JPH07267640A - Surface-modified titanium dioxide fine particle and method for producing the same - Google Patents

Surface-modified titanium dioxide fine particle and method for producing the same

Info

Publication number
JPH07267640A
JPH07267640A JP6081140A JP8114094A JPH07267640A JP H07267640 A JPH07267640 A JP H07267640A JP 6081140 A JP6081140 A JP 6081140A JP 8114094 A JP8114094 A JP 8114094A JP H07267640 A JPH07267640 A JP H07267640A
Authority
JP
Japan
Prior art keywords
fine particles
titanium oxide
oxide fine
general formula
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6081140A
Other languages
Japanese (ja)
Other versions
JP2751000B2 (en
Inventor
Shigemi Okanishi
茂実 岡西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP6081140A priority Critical patent/JP2751000B2/en
Publication of JPH07267640A publication Critical patent/JPH07267640A/en
Application granted granted Critical
Publication of JP2751000B2 publication Critical patent/JP2751000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cosmetics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PURPOSE:To obtain the titanium dioxide fine particles sufficiently reduced in surface activity, while the dispersibility of the titanium dioxide fine powder is improved, and capable of imparting an excellent UV light-shielding property without deteriorating transparency, by contact-treating the surfaces of the titanium dioxide fine particles with a specific organic silicon compound. CONSTITUTION:This titanium dioxide fine particles are obtained by contact- treating the surfaces of titanium dioxide fine particles with an organic silicon compound of formula I or II. The titanium dioxide fine particles comprise the titanium dioxide fine particles wherein the organic silicon groups of formula III or IV are bound to the Ti atoms of the surfaces through the oxygen atoms. In the formulas, R<1>, R<2>, R<3> are 1-3C methylene group; X is NH, O, S, CO, CH=CH, CidenticalC; R<4> is 1-3C alkyl; at least one of the three binding hands of Si is bound to Ti, and the others are bound to the Si of the adjacent organic silicon group.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、表面活性が抑制される
と共に、分散性が向上しており、化粧料や塗料、樹脂フ
ィルム等に配合した場合に、他の成分を分解・変質等さ
せることなく、かつ、透明性を損なわずに、優れた紫外
線遮蔽性を付与することのできる表面改質酸化チタン微
粒子とその製造法に関する。
INDUSTRIAL APPLICABILITY The present invention has suppressed surface activity and improved dispersibility. When incorporated into cosmetics, paints, resin films, etc., it decomposes and modifies other components. TECHNICAL FIELD The present invention relates to surface-modified titanium oxide fine particles capable of imparting excellent ultraviolet ray shielding properties without impairing transparency and a method for producing the same.

【0002】[0002]

【従来の技術】酸化チタンは紫外線を吸収・散乱する作
用があるため、日焼け止め化粧料や塗料、樹脂フィルム
等に配合されて用いられている。しかしながら、酸化チ
タンは表面活性が高いため、化粧料成分や樹脂成分を分
解・変質させることがあり、その活性を抑制する必要が
ある。
2. Description of the Related Art Titanium oxide has a function of absorbing and scattering ultraviolet rays, and is therefore used by being blended with sunscreen cosmetics, paints, resin films and the like. However, since titanium oxide has high surface activity, it sometimes decomposes and modifies cosmetic ingredients and resin ingredients, and it is necessary to suppress the activity.

【0003】そこで本出願人は、例えば特公平5−15
644号公報において、気相で核となる金属酸化物超微
粒子を製造し、直ちに表面改質を行なうことにより、超
微粒子レベルで表面改質できることを示した。しかしな
がら、この方法の場合、表面の被覆が完全でないせい
か、活性の抑制は必ずしも充分なものとは言えないもの
であった。
Therefore, the applicant of the present invention is, for example, Japanese Patent Publication No. 5-15.
In Japanese Patent No. 644, it is shown that the surface modification can be carried out at the level of ultrafine particles by producing ultrafine particles of a metal oxide which becomes a nucleus in a gas phase and immediately carrying out surface modification. However, in the case of this method, the suppression of the activity was not always sufficient because the surface coating was not perfect.

【0004】次に、特開平5−70129号公報には、
チタンアルコキシドの加水分解時にNaOHやKCO3
等の塩基性化合物と炭化水素又はシリコーンオイルを添
加することにより活性抑制を行なうことが示されてい
る。しかしながら、このような塩基性化合物による処理
では、水溶液に添加した際に遊離してしまい、効果が無
くなるばかりか、水溶液は強アルカリ性となり、化粧料
等に用いるには問題があった。
Next, Japanese Patent Laid-Open No. 5-70129 discloses that
During the hydrolysis of titanium alkoxide, NaOH and KCO 3
It has been shown to suppress the activity by adding a basic compound such as and a hydrocarbon or silicone oil. However, such a treatment with a basic compound not only loses its effect when it is added to an aqueous solution and loses its effect, but also makes the aqueous solution strongly alkaline, which is problematic for use in cosmetics and the like.

【0005】また、特公平1−31442号公報では、
アミノ基と疎水基を有することにより、正又は零に帯電
した疎水性金属酸化物微粉末を得ており、電子写真用ト
ナーの流動性改善に有効であると示している。この公報
には活性抑制に関する記載は全くないが、本発明者はこ
の技術を追試し、活性評価を行なったところ、疎水基を
結合させているため、活性抑制は不充分であることが分
かった。
Further, in Japanese Examined Patent Publication No. 1-31442,
By having an amino group and a hydrophobic group, a positive or zero-charged hydrophobic metal oxide fine powder is obtained, which is shown to be effective in improving the fluidity of the electrophotographic toner. Although there is no description of activity suppression in this publication, the present inventor repeated this technique and evaluated the activity, and found that the activity suppression was insufficient because a hydrophobic group was bonded. .

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記従来の
問題点を解消し、酸化チタン微粉末の分散性を改善しな
がら、表面活性を充分に抑制し、かつ、透明性を損なわ
ずに、優れた紫外線遮蔽性を付与することのできる表面
改質酸化チタン微粒子とその製造法を提供することを目
的とするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned conventional problems and improves the dispersibility of titanium oxide fine powder while sufficiently suppressing the surface activity and without impairing the transparency. It is an object of the present invention to provide surface-modified titanium oxide fine particles capable of imparting excellent ultraviolet shielding properties and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】すなわち本発明は第1
に、酸化チタン微粒子の表面のチタン原子に酸素原子を
介して、一般式〔I〕
That is, the first aspect of the present invention is
In addition, the oxygen of the general formula [I]

【化5】 又は一般式〔II〕[Chemical 5] Or general formula [II]

【化6】 〔上記式中、R1 ,R2 ,R3 はそれぞれ炭素数1〜3
のメチレン基であり、Xは−NH−,−O−,−S−,
−CO−,−CH=CH−及び−C≡C−から選択され
る基であり、珪素原子の3つの結合手は、酸素原子を介
して、少なくとも1つがチタン原子と結合しており、他
は隣接する有機珪素基の珪素原子と結合している。〕で
表される有機珪素基を結合した表面改質酸化チタン微粒
子を提供するものである。
[Chemical 6] [In the above formula, R 1 , R 2 and R 3 are each a carbon number of 1 to 3
X is -NH-, -O-, -S-,
It is a group selected from -CO-, -CH = CH- and -C≡C-, and at least one of three bonds of a silicon atom is bonded to a titanium atom via an oxygen atom, and Are bonded to silicon atoms of adjacent organic silicon groups. ] The surface-modified titanium oxide fine particles having an organic silicon group bonded thereto represented by the following are provided.

