JPH01153529A - Ultrafine particle of titanium oxide having modified surface - Google Patents

Ultrafine particle of titanium oxide having modified surface

Info

Publication number
JPH01153529A
JPH01153529A JP62312354A JP31235487A JPH01153529A JP H01153529 A JPH01153529 A JP H01153529A JP 62312354 A JP62312354 A JP 62312354A JP 31235487 A JP31235487 A JP 31235487A JP H01153529 A JPH01153529 A JP H01153529A
Authority
JP
Japan
Prior art keywords
titanium oxide
compound
ultrafine particles
amount
anionic surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62312354A
Other languages
Japanese (ja)
Other versions
JPH0615408B2 (en
Inventor
Fukashi Sakamoto
坂本 不可止
Yukihiro Tsuchida
幸宏 土田
Hajime Shimakawa
島川 一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP62312354A priority Critical patent/JPH0615408B2/en
Publication of JPH01153529A publication Critical patent/JPH01153529A/en
Publication of JPH0615408B2 publication Critical patent/JPH0615408B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3692Combinations of treatments provided for in groups C09C1/3615 - C09C1/3684
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3669Treatment with low-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3684Treatment with organo-silicon compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PURPOSE:To enable improvement in dispersibility of ultrafine particles of titanium oxide into organic solvents and resins, by treating ultrafine particles of amorphous spherical titanium oxide with an organotitanium compound, anionic surfactant or organosilicon compound. CONSTITUTION:Ultrafine particles of amorphous spherical titanium which is subjected to surface modification with one or more selected from an organotitanium compound, anionic surfactant and an organosilicon compound and has 100-1,000Angstrom average particle diameter and 50-200m<2>/g specific surface area. An organotitanium compound (titanium coupling agent) containing -Ti-O- bond can be used as the organotitanium compound. The amount thereof used is preferably 5-20wt.% based on raw material titanium oxide (dried weight). An alkali salt of fatty acid is used as the anionic surfactant and the amount thereof used is preferably 5-20wt.% based on the raw material titanium oxide (dried weight). A silane coupling agent such as organosilicon compound having hydrolyzable group bonded to silicon atom may be cited as the organosilicon compound and the amount thereof used is preferably 5-40wt.%.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、表面改質された酸化チタン超微粒子に関し、
さらに詳しくは紫外線劣化防止剤、紫外線遮蔽シート及
びフィルム、日焼は防止用塗料等に有用な表面改質され
た酸化チタン超微粒子に関する。
[Detailed description of the invention] [Industrial application field] The present invention relates to surface-modified titanium oxide ultrafine particles,
More specifically, the present invention relates to surface-modified ultrafine titanium oxide particles useful in ultraviolet deterioration inhibitors, ultraviolet shielding sheets and films, sunscreen coatings, and the like.

〔従来技術及び発明が解決しようとする問題点〕酸化チ
タンは、耐候性に優れ、しかも高いI!!蔽力を有して
いるため、化粧品、塗料等の分野において広く用いられ
ている。しかしながら、酸化チタン微粒子は、有機溶媒
に分散しないという問題がある。そのため今後、幅広い
用途屑開を図るには表面改質して有機溶媒や樹脂に容易
に分散する酸化チタンが要求される。
[Problems to be solved by the prior art and the invention] Titanium oxide has excellent weather resistance and high I! ! Because of its shielding power, it is widely used in fields such as cosmetics and paints. However, titanium oxide fine particles have a problem in that they are not dispersed in organic solvents. Therefore, in the future, titanium oxide that can be surface-modified and easily dispersed in organic solvents and resins will be required in order to develop a wide range of scrap applications.

表面改質法としては、■アミノ基を有するシランカップ
リング剤(例えばアミノアルコキシシラン、ポリエチレ
ンイミン含有シラン等)で結晶性粒状酸化チタンを処理
した後、疎水化剤(例えばシラザン、低級アルキルアル
コキシシラン、シリコーンオイル、水素化シリコーンオ
イル等)で処理する方法(特開昭58−184505号
公報)及び■結晶性粒状酸化チタンをヒドロキシルアミ
ン又はシクロイミンで処理した後、上記のような疎水化
剤で処理する方法(特開昭59−137305号公報等
)が提案されている。
As a surface modification method, ■ After treating crystalline granular titanium oxide with a silane coupling agent having an amino group (e.g., aminoalkoxysilane, polyethyleneimine-containing silane, etc.), a hydrophobizing agent (e.g., silazane, lower alkyl alkoxysilane, etc.) is used. , silicone oil, hydrogenated silicone oil, etc.) (Japanese Unexamined Patent Publication No. 184505/1983); and (1) treatment of crystalline granular titanium oxide with hydroxylamine or cycloimine, followed by treatment with a hydrophobizing agent as described above. A method (such as Japanese Unexamined Patent Publication No. 137305/1983) has been proposed.

