the conductivity by the Cu phase and the strength by the Fe phase.

【0007】本発明は、下記の事項をその要旨とするも
のである。 重量%で、Cu 30〜70%、Al 0.2〜
5.0%、Cr 3.0〜9.0%、あるいはさらにM
n、SiおよびZnのうち1種または2種以上を0.1
〜3.0%、残部Feおよび不可避的不純物からなる合
金であって、300〜500℃で30〜180分時効処
理したことを特徴とする導電性バネ材料の製造方法。 重量%で、Cu 30〜70%、Al 0.2〜
5.0%、Cr 3.0〜9.0%、あるいは、さらに
Mn、SiおよびZnのうち1種または2種以上を0.
1〜3.0重量%含有し、残部Feおよび不可避的不純
物からなる合金を1400〜1700℃で溶解後、鋳型
に注入、冷却し、次いで800℃以上の温度で熱間圧延
にて板状にしてから冷間圧延し、所定の幅にスリット切
断後、さらに300〜500℃の温度で30〜180分
間炉内に保持することを特徴とする導電性バネ材料の製
造方法。
The present invention has the following matters as its gist. % By weight, Cu 30-70%, Al 0.2-
5.0%, Cr 3.0-9.0%, or even M
One or more of n, Si and Zn is 0.1
˜3.0%, the balance Fe and unavoidable impurities, and an aging treatment at 300 to 500 ° C. for 30 to 180 minutes. % By weight, Cu 30-70%, Al 0.2-
5.0%, Cr 3.0 to 9.0%, or 1% or more of Mn, Si and Zn to 0.
An alloy containing 1 to 3.0% by weight and the balance Fe and unavoidable impurities is melted at 1400 to 1700 ° C., poured into a mold, cooled, and then hot rolled at a temperature of 800 ° C. or more to form a plate. And then cold rolling, slitting into a predetermined width, and further holding in a furnace at a temperature of 300 to 500 ° C. for 30 to 180 minutes.

【0008】以下に、本発明を詳細に説明する。まず、
本発明合金の添加元素の役割およびその組成範囲につい
て述べる。Cuは、電気伝導度を高める元素であるが、
70%超では常温および高温強度が低下し、また価格も
上昇する。30%未満では電気伝導度が実用的でなくな
り、耐酸化性も劣化する。したがって、30〜70%を
適性範囲とした。この範囲内でCu濃度を選択でき、電
気伝導度を重視する場合は70%に近いものがよく、一
方、強度を重視する場合は30%に近い低いものが適し
ている。
The present invention will be described in detail below. First,
The role of the additive element of the alloy of the present invention and its composition range will be described. Cu is an element that enhances electrical conductivity,
If it exceeds 70%, the strength at room temperature and high temperature will decrease, and the price will increase. If it is less than 30%, the electrical conductivity becomes unpractical and the oxidation resistance also deteriorates. Therefore, 30 to 70% is set as the appropriate range. The Cu concentration can be selected within this range, and when the importance is attached to the electric conductivity, it is preferably close to 70%. On the other hand, when the importance is attached to the strength, a low value close to 30% is suitable.

【0009】Alは、高温での耐酸化性および加工性の
改善に寄与する。5%を越えるとバネ接点材料に必要な
電気伝導度が悪くなり、またハンダ濡れ性の悪化により
不良率が高くなる。このため、0.2〜5.0%の範囲
に限定した。Crは、Fe相に固溶し、Fe相の耐錆性
を向上する。また、高温での耐酸化性に寄与する。Cr
3%以下ではこれらの効果が薄くなり、一方、9%を越
えると加工性が低減するので、3.0〜9.0%を適性
範囲とした。
Al contributes to improvement of oxidation resistance and workability at high temperature. If it exceeds 5%, the electrical conductivity required for the spring contact material deteriorates, and the solder wettability deteriorates, resulting in a high defective rate. Therefore, the range is limited to 0.2 to 5.0%. Cr dissolves in the Fe phase and improves the rust resistance of the Fe phase. It also contributes to oxidation resistance at high temperatures. Cr
If the amount is 3% or less, these effects are weakened, while if it exceeds 9%, the workability is reduced. Therefore, 3.0 to 9.0% is set as an appropriate range.