【0008】本発明の第1の表面改質酸化チタン微粒子
は、上記したように、酸化チタン微粒子の表面のチタン
原子に酸素原子を介して、一般式〔I〕又は一般式〔I
I〕で表される有機珪素基を結合したものである。
As described above, the first surface-modified titanium oxide fine particles of the present invention have the general formula [I] or the general formula [I] through the oxygen atoms in the titanium atoms on the surface of the titanium oxide fine particles.
[I] having an organic silicon group bonded thereto.

【0009】上記一般式〔I〕又は一般式〔II〕におい
て、R1 ,R2 ,R3 はそれぞれ炭素数1〜3のメチレ
ン基である。一般式〔I〕におけるR1 と一般式〔II〕
におけるR3 としては、炭素数3のメチレン基が望まし
い。また、一般式〔II〕におけるR2 としては、炭素数
2のメチレン基が望ましい。次に、上記一般式〔II〕に
おいて、Xは−NH−,−O−,−S−,−CO−,−
CH=CH−及び−C≡C−から選択される基であり、
好ましくは−NH−である。
In the above general formula [I] or general formula [II], R 1 , R 2 and R 3 are each a methylene group having 1 to 3 carbon atoms. R 1 in the general formula [I] and the general formula [II]
R 3 is preferably a methylene group having 3 carbon atoms. Further, R 2 in the general formula [II] is preferably a methylene group having 2 carbon atoms. Next, in the general formula [II], X is —NH—, —O—, —S—, —CO—, —.
A group selected from CH = CH- and -C≡C-,
It is preferably -NH-.

【0010】すなわち、一般式〔I〕で表される有機珪
素基としては、R1 が炭素数3のメチレン基であるもの
が望ましい。また、一般式〔II〕で表される有機珪素基
としては、R2 が炭素数2のメチレン基であり、R3
炭素数3のメチレン基であり、かつ、Xが−NH−であ
るものが望ましい。
That is, the organosilicon group represented by the general formula [I] is preferably one in which R 1 is a methylene group having 3 carbon atoms. As the organosilicon group represented by the general formula [II], R 2 is a methylene group having 2 carbon atoms, R 3 is a methylene group having 3 carbon atoms, and X is —NH—. Things are desirable.

【0011】なお、上記したように、上記一般式〔I〕
又は一般式〔II〕において、珪素原子の3つの結合手
は、酸素原子を介して、少なくとも1つがチタン原子と
結合しており、他は隣接する有機珪素基の珪素原子と結
合している。特に珪素原子の3つの結合手のうちの1つ
がチタン原子と結合しており、他は隣接する有機珪素基
の珪素原子と結合しているものが好ましい。
As described above, the above general formula [I]
Alternatively, in the general formula [II], at least one of the three bonds of the silicon atom is bonded to the titanium atom via the oxygen atom, and the other is bonded to the silicon atom of the adjacent organic silicon group. It is particularly preferable that one of the three bonds of the silicon atom is bonded to the titanium atom and the other is bonded to the silicon atom of the adjacent organic silicon group.

【0012】本発明の第1の表面改質酸化チタン微粒子
は、上記したように、酸化チタン微粒子の表面のチタン
原子に酸素原子を介して、一般式〔I〕又は一般式〔I
I〕で表される有機珪素基(末端にアミノ基を有する有
機珪素基)が結合されているものである。
[0012] As described above, the first surface-modified titanium oxide fine particles of the present invention have the general formula [I] or the general formula [I] through the oxygen atoms in the titanium atoms on the surface of the titanium oxide fine particles.
The organic silicon group represented by I] (organic silicon group having an amino group at the terminal) is bonded.

【0013】ここで酸化チタン微粒子としては、結晶質
(ルチル型、アナターゼ型)であると非晶質(アモルフ
ァス)であるとを問わない。酸化チタン微粒子として
は、表面活性の高いものほど、有機珪素化合物が反応し
やすいため効果的である。特に非晶質(アモルファス)
の酸化チタンは吸着水を多く含んでおり、反応しやす
く、効果が大きい。このような非晶質(アモルファス)
の酸化チタンは、公知の方法のうち、チタンアルコキシ
ドやチタンハライドなどの揮発性チタン化合物の気相加
水分解法により製造することができる。なお、酸化チタ
ン微粒子としては超微粒子状のものが好ましく、その一
次粒子径が0.01〜1μm、特に0.01〜0.1μ
mであるものが好適である。
The titanium oxide fine particles may be crystalline (rutile type, anatase type) or amorphous (amorphous). As the titanium oxide fine particles, those having higher surface activity are more effective because the organic silicon compound is more likely to react. Especially amorphous
Titanium oxide contains a large amount of adsorbed water, easily reacts, and is highly effective. Such an amorphous
The titanium oxide can be produced by a gas phase hydrolysis method of a volatile titanium compound such as titanium alkoxide or titanium halide among known methods. As the titanium oxide fine particles, ultrafine particles are preferable, and the primary particle diameter thereof is 0.01 to 1 μm, particularly 0.01 to 0.1 μm.
Those with m are preferred.

【0014】このような本発明の第1の表面改質酸化チ
タン微粒子は、例えば以下のような方法(本発明の第
2)により好適に製造することができる。
The above-mentioned first surface-modified titanium oxide fine particles of the present invention can be suitably produced, for example, by the following method (second of the present invention).

【0015】すなわち、酸化チタン微粒子の表面を、一
般式〔III 〕
That is, the surface of the titanium oxide fine particles is represented by the general formula [III]

【化7】 又は一般式〔IV〕[Chemical 7] Or general formula (IV)

【化8】 〔上記式中、R1 ,R2 ,R3 はそれぞれ炭素数1〜3
のメチレン基であり、Xは−NH−,−O−,−S−,
−CO−,−CH=CH−及び−C≡C−から選択され
る基であり、R4 は炭素数1〜3のアルキル基であ
る。〕で表される有機珪素化合物により接触処理するこ
とによって、前記本発明の第1に示す表面改質酸化チタ
ン微粒子を効率良く製造することができる。
[Chemical 8] [In the above formula, R 1 , R 2 and R 3 are each a carbon number of 1 to 3
X is -NH-, -O-, -S-,
It is a group selected from —CO—, —CH═CH— and —C≡C—, and R 4 is an alkyl group having 1 to 3 carbon atoms. ] The surface-modified titanium oxide fine particles according to the first aspect of the present invention can be efficiently produced by the contact treatment with the organosilicon compound represented by

【0016】一般式〔III 〕において、R1 は炭素数1
〜3のメチレン基、好ましくは炭素数3のメチレン基で
あり、R4 は炭素数1〜3のアルキル基、すなわちメチ
ル基,エチル基,プロピル基であり、好ましくはメチル
基,エチル基である。上記一般式〔III 〕で表される有
機珪素化合物として具体的には例えば、アミノプロピル
トリエトキシシラン,アミノプロピルトリメトキシシラ
ン,アミノエチルトリエトキシシラン,アミノメチルト
リエトキシシラン,アミノメチルトリメトキシシラン,
アミノエチルトリメトキシシラン等の他に、アミノメチ
ルトリプロポキシシラン,アミノエチルトリプロポキシ
シラン等を挙げることができ、特にアミノプロピルトリ
エトキシシランが好ましい。
In the general formula [III], R 1 has 1 carbon atom.
Is a methylene group having 3 to 3 carbon atoms, preferably a methylene group having 3 carbon atoms, and R 4 is an alkyl group having 1 to 3 carbon atoms, that is, a methyl group, an ethyl group or a propyl group, and preferably a methyl group or an ethyl group. . Specific examples of the organosilicon compound represented by the above general formula [III] include aminopropyltriethoxysilane, aminopropyltrimethoxysilane, aminoethyltriethoxysilane, aminomethyltriethoxysilane, aminomethyltrimethoxysilane,
Besides aminoethyltrimethoxysilane and the like, aminomethyltripropoxysilane, aminoethyltripropoxysilane and the like can be mentioned, and aminopropyltriethoxysilane is particularly preferable.