しかしながら、上記のような従来の表面改質法は、近年
開発された非品性で球状の酸化チタン超微粒子(特開昭
61−201604号公報)には不適当であって、充分
な改質効果が得られないことがわかった。
However, the conventional surface modification method as described above is unsuitable for the recently developed spherical ultrafine titanium oxide particles (Japanese Patent Application Laid-Open No. 61-201604). It turned out that it was not effective.

そこで、本発明者らは、有機溶媒や樹脂への分散性が高
く、しかも高い比表面積を有する非品性かつ球状の超微
粒子状酸化チタンを開発すべく、鋭意研究を重ねた。
Therefore, the present inventors conducted extensive research in order to develop spherical ultrafine titanium oxide that is highly dispersible in organic solvents and resins and has a high specific surface area.

〔問題点を解決するための手段〕[Means for solving problems]

その結果、高い比表面積を有する球状非品性酸化チタン
超微粒子を原料として、これを特定の表面改質剤で処理
したものが、上記の目的とする物性を備えたものである
ことを見出した。本発明ばかがる知見に基づいて完成し
たものである。
As a result, it was discovered that spherical non-grade titanium oxide ultrafine particles with a high specific surface area were used as a raw material and treated with a specific surface modifier, and the particles had the above-mentioned desired physical properties. . The present invention was completed based on the findings.

すなわち本発明は、有機チタン化合物、アニオン系界面
活性剤及び有機珪素化合物よりなる群から選ばれた一種
又は二種以上の化合物で表面改質された平均粒径100
〜1000人及び比表面積50〜200m/gである非
品性球状酸化チタン超微粒子を提供するものである。
That is, the present invention provides particles with an average particle diameter of 100 ml that have been surface-modified with one or more compounds selected from the group consisting of organotitanium compounds, anionic surfactants, and organosilicon compounds.
1000 m/g and a specific surface area of 50 to 200 m/g.

本発明における表面改質された酸化チタン超微粒子は、
非品性かつ球状であり、平均粒径100〜1000人及
び比表面積50〜200ボ/gを有する。このような表
面改質酸化チタン超微粒子は、上記と同じかあるいは若
干比表面積の大きい非品性で球状の酸化チタン超微粒子
を原料として、これを上記の表面改質剤で表面処理する
ことによって得られる。ここで、表面改質すべき酸化チ
タン超微粒子は、各種の方法で製造することができるが
、好ましくは例えば特開昭61−201604号公報に
開示されている方法によって製造することができる。す
なわち、表面改質前の酸化チタンは、揮発性チタン化合
物(例えばチタンテトライソプロポキシド)を気化又は
霧化させた後、加熱下に分解して酸化チタン超微粒子と
し、分解後直ちに前記酸化チタン超微粒子が再び合体し
ない温度まで冷却することによって製造されたものが充
当される。
The surface-modified titanium oxide ultrafine particles in the present invention are
It is spherical and has an average particle size of 100 to 1000 g and a specific surface area of 50 to 200 bo/g. Such surface-modified titanium oxide ultrafine particles are produced by using as a raw material spherical titanium oxide ultrafine particles having the same or slightly larger specific surface area as above and surface-treating them with the above-mentioned surface modifier. can get. Here, the ultrafine titanium oxide particles to be surface-modified can be manufactured by various methods, but preferably by the method disclosed in JP-A No. 61-201604. That is, titanium oxide before surface modification is obtained by vaporizing or atomizing a volatile titanium compound (for example, titanium tetraisopropoxide), decomposing it under heating to produce ultrafine titanium oxide particles, and immediately after the decomposition, the titanium oxide is Those manufactured by cooling the ultrafine particles to a temperature at which they do not coalesce again are suitable.