【0010】Mn、SiおよびZnは、いずれもハンダ
濡れ性に寄与し、また耐酸化性に優れている。これらの
元素のうち、1種でも2種以上でも、0.1%以下では
その効果がなく、また3%以上では電気伝導度が低下す
るので、0.1〜3%を適性範囲とした。
All of Mn, Si and Zn contribute to solder wettability and are excellent in oxidation resistance. Of these elements, one or two or more of them have no effect at 0.1% or less, and the electrical conductivity decreases at 3% or more, so 0.1 to 3% was made the appropriate range.

【0011】バネ材料として使用するためには強度の増
大を図る必要があるが、そのための方法として添加元素
を時効処理により析出させて転位の増殖を増し、析出強
化させた。また、これにより、電子の散乱を防止し、電
気伝導度を向上させる効果も得られることをねらった。
In order to use it as a spring material, it is necessary to increase the strength. As a method therefor, an additional element was precipitated by aging treatment to increase the dislocation growth and strengthen the precipitation. It was also aimed that the effect of preventing electron scattering and improving electric conductivity can be obtained.

【0012】バネ材料の強度やバネ特性に及ぼす時効処
理の影響について調査した結果を次に示す。本発明の合
金の組成範囲に含まれる合金、すなわちCu 50%、
Fe 40%、Cr 5%、Al 5%からなる合金を
各温度で1時間時効処理したときの時効温度と硬度およ
びバネ限界値との関係を、図1および図2に示す。な
お、バネ限界値は、材料がどの応力までバネ性を保持で
きるかの指標であり、試料が所定残留歪に達した時の荷
重から表面応力を算出して求める。例えば、リン青銅で
は25kg/mm2 、ベリリウム銅では70kg/mm
2 である。試験方法は、JIS H3130に規定され
ている。
The results of investigating the influence of the aging treatment on the strength and spring characteristics of the spring material are shown below. An alloy included in the composition range of the alloy of the present invention, ie, Cu 50%,
1 and 2 show the relationship between the aging temperature and the hardness and the spring limit value when an alloy consisting of 40% Fe, 5% Cr and 5% Al was aged at each temperature for 1 hour. The spring limit value is an index of how much stress the material can retain the spring property, and is calculated by calculating the surface stress from the load when the sample reaches a predetermined residual strain. For example, phosphor bronze is 25 kg / mm 2 , beryllium copper is 70 kg / mm 2 .
Is 2 . The test method is specified in JIS H3130.

【0013】図1および図2から、時効温度は200〜
700℃で効果があり、さらに好ましい範囲は200〜
500℃あることがわかる。
From FIG. 1 and FIG. 2, the aging temperature is 200 to
It is effective at 700 ° C., and a more preferable range is 200 to
It can be seen that the temperature is 500 ° C.

【0014】次に、本発明の合金の製造方法について述
べる。本発明の合金の成分範囲にはいる様にそれぞれの
金属を配合し、溶解する溶解雰囲気は、大気もしくは真
空、非酸化ガス雰囲気が可能である。1400〜170
0℃に昇温して溶解後、鋳型に注入し、冷却する。次い
で圧延温度800℃以上で熱間圧延を行い、数mm程度
の板に圧延後、冷間圧延を行い、所定の幅にスリット切
断する。
Next, a method for producing the alloy of the present invention will be described. The melting atmosphere in which the respective metals are mixed and melted so that they fall within the composition range of the alloy of the present invention can be the atmosphere, vacuum, or a non-oxidizing gas atmosphere. 1400-170
After the temperature is raised to 0 ° C. to dissolve, it is poured into a mold and cooled. Then, hot rolling is performed at a rolling temperature of 800 ° C. or higher, and after rolling to a plate of about several mm, cold rolling is performed and slit cutting is performed to a predetermined width.

【0015】その後、300〜500℃の温度範囲に制
御された炉に保持して、時効処理する。保持時間は30
分から3時間で可能だが、工業的には1時間が妥当であ
る。
After that, it is held in a furnace controlled in a temperature range of 300 to 500 ° C. and subjected to an aging treatment. Hold time is 30
It is possible from 3 minutes to 3 hours, but 1 hour is industrially appropriate.