【0017】また、上記一般式〔IV〕において、R2
炭素数1〜3のメチレン基、好ましくは炭素数2のメチ
レン基であり、Xは−NH−,−O−,−S−,−CO
−,−CH=CH−及び−C≡C−から選択される基、
好ましくは−CO−,−CH=CH−或いは−NH−で
あり、特に好ましくは−NH−であり、R3 は炭素数1
〜3のメチレン基、好ましくは炭素数3のメチレン基で
あり、R4 は炭素数1〜3のアルキル基、すなわちメチ
ル基,エチル基,プロピル基であり、好ましくはメチル
基,エチル基である。
In the above general formula [IV], R 2 is a methylene group having 1 to 3 carbon atoms, preferably a methylene group having 2 carbon atoms, and X is —NH—, —O—, —S—, -CO
A group selected from-, -CH = CH- and -C≡C-,
It is preferably —CO—, —CH═CH— or —NH—, particularly preferably —NH—, and R 3 has 1 carbon atom.
Is a methylene group having 3 to 3 carbon atoms, preferably a methylene group having 3 carbon atoms, and R 4 is an alkyl group having 1 to 3 carbon atoms, that is, a methyl group, an ethyl group or a propyl group, and preferably a methyl group or an ethyl group. .

【0018】上記一般式〔IV〕で表される有機珪素化合
物として具体的には例えば、アミノエチルアミノプロピ
ルトリメトキシシラン,アミノエチルアミノプロピルト
リエトキシシラン,アミノプロピルアミノプロピルトリ
メトキシシラン,アミノプロピルアミノプロピルトリエ
トキシシラン,アミノメチルアミノプロピルトリメトキ
シシラン,アミノメチルアミノプロピルトリエトキシシ
ラン,アミノエチルアミノエチルトリメトキシシラン,
アミノエチルアミノエチルトリエトキシシラン,アミノ
エチルアミノメチルトリメトキシシラン,アミノエチル
アミノメチルトリエトキシシラン,アミノメチルアミノ
メチルトリメトキシシラン,アミノメチルアミノメチル
トリエトキシシランや、6−アミノ−3−オキソ−ヘキ
シルトリメトキシシラン,4−アミノ−2−ブテニルト
リメトキシシラン等を挙げることができ、特にアミノエ
チルアミノプロピルトリメトキシシランが好ましい。
Specific examples of the organosilicon compound represented by the above general formula [IV] include aminoethylaminopropyltrimethoxysilane, aminoethylaminopropyltriethoxysilane, aminopropylaminopropyltrimethoxysilane and aminopropylamino. Propyltriethoxysilane, Aminomethylaminopropyltrimethoxysilane, Aminomethylaminopropyltriethoxysilane, Aminoethylaminoethyltrimethoxysilane,
Aminoethylaminoethyltriethoxysilane, Aminoethylaminomethyltrimethoxysilane, Aminoethylaminomethyltriethoxysilane, Aminomethylaminomethyltrimethoxysilane, Aminomethylaminomethyltriethoxysilane, 6-Amino-3-oxo-hexyl Examples thereof include trimethoxysilane and 4-amino-2-butenyltrimethoxysilane, and aminoethylaminopropyltrimethoxysilane is particularly preferable.

【0019】本発明の方法においては、酸化チタン微粒
子の表面を、上記した如き一般式〔III 〕又は一般式
〔IV〕で表される有機珪素化合物により接触処理するこ
とが必要である。なお、酸化チタン微粒子としては、前
記したものが用いられる。本発明の方法においては、一
般式〔III 〕又は一般式〔IV〕中のアルコキシ基(OR
4 )が加水分解して酸化チタン表面の水酸基と結合して
いる。副生物はアルコールである。本発明の方法におい
ては、末端にアミノ基を有する有機珪素化合物を用いて
おり、得られる表面改質酸化チタン微粒子は末端にアミ
ノ基を有する有機珪素基が酸化チタン表面上に固定され
ている。このため、本発明の表面改質酸化チタン微粒子
は、加熱・溶解等による遊離がなく、安定した活性抑制
効果を発揮する。活性抑制作用として、塩基性であるア
ミノ基が酸化チタン表面の固体酸を中和していることが
考えられる。
In the method of the present invention, it is necessary to contact-treat the surface of the titanium oxide fine particles with the organosilicon compound represented by the above general formula [III] or general formula [IV]. As the titanium oxide fine particles, those mentioned above are used. In the method of the present invention, in the general formula [III] or the general formula [IV], an alkoxy group (OR
4 ) is hydrolyzed and bound to the hydroxyl groups on the surface of titanium oxide. The by-product is alcohol. In the method of the present invention, an organosilicon compound having an amino group at the terminal is used, and in the resulting surface-modified titanium oxide fine particles, the organosilicon group having an amino group at the terminal is fixed on the titanium oxide surface. Therefore, the surface-modified titanium oxide fine particles of the present invention do not release due to heating, dissolution, etc., and exhibit a stable activity suppressing effect. As an activity suppressing effect, it is considered that the basic amino group neutralizes the solid acid on the surface of titanium oxide.

【0020】なお、固体酸を中和するために塩基性物質
としてアンモニアやアミン等の揮発性物質を用いた場合
には、加熱等により遊離してしまい、満足できる効果が
得られない。また、揮発性のない塩基性物質であるNa
OH,KCO3 等で処理した場合には、水溶液に添加し
た際に溶解して遊離してしまい、効果が無くなるばかり
か、水溶液は強アルカリとなり、化粧料などに用いるに
は問題がある。さらに、末端がアミノ基の代わりに、ク
ロロ基(Cl−)やグリシドキシ基
When a volatile substance such as ammonia or amine is used as the basic substance for neutralizing the solid acid, it is liberated by heating or the like and a satisfactory effect cannot be obtained. In addition, Na, which is a non-volatile basic substance
When it is treated with OH, KCO 3 or the like, it is dissolved and liberated when added to the aqueous solution, and the effect is lost, and the aqueous solution becomes a strong alkali, which is problematic for use in cosmetics and the like. Furthermore, instead of an amino group at the end, a chloro group (Cl-) or glycidoxy group

【化9】 では、塩基性でないため効果がない。[Chemical 9] Then, there is no effect because it is not basic.

【0021】本発明の方法は、上記したように、酸化チ
タン微粒子の表面を、一般式〔III〕又は一般式〔IV〕
で表される有機珪素化合物(末端アミノ基含有有機珪素
化合物)により接触処理するものであり、接触処理は気
相処理でも液相処理でも可能であるが、気相処理がより
好ましい。
In the method of the present invention, as described above, the surface of the titanium oxide fine particles is treated with the general formula [III] or the general formula [IV].
The contact treatment is carried out with an organosilicon compound represented by (a terminal amino group-containing organosilicon compound). The contact treatment may be either vapor phase treatment or liquid phase treatment, but vapor phase treatment is more preferable.

【0022】気相処理では、有機珪素化合物を蒸気で供
給したり、スプレーで酸化チタンに噴霧することができ
るが、蒸気で供給し処理することが、酸化チタンの凝集
を防ぐために好ましい。特に気相で酸化チタンを製造し
た直後に、同じく気相で有機珪素化合物の蒸気を混合し
処理することが、酸化チタンの凝集を防ぐために最も好
ましい。
In the vapor phase treatment, the organosilicon compound can be supplied by vapor or sprayed on titanium oxide, but it is preferable to supply and treat by vapor to prevent aggregation of titanium oxide. In particular, immediately after the production of titanium oxide in the vapor phase, it is most preferable that the vapor of the organosilicon compound is mixed and treated in the same manner in the vapor phase in order to prevent aggregation of the titanium oxide.