【0016】[0016]

【実施例】以下に、本発明を実施例に基いてさらに説明
する。実施例1 表1に化学成分を示したCu−Al−Cr−Fe合金の
板状体を作成し、これから10mm幅×100mm長さ
の試料を切り出した。次いで、300℃で1時間、大気
炉中に保持して時効処理後、バネ限界値、硬度、電気伝
導度の各種特性を評価した。その結果を、時効処理しな
いものと併わせて、表2に示す。
EXAMPLES The present invention will be further described below based on examples. Example 1 A plate of a Cu-Al-Cr-Fe alloy whose chemical composition is shown in Table 1 was prepared, and a sample having a width of 10 mm and a length of 100 mm was cut out from the plate. Then, after being kept in an atmospheric furnace at 300 ° C. for 1 hour and subjected to an aging treatment, various characteristics such as a spring limit value, hardness, and electric conductivity were evaluated. The results are shown in Table 2 together with those not subjected to the aging treatment.

【0017】実施例2 Cu 52kg、Fe 43kg、Al 2.3kg、
Cr 5kg、およびMn 2.2kgを配合し、真空
炉で1600℃に昇温して溶解後、金型に注入した。冷
却後のこの化学成分は、表1に示した通りであり、実施
例1の成分にさらにMnを添加したものである。これか
ら、10mm幅×100mm長さの試料を切り出し、3
50℃で2時間時効処理したものと時効処理しないもの
を比較した。その結果を、表2に示す。
Example 2 Cu 52 kg, Fe 43 kg, Al 2.3 kg,
5 kg of Cr and 2.2 kg of Mn were mixed, heated to 1600 ° C. in a vacuum furnace to melt, and then injected into a mold. The chemical composition after cooling is as shown in Table 1, and Mn is further added to the composition of Example 1. From this, cut out a sample of 10 mm width x 100 mm length, 3
A comparison was made between those aged at 50 ° C. for 2 hours and those not aged. The results are shown in Table 2.

【0018】実施例3 表1に化学成分を示したCu−Al−Cr−Fe−Si
合金の板状体を作成し、これから幅10mm、長さ10
0mmの試料を切り出し、その後400℃で30分の時
効処理を行った。時効処理を行ったものとそうでないも
のについてのバネ限界値、引張強さ、電気伝導度の特性
値を、ハンダ濡れ性の試料結果と共に、表2に示す。ハ
ンダ濡れ性試料は、0.2gのハンダを試料中央部に置
き、200℃で30秒保持した後のハンダ広がり径を測
定したものである。
Example 3 Cu-Al-Cr-Fe-Si whose chemical components are shown in Table 1
Create an alloy plate, and from this, width 10 mm, length 10
A 0 mm sample was cut out and then subjected to an aging treatment at 400 ° C. for 30 minutes. Table 2 shows the spring limit value, tensile strength, and electrical conductivity characteristic values of the samples that were aged and those that were not, together with the results of the solder wettability samples. In the solder wettability sample, 0.2 g of solder was placed in the center of the sample, and the spread diameter of the solder was measured after holding at 200 ° C. for 30 seconds.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】表1および表2に示した結果から、本発明
合金の組成範囲の材料は強度とバネ特性に優れており、
またこれを時効処理すると著しく結果が増大することが
わかる。
From the results shown in Tables 1 and 2, the materials in the composition range of the alloy of the present invention are excellent in strength and spring characteristics,
It is also seen that aging treatment of this significantly increases the result.

【0022】[0022]

【発明の効果】以上説明した通り、本発明により、高バ
ネ限界値と高電気伝導度を併せもつ導電性バネ材料を提
供することが可能となった。
As described above, according to the present invention, it is possible to provide a conductive spring material having both a high spring limit value and a high electric conductivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明合金の硬度に及ぼす時効温度の影響を示
した図。
FIG. 1 is a diagram showing the effect of aging temperature on the hardness of the alloy of the present invention.

【図2】本発明合金のバネ限界値に及ぼす時効温度の影
響を示した図。
FIG. 2 is a diagram showing the effect of aging temperature on the spring limit value of the alloy of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22F 1/08 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C22F 1/08 B