【0023】一方、液相法では、アルコール溶媒中で処
理することが望ましく、分散性を上げるために界面活性
剤を添加したり、加水分解を促進するために酸や塩基を
添加することも良い。液相法においては、処理後、通常
の方法、例えばフィルター濾過、スプレードライ等によ
り、酸化チタン微粒子の濾過、乾燥を行なうことによっ
て、目的とする表面改質酸化チタン微粒子を得ることが
できる。
On the other hand, in the liquid phase method, treatment in an alcohol solvent is desirable, and a surfactant may be added to enhance dispersibility, or an acid or base may be added to accelerate hydrolysis. . In the liquid phase method, after the treatment, the target surface-modified titanium oxide fine particles can be obtained by filtering and drying the titanium oxide fine particles by an ordinary method such as filter filtration or spray drying.

【0024】接触処理に関して、上記したように、酸化
チタンの凝集を防ぐという点では、気相法が有利であ
り、プロセスも簡単である。なお、反応温度は常温〜4
00℃が好ましく、特に100℃以上の温度にした方が
反応を促進することができるため好ましい。一方、40
0℃を超える温度にすると、有機珪素化合物の分解が起
こり易くなる。したがって、より好ましい反応温度は2
00〜400℃である。
Regarding the contact treatment, as described above, the vapor phase method is advantageous in that it prevents aggregation of titanium oxide, and the process is simple. The reaction temperature is room temperature to 4
00 ° C. is preferable, and a temperature of 100 ° C. or higher is particularly preferable because the reaction can be promoted. On the other hand, 40
When the temperature exceeds 0 ° C, the organosilicon compound is likely to be decomposed. Therefore, the more preferable reaction temperature is 2
It is 00-400 degreeC.

【0025】[0025]

【実施例】次に、本発明を実施例により詳しく説明す
る。 実施例1 チタンテトライソプロポキシド〔Ti(OiC3 7
4 〕を2.4g/hrの流量で、0.17Nm3 /hr
の窒素ガスと共に加熱器に導入し、180℃で蒸発させ
た。一方、8.5g/hrの水を0.16Nm3 /hr
の窒素ガスと共に加熱器へ導入し、蒸発させ、500℃
まで加熱した。この加熱水蒸気とチタンテトライソプロ
ポキシドの蒸気を反応器内で混合し、260℃の温度で
チタンテトライソプロポキシドを加水分解させ、超微粒
子状(平均粒径0.02μm)の酸化チタンを製造し
た。一方、表面改質用の原料としてアミノプロピルトリ
エトキシシラン〔NH2 3 6 Si(OC
2 5 3 〕を0.2g/hrの流量で、0.17Nm
3 /hrの窒素ガスと共に加熱器に導入し、180℃で
蒸発させた。このアミノプロピルトリエトキシシランの
蒸気を反応器に導入し、生成直後の超微粒子状の酸化チ
タンに混合し、260℃で反応させ、表面改質された超
微粒子状の酸化チタン(表面改質酸化チタン超微粒子)
を得た。なお、このときの滞留時間は0.4秒であっ
た。また、反応後の排ガス中にエタノールが検出され、
アミノプロピルトリエトキシシランが酸化チタン表面の
水酸基と反応していることが確認された。
EXAMPLES Next, the present invention will be described in detail with reference to Examples. EXAMPLE 1 Titanium tetraisopropoxide [Ti (OiC 3 H 7)
4 ] at a flow rate of 2.4 g / hr, 0.17 Nm 3 / hr
It was introduced into a heater together with nitrogen gas and evaporated at 180 ° C. On the other hand, 8.5 g / hr of water was added to 0.16 Nm 3 / hr.
Introduced into the heater together with the nitrogen gas of, and evaporated to 500 ℃
Heated up. This heated steam and titanium tetraisopropoxide vapor are mixed in a reactor and titanium tetraisopropoxide is hydrolyzed at a temperature of 260 ° C. to produce ultrafine particulate titanium oxide (average particle diameter 0.02 μm). did. On the other hand, as a raw material for surface modification, aminopropyltriethoxysilane [NH 2 C 3 H 6 Si (OC
2 H 5 ) 3 ] at a flow rate of 0.2 g / hr and 0.17 Nm
It was introduced into a heater together with nitrogen gas of 3 / hr and evaporated at 180 ° C. This vapor of aminopropyltriethoxysilane was introduced into the reactor, mixed with ultrafine particulate titanium oxide immediately after formation, and reacted at 260 ° C. to obtain surface-modified ultrafine particulate titanium oxide (surface modified oxidation Ultrafine titanium particles)
Got The residence time at this time was 0.4 seconds. Also, ethanol is detected in the exhaust gas after the reaction,
It was confirmed that aminopropyltriethoxysilane reacted with the hydroxyl groups on the surface of titanium oxide.

【0026】このようにして得られた表面改質酸化チタ
ン超微粒子について、以下のようにして活性評価,分散
性評価及び液性評価を行なった。結果を第1表及び第2
表に示す。 〔活性評価〕(イソプロピルアルコールの分解率) 上記のようにして得られた表面改質酸化チタン超微粒子
を0.2g封入した内径5mmのガラス管を280℃に
加熱し、ヘリウムガスを80ml/min.で流しなが
ら、イソプロピルアルコール(IPA)を3μl注入
し、下流に接続したガスクロマトグラフでIPAの残存
量を分析し、分解率を算出した。
The surface-modified titanium oxide ultrafine particles thus obtained were evaluated for activity, dispersibility and liquid as follows. The results are shown in Tables 1 and 2.
Shown in the table. [Activity Evaluation] (Decomposition Rate of Isopropyl Alcohol) A glass tube having an inner diameter of 5 mm and containing 0.2 g of the surface-modified titanium oxide ultrafine particles obtained as described above was heated to 280 ° C., and helium gas was added at 80 ml / min. . While flowing in, 3 μl of isopropyl alcohol (IPA) was injected, and the residual amount of IPA was analyzed by a gas chromatograph connected downstream, and the decomposition rate was calculated.

【0027】〔分散性評価〕(エタノール中での分光透
過率) 上記のようにして得られた表面改質酸化チタン超微粒子
4mgを、エタノール40mlに添加し、超音波洗浄器
で分散させ、分光光度計(日立製作所製、U−321
0)にて光路長10mmのセルを用い、リファレンスを
純エタノールとして分光透過率を測定した。図1に、未
処理の酸化チタンの分光透過率と共に、この実施例1で
得られた表面改質酸化チタン超微粒子の分光透過率を示
した。
[Evaluation of Dispersibility] (Spectral Transmittance in Ethanol) 4 mg of the surface-modified titanium oxide ultrafine particles obtained as described above was added to 40 ml of ethanol, dispersed with an ultrasonic cleaner, and spectroscopically measured. Photometer (Hitachi, U-321
In (0), a cell having an optical path length of 10 mm was used and the spectral transmittance was measured using pure ethanol as a reference. FIG. 1 shows the spectral transmittance of untreated titanium oxide and the spectral transmittance of the surface-modified titanium oxide ultrafine particles obtained in Example 1.

【0028】〔液性評価〕上記のようにして得られた表
面改質酸化チタン超微粒子1gを蒸留水10mlに攪拌
しながら懸濁させた後、濾過し、濾液のpHを測定し
た。
[Evaluation of Liquidity] 1 g of the surface-modified titanium oxide ultrafine particles obtained as described above was suspended in 10 ml of distilled water while stirring and then filtered, and the pH of the filtrate was measured.

【0029】参考例1 チタンテトライソプロポキシドを供給しなかったこと以
外は、実施例1と同様の操作を行なった。このとき排ガ
ス中にエタノールは検出されず、アミノプロピルトリエ
トキシシランだけでは気相加水分解反応は起こらないこ
とを確認した。
Reference Example 1 The same operation as in Example 1 was carried out except that titanium tetraisopropoxide was not supplied. At this time, ethanol was not detected in the exhaust gas, and it was confirmed that the gas phase hydrolysis reaction did not occur only with aminopropyltriethoxysilane.

【0030】実施例2 表面改質用原料として、アミノエチルアミノプロピルト
リメトキシシラン〔NH2 2 4 NHC3 6 Si
(OCH3 3 〕を0.3g/hrの流量で供給したこ
と以外は、実施例1と同様の操作を行なった。結果を第
1表及び第2表、並びに図2に示す。
Example 2 Aminoethylaminopropyltrimethoxysilane [NH 2 C 2 H 4 NHC 3 H 6 Si was used as a raw material for surface modification.
The same operation as in Example 1 was performed, except that (OCH 3 ) 3 ] was supplied at a flow rate of 0.3 g / hr. The results are shown in Tables 1 and 2 and FIG.

【0031】実施例3 表面改質用原料として、アミノメチルトリプロポキシシ
ラン〔H2 NCH3 Si(OC3 7 3 〕を0.2g
/hrの流量で供給したこと以外は、実施例1と同様の
操作を行なった。結果を第1表及び第2表、並びに図3
に示す。
Example 3 0.2 g of aminomethyltripropoxysilane [H 2 NCH 3 Si (OC 3 H 7 ) 3 ] was used as a raw material for surface modification.
The same operation as in Example 1 was performed, except that the flow rate was / hr. The results are shown in Tables 1 and 2 and FIG.
Shown in.

【0032】実施例4 表面改質用原料として、6−アミノ−3−オキソ−ヘキ
シルトリメトキシシラン〔H2 NC3 6 COC2 4
Si(OCH3 3 〕を0.3g/hrの流量で供給し
たこと以外は、実施例1と同様の操作を行なった。結果
を第1表及び第2表、並びに図3に示す。
Example 4 As a raw material for surface modification, 6-amino-3-oxo-hexyltrimethoxysilane [H 2 NC 3 H 6 COC 2 H 4 was used.
Si (OCH 3 ) 3 ] was supplied at a flow rate of 0.3 g / hr, and the same operation as in Example 1 was performed. The results are shown in Tables 1 and 2 and FIG.

【0033】実施例5 表面改質用原料として、4−アミノ−2−ブテニルトリ
メトキシシラン〔H2NCH2 CH=CHCH2 Si
(OCH3 3 〕を0.3g/hrの流量で供給したこ
と以外は、実施例1と同様の操作を行なった。結果を第
1表及び第2表、並びに図3に示す。
Example 5 4-amino-2-butenyltrimethoxysilane [H 2 NCH 2 CH═CHCH 2 Si was used as a surface-modifying raw material.
The same operation as in Example 1 was performed, except that (OCH 3 ) 3 ] was supplied at a flow rate of 0.3 g / hr. The results are shown in Tables 1 and 2 and FIG.

【0034】比較例1 表面改質用原料として、クロロプロピルトリメトキシシ
ラン〔ClC3 6 Si(OCH3 3 〕を0.2g/
hrの流量で供給したこと以外は、実施例1と同様の操
作を行なった。結果を第1表及び第2表、並びに図1に
示す。
Comparative Example 1 Chloropropyltrimethoxysilane [ClC 3 H 6 Si (OCH 3 ) 3 ] 0.2 g /
The same operation as in Example 1 was performed except that the flow rate was hr. The results are shown in Tables 1 and 2 and FIG.

【0035】比較例2 表面改質用原料として、0.2g/hrの流量のアミノ
プロピルトリエトキシシランと、0.2g/hrの流量
のメチルトリエトキシシラン〔CH3 Si(OC
2 5 3 〕を混合して供給したこと以外は、実施例1
と同様の操作を行なった。結果を第1表及び第2表、並
びに図2に示す。比較例2の結果を、実施例の結果と対
比すると、本発明の方法は、比較例2で示されるような
混合処理(特公平1−31442号公報で行なわれる混
合処理)より、活性抑制効果が優れていることが分か
る。
Comparative Example 2 Aminopropyltriethoxysilane having a flow rate of 0.2 g / hr and methyltriethoxysilane [CH 3 Si (OC) having a flow rate of 0.2 g / hr were used as raw materials for surface modification.
2 H 5 ) 3 ] was mixed and supplied.
The same operation was performed. The results are shown in Tables 1 and 2 and FIG. Comparing the results of Comparative Example 2 with the results of the Examples, the method of the present invention shows that the activity suppressing effect is better than that of the mixing treatment as shown in Comparative Example 2 (the mixing treatment performed in Japanese Patent Publication No. 1-31442). It turns out that is excellent.

【0036】比較例3 チタンテトライソプロポキシド100重量部をイソプロ
ピルアルコール500重量部で希釈した溶液に、オクタ
メチルシクロテトラシロキサン100重量部を加え、攪
拌しながら、水50重量部をイソプロピルアルコール5
00重量部で希釈した溶液を加えて加水分解を行なっ
た。この懸濁液に、水酸化ナトリウム20重量部を、水
20重量部とメタノール200重量部の混合溶液に溶解
した溶液を加え混合した後、濾過し、110℃で乾燥し
て、40重量部の微粉末を得た。このようにして得られ
た表面改質酸化チタン超微粉末について、実施例1と同
様にして活性評価,分散性評価及び液性評価を行なっ
た。結果を第1表及び第2表、並びに図2に示す。
Comparative Example 3 100 parts by weight of octamethylcyclotetrasiloxane was added to a solution prepared by diluting 100 parts by weight of titanium tetraisopropoxide with 500 parts by weight of isopropyl alcohol, and 50 parts by weight of water was added to 5 parts by weight of isopropyl alcohol while stirring.
Hydrolysis was performed by adding a solution diluted with 00 parts by weight. To this suspension, a solution prepared by dissolving 20 parts by weight of sodium hydroxide in a mixed solution of 20 parts by weight of water and 200 parts by weight of methanol was added and mixed, and then filtered and dried at 110 ° C. to obtain 40 parts by weight of A fine powder was obtained. The surface-modified ultrafine titanium oxide powder thus obtained was evaluated for activity, dispersibility and liquid in the same manner as in Example 1. The results are shown in Tables 1 and 2 and FIG.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】第1表の結果から、本発明の表面改質酸化
チタン微粒子は、加熱下においても活性が劇的に抑制さ
れていることが分かる。次に、図1,図2及び図3の結
果から、本発明においては、末端アミノ基含有有機珪素
化合物で酸化チタン微粒子の表面の水酸基を被覆するこ
とにより、粉末同士の凝集を防止することができ、未処
理の酸化チタンに比べて、エタノールに分散させたとき
の透明性が向上することが分かる。また、液相法で製造
した比較例3の表面改質酸化チタン微粒子は、濾過、乾
燥時に凝集したため、透明性が低いことが分かる。ま
た、第2表の結果から、末端アミノ基含有有機珪素化合
物で処理された表面改質酸化チタン微粒子(実施例1〜
5)と、他の有機珪素化合物で処理された表面改質酸化
チタン微粒子(比較例1,2)は中性を示したが、塩基
性塩で処理された比較例3の表面改質酸化チタン微粒子
は、塩基性塩が溶解し、強アルカリ性を示すことが分か
る。
From the results shown in Table 1, it can be seen that the surface-modified titanium oxide fine particles of the present invention have dramatically suppressed activity even under heating. Next, from the results of FIG. 1, FIG. 2 and FIG. 3, in the present invention, by covering the hydroxyl groups on the surface of the titanium oxide fine particles with the terminal amino group-containing organosilicon compound, it is possible to prevent the aggregation of powder particles. It can be seen that the transparency is improved when dispersed in ethanol, as compared with untreated titanium oxide. Further, it can be seen that the surface-modified titanium oxide fine particles of Comparative Example 3 manufactured by the liquid phase method have low transparency because they are aggregated during filtration and drying. Further, from the results of Table 2, surface-modified titanium oxide fine particles treated with a terminal amino group-containing organosilicon compound (Examples 1 to 1)
5) and the surface-modified titanium oxide fine particles treated with other organosilicon compounds (Comparative Examples 1 and 2) showed neutrality, but the surface-modified titanium oxide of Comparative Example 3 treated with a basic salt. It can be seen that the fine particles dissolve the basic salt and exhibit strong alkalinity.