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】重量%で、Cu 30〜70%、Al
0.2〜5.0%、Cr 3.0〜9.0%、残部Fe
および不可避的不純物からなる合金であって、300〜
500℃で30〜180分時効処理したことを特徴とす
る導電性バネ材料。
1. By weight percent, Cu 30-70%, Al
0.2-5.0%, Cr 3.0-9.0%, balance Fe
And an alloy consisting of unavoidable impurities, which is 300 to
A conductive spring material characterized by being aged for 30 to 180 minutes at 500 ° C.
【請求項2】前記合金が、さらにMn、SiおよびZn
のうち1種または2種以上を0.1〜3.0重量%含有
している請求項1に記載の導電性バネ材料。
2. The alloy further comprises Mn, Si and Zn.
The conductive spring material according to claim 1, containing 0.1 to 3.0% by weight of one kind or two or more kinds thereof.
【請求項3】重量%で、Cu 30〜70%、Al
0.2〜5.0%、Cr 3.0〜9.0%、残部Fe
および不可避的不純物からなる合金を1400〜170
0℃で溶解後、鋳型に注入、冷却し、次いで800℃以
上の温度で熱間圧延にて板状にしてから冷間圧延し、所
定の幅にスリット切断後、さらに300〜500℃の温
度で30〜180分間炉内に保持することを特徴とする
導電性バネ材料の製造方法。
3. By weight%, Cu 30-70%, Al
0.2-5.0%, Cr 3.0-9.0%, balance Fe
And an alloy consisting of inevitable impurities from 1400 to 170
After melting at 0 ° C, it is poured into a mold, cooled, and then hot-rolled at a temperature of 800 ° C or higher to form a plate, which is then cold-rolled, slit-cut to a predetermined width, and then at a temperature of 300 to 500 ° C. The method for producing a conductive spring material is characterized by holding in a furnace for 30 to 180 minutes.
【請求項4】前記合金が、さらにMn、SiおよびZn
のうち1種または2種以上を0.1〜3.0重量%含有
している請求項3に記載の導電性バネ材料の製造方法。
4. The alloy further comprises Mn, Si and Zn.
The method for producing a conductive spring material according to claim 3, wherein 0.1 to 3.0% by weight of one kind or two or more kinds is contained.
JP5903994A 1994-03-29 1994-03-29 Electrically conductive spring material and its production Withdrawn JPH07268452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5903994A JPH07268452A (en) 1994-03-29 1994-03-29 Electrically conductive spring material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5903994A JPH07268452A (en) 1994-03-29 1994-03-29 Electrically conductive spring material and its production

Publications (1)

Publication Number Publication Date
JPH07268452A true JPH07268452A (en) 1995-10-17

Family

ID=13101771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5903994A Withdrawn JPH07268452A (en) 1994-03-29 1994-03-29 Electrically conductive spring material and its production

Country Status (1)

Country Link
JP (1) JPH07268452A (en)

Similar Documents

Publication Publication Date Title
JP3699701B2 (en) Easy-to-process high-strength, high-conductivity copper alloy
JP3520046B2 (en) High strength copper alloy
JP2011241413A (en) Copper alloy for electronic device, method for producing copper alloy for electronic device and copper alloy rolled material for electronic device
WO2005116282A1 (en) Copper alloy
CA1172473A (en) Copper alloys with small amounts of manganese and selenium
JP3510469B2 (en) Copper alloy for conductive spring and method for producing the same
JP2000087158A (en) Copper alloy for semiconductor lead frame
JPH06184679A (en) Copper alloy for electrical parts
JPH036341A (en) High strength and high conductivity copper-base alloy
JPH02145737A (en) High strength and high conductivity copper-base alloy
JPH06207233A (en) Copper alloy for electronic and electrical equipment and its production
JPH03111529A (en) High-strength and heat-resistant spring copper alloy
JPH0987814A (en) Production of copper alloy for electronic equipment
JP3407054B2 (en) Copper alloy with excellent heat resistance, strength and conductivity
JPH07268452A (en) Electrically conductive spring material and its production
JP2918961B2 (en) High-strength copper alloy with high workability
JP2004225112A (en) High strength and high conductivity copper alloy having excellent fatigue and intermediate temperature property
JP3779830B2 (en) Copper alloy for semiconductor lead frames
JPH0285330A (en) Copper alloy having good press bendability and its manufacture
JPH07207416A (en) Spring contact material
JP2002003965A (en) Copper alloy for electronic and electric apparatus excellent in bending workability and stress relaxation property
JPH0676630B2 (en) Copper alloy for wiring connector
JPS62243750A (en) Manufacture of copper alloy excellent in property of proof stress relaxation
JP3391492B2 (en) High-strength, high-conductivity copper alloy for lead materials of semiconductor equipment and conductive spring materials
JP3260451B2 (en) Thin plate for Cu alloy spring excellent in electric conductivity and spring limit value and method of manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605