【0040】〔総合評価〕以上の第1表及び第2表、並
びに図1,図2及び図3の結果を総合すると、本発明の
表面改質酸化チタン微粒子は、末端アミノ基含有有機珪
素化合物で酸化チタン微粒子の表面の水酸基を被覆し、
酸化チタン微粒子の表面に有機珪素基を結合させたもの
であるため、酸化チタン微粒子の分散性を改善しなが
ら、表面活性を抑制し得ることが分かる。従って、化粧
料や塗料、樹脂等に添加した場合、他の成分を分解する
こともなく、透明性を損なわずに紫外線遮蔽性を付与す
ることができることが分かる。
[Comprehensive Evaluation] Summarizing the results shown in Tables 1 and 2 and FIGS. 1, 2 and 3, the surface-modified titanium oxide fine particles of the present invention are obtained by using the terminal amino group-containing organosilicon compound. To cover the hydroxyl groups on the surface of titanium oxide particles,
It is understood that the surface activity can be suppressed while improving the dispersibility of the titanium oxide fine particles, because the titanium oxide fine particles have an organic silicon group bonded to the surface thereof. Therefore, it can be seen that when added to cosmetics, paints, resins, etc., UV shielding properties can be imparted without decomposing other components and without impairing transparency.

【0041】[0041]

【発明の効果】本発明の第1の表面改質酸化チタン微粒
子は、凝集を防止しつつ、表面活性(固体酸活性)が充
分に抑制されたものである。また、本発明の第1の表面
改質酸化チタン微粒子は、分散性も向上したものであ
る。従って、本発明の第1の表面改質酸化チタン微粒子
は、化粧料、塗料、樹脂等に添加した場合、他の成分を
分解したり、変質等を生じさせたりすることもなく、透
明性を損なわずに紫外線遮蔽性を付与することができ
る。しかも本発明の第1の表面改質酸化チタン微粒子
は、特定の有機珪素基が酸化チタン表面に結合している
ので、加熱や溶解による処理剤の遊離といった問題もな
い。また、本発明の第1の表面改質酸化チタン微粒子
は、ほぼ中性を示しており、強アルカリ性を示すことも
ない。さらに、本発明の第2によれば、上記した本発明
の第1の表面改質酸化チタン微粒子を効率良く製造する
ことができる。それ故、本発明の表面改質酸化チタン微
粒子は、化粧料、塗料、樹脂フィルム、繊維などとして
有効に利用することができる。
The first surface-modified titanium oxide fine particles of the present invention have the surface activity (solid acid activity) sufficiently suppressed while preventing aggregation. In addition, the first surface-modified titanium oxide fine particles of the present invention have improved dispersibility. Therefore, the first surface-modified titanium oxide fine particles of the present invention, when added to cosmetics, paints, resins, etc., do not decompose other components or cause deterioration, etc. It is possible to impart ultraviolet shielding properties without impairing it. Moreover, since the specific organic silicon group is bonded to the titanium oxide surface in the first surface-modified titanium oxide fine particles of the present invention, there is no problem of release of the treatment agent due to heating or dissolution. Further, the first surface-modified titanium oxide fine particles of the present invention are almost neutral and do not exhibit strong alkalinity. Furthermore, according to the second aspect of the present invention, the above-mentioned first surface-modified titanium oxide fine particles of the present invention can be efficiently produced. Therefore, the surface-modified titanium oxide fine particles of the present invention can be effectively used as cosmetics, paints, resin films, fibers and the like.

【0042】なお、本発明の各種態様を示すと、以下の
通りである。 (1).酸化チタン微粒子の表面のチタン原子に酸素原
子を介して、前記一般式〔I〕又は前記一般式〔II〕
〔上記式中、R1 ,R2 ,R3 はそれぞれ炭素数1〜3
のメチレン基であり、Xは−NH−,−O−,−S−,
−CO−,−CH=CH−及び−C≡C−から選択され
る基であり、珪素原子の3つの結合手は、酸素原子を介
して、少なくとも1つがチタン原子と結合しており、他
は隣接する有機珪素基の珪素原子と結合している。〕で
表される有機珪素基を結合した表面改質酸化チタン微粒
子。
The various aspects of the present invention are as follows. (1). Via the oxygen atom to the titanium atom on the surface of the titanium oxide fine particles, the above general formula [I] or the above general formula [II]
[In the above formula, R 1 , R 2 and R 3 are each a carbon number of 1 to 3
X is -NH-, -O-, -S-,
It is a group selected from -CO-, -CH = CH- and -C≡C-, and at least one of three bonds of a silicon atom is bonded to a titanium atom via an oxygen atom, and Are bonded to silicon atoms of adjacent organic silicon groups. ] Surface-modified titanium oxide fine particles bonded with an organic silicon group represented by the following.

【0043】(2).酸化チタン微粒子の粒径が0.0
1〜1μmである前記(1)記載の表面改質酸化チタン
微粒子。
(2). The particle size of titanium oxide fine particles is 0.0
The surface-modified titanium oxide fine particles according to (1) above, which is 1 to 1 μm.

【0044】(3).前記一般式〔I〕におけるR1
炭素数3のメチレン基である前記(1)記載の表面改質
酸化チタン微粒子。
(3). The surface-modified titanium oxide fine particles according to (1), wherein R 1 in the general formula [I] is a methylene group having 3 carbon atoms.

【0045】(4).前記一般式〔II〕におけるR2
炭素数2のメチレン基であり、R3 が炭素数3のメチレ
ン基である前記(1)記載の表面改質酸化チタン微粒
子。
(4). The surface-modified titanium oxide fine particles according to (1), wherein R 2 in the general formula [II] is a methylene group having 2 carbon atoms, and R 3 is a methylene group having 3 carbon atoms.

【0046】(5).前記一般式〔II〕におけるXが−
NH−である前記(1)記載の表面改質酸化チタン微粒
子。
(5). X in the general formula [II] is-
The surface-modified titanium oxide fine particles according to (1) above, which is NH-.

【0047】(6).前記一般式〔II〕におけるR2
炭素数2のメチレン基であり、R3 が炭素数3のメチレ
ン基であり、かつ、Xが−NH−である前記(1)記載
の表面改質酸化チタン微粒子。
(6). The surface-modified oxidation according to (1) above, wherein R 2 in the general formula [II] is a methylene group having 2 carbon atoms, R 3 is a methylene group having 3 carbon atoms, and X is —NH—. Titanium particles.

【0048】(7).前記一般式〔I〕又は一般式〔I
I〕において、珪素原子の3つの結合手は、酸素原子を
介して、1つがチタン原子と結合しており、他は隣接す
る有機珪素基の珪素原子と結合しているものである前記
(1)記載の表面改質酸化チタン微粒子。
(7). The above general formula [I] or general formula [I
In the above [1], one of the three bonds of the silicon atom is bonded to the titanium atom through the oxygen atom, and the other is bonded to the silicon atom of the adjacent organic silicon group (1. ) The surface-modified titanium oxide fine particles described above.

【0049】(8).酸化チタン微粒子の表面を前記一
般式〔III 〕又は前記一般式〔IV〕〔上記式中、R1
2 ,R3 はそれぞれ炭素数1〜3のメチレン基であ
り、Xは−NH−,−O−,−S−,−CO−,−CH
=CH−及び−C≡C−から選択される基であり、R4
は炭素数1〜3のアルキル基である。〕で表される有機
珪素化合物により接触処理することを特徴とする、前記
(1)記載の表面改質酸化チタン微粒子を製造する方
法。
(8). The surface of the fine particles of titanium oxide is represented by the general formula [III] or the general formula [IV] [wherein R 1 ,
R 2 and R 3 are each a methylene group having 1 to 3 carbon atoms, and X is —NH—, —O—, —S—, —CO—, —CH.
A group selected from ═CH— and —C≡C—, and R 4
Is an alkyl group having 1 to 3 carbon atoms. ] The method for producing the surface-modified titanium oxide fine particles as described in (1) above, which comprises performing a contact treatment with an organosilicon compound represented by the following.

【0050】(9).有機珪素化合物を気相で酸化チタ
ン微粒子に接触処理する前記(8)記載の方法。
(9). The method according to (8) above, wherein the organosilicon compound is contacted with the titanium oxide fine particles in a vapor phase.

【0051】(10).一般式〔III 〕で表される有機
珪素化合物が、アミノプロピルトリエトキシシラン〔N
2 3 6 Si(OC2 5 3 〕である前記(8)
記載の方法。
(10). The organosilicon compound represented by the general formula [III] is aminopropyltriethoxysilane [N
H 2 C 3 H 6 Si (OC 2 H 5 ) 3 ] above (8)
The method described.

【0052】(11).一般式〔IV〕で表される有機珪
素化合物が、アミノエチルアミノプロピルトリメトキシ
シラン〔NH2 2 4 NHC3 6 Si(OCH3
3 〕である前記(8)記載の方法。
(11). The organosilicon compound represented by the general formula [IV] is aminoethylaminopropyltrimethoxysilane [NH 2 C 2 H 4 NHC 3 H 6 Si (OCH 3 ).
3 ] The method according to (8) above.

【0053】(12).有機珪素化合物を気相で酸化チ
タン微粒子に接触処理する前記(8)記載の方法。
(12). The method according to (8) above, wherein the organosilicon compound is contacted with the titanium oxide fine particles in a vapor phase.

【0054】(13).接触処理として、蒸気で供給し
処理する前記(12)記載の方法。
(13). As the contact treatment, the method according to (12) above, wherein the treatment is performed by supplying with steam.

【0055】(14).接触処理を常温〜400℃の温
度で行なう前記(12)記載の方法。
(14). The method according to (12) above, wherein the contact treatment is performed at a temperature of room temperature to 400 ° C.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の実施例1と比較例1で得られ
た表面改質酸化チタン微粒子、及び未処理の酸化チタン
微粒子の分光透過率を示すグラフである。
FIG. 1 is a graph showing the spectral transmittances of surface-modified titanium oxide fine particles obtained in Example 1 of the present invention and Comparative Example 1 and untreated titanium oxide fine particles.

【図2】図2は、本発明の実施例2と比較例2と比較例
3で得られた表面改質酸化チタン微粒子の分光透過率を
示すグラフである。
FIG. 2 is a graph showing the spectral transmittance of the surface-modified titanium oxide fine particles obtained in Example 2 of the present invention, Comparative Example 2 and Comparative Example 3.

【図3】図3は、本発明の実施例3,実施例4及び実施
例5で得られた表面改質酸化チタン微粒子の分光透過率
を示すグラフである。
FIG. 3 is a graph showing the spectral transmittance of the surface-modified titanium oxide fine particles obtained in Example 3, Example 4, and Example 5 of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酸化チタン微粒子の表面のチタン原子に
酸素原子を介して、一般式〔I〕 【化1】 又は一般式〔II〕 【化2】 〔上記式中、R1 ,R2 ,R3 はそれぞれ炭素数1〜3
のメチレン基であり、Xは−NH−,−O−,−S−,
−CO−,−CH=CH−及び−C≡C−から選択され
る基であり、珪素原子の3つの結合手は、酸素原子を介
して、少なくとも1つがチタン原子と結合しており、他
は隣接する有機珪素基の珪素原子と結合している。〕で
表される有機珪素基を結合した表面改質酸化チタン微粒
子。
1. A compound of the general formula [I]: wherein titanium atoms on the surface of titanium oxide fine particles are intervened by oxygen atoms. Or the general formula [II] [In the above formula, R 1 , R 2 and R 3 are each a carbon number of 1 to 3
X is -NH-, -O-, -S-,
It is a group selected from -CO-, -CH = CH- and -C≡C-, and at least one of three bonds of a silicon atom is bonded to a titanium atom via an oxygen atom, and Are bonded to silicon atoms of adjacent organic silicon groups. ] Surface-modified titanium oxide fine particles bonded with an organic silicon group represented by the following.
【請求項2】 酸化チタン微粒子の粒径が0.01〜1
μmである請求項1記載の表面改質酸化チタン微粒子。
2. The particle size of titanium oxide fine particles is 0.01 to 1.
The surface-modified titanium oxide fine particles according to claim 1, which have a thickness of μm.
【請求項3】 酸化チタン微粒子の表面を、一般式〔II
I 〕 【化3】 又は一般式〔IV〕 【化4】 〔上記式中、R1 ,R2 ,R3 はそれぞれ炭素数1〜3
のメチレン基であり、Xは−NH−,−O−,−S−,
−CO−,−CH=CH−及び−C≡C−から選択され
る基であり、R4 は炭素数1〜3のアルキル基であ
る。〕で表される有機珪素化合物により接触処理するこ
とを特徴とする、請求項1記載の表面改質酸化チタン微
粒子の製造法。
3. The surface of the titanium oxide fine particles is formed according to the general formula [II
I] [Chemical 3] Or the general formula [IV] [In the above formula, R 1 , R 2 and R 3 are each a carbon number of 1 to 3
X is -NH-, -O-, -S-,
It is a group selected from —CO—, —CH═CH— and —C≡C—, and R 4 is an alkyl group having 1 to 3 carbon atoms. ] The method for producing surface-modified titanium oxide fine particles according to claim 1, characterized in that a contact treatment is carried out with an organosilicon compound represented by the formula [1].
【請求項4】 有機珪素化合物を気相で酸化チタン微粒
子に接触処理する請求項3記載の方法。
4. The method according to claim 3, wherein the organosilicon compound is contacted with the titanium oxide fine particles in a vapor phase.
JP6081140A 1994-03-29 1994-03-29 Method for producing surface-modified titanium oxide fine particles Expired - Fee Related JP2751000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6081140A JP2751000B2 (en) 1994-03-29 1994-03-29 Method for producing surface-modified titanium oxide fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6081140A JP2751000B2 (en) 1994-03-29 1994-03-29 Method for producing surface-modified titanium oxide fine particles

Publications (2)

Publication Number Publication Date
JPH07267640A true JPH07267640A (en) 1995-10-17
JP2751000B2 JP2751000B2 (en) 1998-05-18

Family

ID=13738105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6081140A Expired - Fee Related JP2751000B2 (en) 1994-03-29 1994-03-29 Method for producing surface-modified titanium oxide fine particles

Country Status (1)

Country Link
JP (1) JP2751000B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2806907A1 (en) * 2000-03-31 2001-10-05 Oreal COSMETIC COMPOSITION BASED ON NANOPARTICLES AND ORGANIC COMPOUNDS OF SILICON SOLUBLE IN WATER
JP2006045152A (en) * 2004-08-06 2006-02-16 Kao Corp Cosmetic
JP2009035573A (en) * 2007-07-31 2009-02-19 Jgc Catalysts & Chemicals Ltd Surface treatment method for metal oxide particle, dispersion liquid containing the surface treated metal oxide particle, coating liquid for forming transparent coating film, and substrate with transparent coating film
JP2010195646A (en) * 2009-02-26 2010-09-09 Nitto Denko Corp Metal oxide fine particles
US8043715B2 (en) 2005-06-07 2011-10-25 E. I. Du Pont De Nemours And Company Paper and paper laminates containing modified titanium dioxide
CN104151869A (en) * 2014-07-10 2014-11-19 池州市英派科技有限公司 Modified nano-titanium dioxide with tenacity and good damp-proof effect, and preparation method of modified nano-titanium dioxide
CN104151875A (en) * 2014-07-10 2014-11-19 池州市英派科技有限公司 Strength-enhanced surface modified nano titanium dioxide and preparation method thereof
JP2018094494A (en) * 2016-12-12 2018-06-21 富士ゼロックス株式会社 Titanium oxide particles and method for producing the same, composition for forming photocatalyst, photocatalyst and structure
JP2018094495A (en) * 2016-12-12 2018-06-21 富士ゼロックス株式会社 Titanium oxide particles and method for producing the same, composition for forming photocatalyst, photocatalyst and structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185405A (en) * 1982-04-26 1983-10-29 Nippon Aerojiru Kk Fine powder of surface-modified metal oxide
JPH01153529A (en) * 1987-12-11 1989-06-15 Idemitsu Kosan Co Ltd Ultrafine particle of titanium oxide having modified surface
JPH05279041A (en) * 1992-01-31 1993-10-26 Degussa Ag Surface-modified pyrogenically produced titanium dioxide, production of compound, and toner additive made of compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185405A (en) * 1982-04-26 1983-10-29 Nippon Aerojiru Kk Fine powder of surface-modified metal oxide
JPH0131442B2 (en) * 1982-04-26 1989-06-26 Nippon Aerojiru Kk
JPH01153529A (en) * 1987-12-11 1989-06-15 Idemitsu Kosan Co Ltd Ultrafine particle of titanium oxide having modified surface
JPH05279041A (en) * 1992-01-31 1993-10-26 Degussa Ag Surface-modified pyrogenically produced titanium dioxide, production of compound, and toner additive made of compound

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001074308A3 (en) * 2000-03-31 2002-04-11 Oreal Cosmetic composition based on nanoparticles and water-soluble organic silicon compounds
FR2806907A1 (en) * 2000-03-31 2001-10-05 Oreal COSMETIC COMPOSITION BASED ON NANOPARTICLES AND ORGANIC COMPOUNDS OF SILICON SOLUBLE IN WATER
US8377427B2 (en) 2000-03-31 2013-02-19 L'oreal Cosmetic composition based on nanoparticles and on water-soluble organic silicon compounds
JP2006045152A (en) * 2004-08-06 2006-02-16 Kao Corp Cosmetic
US8043715B2 (en) 2005-06-07 2011-10-25 E. I. Du Pont De Nemours And Company Paper and paper laminates containing modified titanium dioxide
JP2009035573A (en) * 2007-07-31 2009-02-19 Jgc Catalysts & Chemicals Ltd Surface treatment method for metal oxide particle, dispersion liquid containing the surface treated metal oxide particle, coating liquid for forming transparent coating film, and substrate with transparent coating film
JP2010195646A (en) * 2009-02-26 2010-09-09 Nitto Denko Corp Metal oxide fine particles
CN104151869A (en) * 2014-07-10 2014-11-19 池州市英派科技有限公司 Modified nano-titanium dioxide with tenacity and good damp-proof effect, and preparation method of modified nano-titanium dioxide
CN104151875A (en) * 2014-07-10 2014-11-19 池州市英派科技有限公司 Strength-enhanced surface modified nano titanium dioxide and preparation method thereof
CN104151875B (en) * 2014-07-10 2015-10-28 池州市英派科技有限公司 A kind of strengthened surface-modified nano titanium dioxide and preparation method thereof
CN104151869B (en) * 2014-07-10 2016-01-20 池州市英派科技有限公司 A kind of have modified nano-titanium dioxide of good toughness moisture effect and preparation method thereof
JP2018094494A (en) * 2016-12-12 2018-06-21 富士ゼロックス株式会社 Titanium oxide particles and method for producing the same, composition for forming photocatalyst, photocatalyst and structure
JP2018094495A (en) * 2016-12-12 2018-06-21 富士ゼロックス株式会社 Titanium oxide particles and method for producing the same, composition for forming photocatalyst, photocatalyst and structure

Also Published As

Publication number Publication date
JP2751000B2 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
TWI428282B (en) Metal oxide complex sol, coating composition and optical member
EP1052225B1 (en) Titanium oxide colloidal sol and process for the preparation thereof
EP1930298B1 (en) Zirconium oxide-tin oxide composite sol, coating composition and optical member
JP2008513588A (en) Surface-modified zinc-titanium mixed oxide
JP2007519792A (en) Non-metal / metal oxide coated with silicon dioxide and surface-modified
JPS61136909A (en) Aqueous dispersion liquid composition of anhydrous silicon acid
JP2007063117A (en) Silica sol dispersed in organic solvent and process for producing the same
JP2751000B2 (en) Method for producing surface-modified titanium oxide fine particles
CA2312606A1 (en) Surface-modified titanium dioxide
CA2099906C (en) Modified stannic oxide-zirconium oxide composite sol and process for preparing the same
JP2007023127A (en) Method for producing silica-coated zinc oxide, silica-coated zinc oxide, and cosmetic containing the same
JP6933976B2 (en) Silica-based particle dispersion and its manufacturing method
JP2002087817A (en) Composite zinc oxide dispersion
JP3485643B2 (en) Coated zinc oxide powder and composition containing coated zinc oxide powder
JP4210785B2 (en) Method for producing transparent coating agent for optical element containing rutile type titanium oxide sol
JPH07149520A (en) Coating composition
JP2001206720A (en) Titanium oxide sol and manufacturing method thereof
JP4569597B2 (en) Zinc oxide production method and zinc oxide
JPH08119619A (en) Surface treatment of silica particles
KR20210132168A (en) Titanium oxide fine particles, dispersion thereof, and method for producing dispersion
KR20210134714A (en) Titanium oxide fine particle mixture, dispersion thereof, photocatalyst thin film, member having photocatalyst thin film on the surface, and method for producing titanium oxide fine particle dispersion
JP5969300B2 (en) Manufacturing method of UV shielding material
JP4522082B2 (en) Photocatalyst liquid composition and photocatalyst formed using the same
CN100345767C (en) Method for synthesizing sol of Nano powder of titanium dioxide in visible light type
TWI230690B (en) Photocatalytic titanium oxide solution and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980106

LAPS Cancellation because of no payment of annual fees