本発明の表面改質酸化チタン超微粒子は、−上記のよう
な非品性球状酸化チタン超微粒子を有機チタン化合物、
アニオン系界面活性剤及び有機珪素化合物よりなる群か
ら選ばれた一種又は二種以上の化合物を表面改質剤とし
て用いて、表面処理したものである。
The surface-modified titanium oxide ultrafine particles of the present invention are: - The above-mentioned non-quality spherical titanium oxide ultrafine particles are combined with an organic titanium compound,
The surface is treated using one or more compounds selected from the group consisting of anionic surfactants and organic silicon compounds as a surface modifier.

ここで、有機チタン化合物としては、チタンカップリン
グ剤2例えば−Ti−0−結合を有する有機チタン化合
物2例えばイソプロピルトリイソステアロイルチタネー
ト イソプロピルトリドデシルベンゼンスルホニルチタ
ネート、イソプロピルトリス(ジオクチルパイロホスフ
ェート)チクネート、テトライソプロピルビス(ジオク
チルホスファイト)チタネート、テトラオクチルビス(
ジトリデシルホスファイト)チタネート、テトラ(2,
2−ジアリルオキシメチル−1−ブチル)ビス(ジトリ
デシル)ホスファイトチタネートビス(ジオクチルパイ
ロホスフェート)オキシアセテートチタネート、ビス(
ジオクチルパイロホスフェート)エチレンナタネート、
イソプロピルトリオクタノイルチタネート、イソプロピ
ルジメタクリルイソステアロイルチタネート、イソプロ
ピルイソステアロイルジアクリルチタネート イソプロ
ピルトリ(ジオクチルホスフェート)チタネート、イソ
プロピルトリクミルフェニルチタネート、イソプロピル
トリ(N−アミノエチル−アミンエチル)チタネート、
ジクミルフェニルオキシアセテートチタネート ジイソ
ステアロイルエチレンナタネート等があげられる。
Here, examples of the organic titanium compound include titanium coupling agents 2, such as organic titanium compounds 2 having a -Ti-0- bond, such as isopropyl triisostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl tris(dioctylpyrophosphate) thicnate, tetra Isopropyl bis(dioctyl phosphite) titanate, tetraoctyl bis(
ditridecyl phosphite) titanate, tetra(2,
2-diallyloxymethyl-1-butyl) bis(ditridecyl) phosphite titanate bis(dioctyl pyrophosphate) oxyacetate titanate, bis(
Dioctyl pyrophosphate) ethylene nathanate,
Isopropyl trioctanoyl titanate, isopropyl dimethacrylic isostearoyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl tri(dioctyl phosphate) titanate, isopropyl tricumylphenyl titanate, isopropyl tri(N-aminoethyl-aminoethyl) titanate,
Examples include dicumyl phenyloxyacetate titanate, diisostearoyl ethylene nathanate, and the like.

有機チタン化合物を使用する場合には、通常、原料酸化
チタン(乾燥時重量)の5重量%以上、好ましくは5〜
20重景%の割合で使用する。有機チタン化合物の使用
量が少なすぎると、疎水化(親油化)の効果が現れず、
逆に、あまり多くしても効果が飽和するので経済的でな
い。
When using an organic titanium compound, it is usually 5% by weight or more, preferably 5 to 5% by weight of the raw material titanium oxide (dry weight).
Use at a ratio of 20% focus. If the amount of organic titanium compound used is too small, the effect of hydrophobization (lipophilization) will not appear,
On the other hand, if the amount is too large, the effect will be saturated, which is not economical.

有機チタン化合物で酸化チタンを表面改質するには、有
機チタン化合物を該化合物1に対して重量比で0.5〜
50の有機溶媒に溶解させた後、室温で酸化チタンと上
記割合になるように混合し、5〜60分撹拌し、粉状乃
至スラリー状の処理酸化チタンを得、これを室温〜11
0°Cで3〜24時間乾燥すればよい。ここで、有機溶
剤としては、ヘキサン、アセトン、エタノール、トルエ
ン等を使用することができる。
In order to surface modify titanium oxide with an organic titanium compound, the organic titanium compound is added at a weight ratio of 0.5 to 1 to the compound.
After dissolving it in an organic solvent of 50%, it is mixed with titanium oxide at room temperature in the above ratio, and stirred for 5 to 60 minutes to obtain treated titanium oxide in the form of powder or slurry.
It may be dried at 0°C for 3 to 24 hours. Here, as the organic solvent, hexane, acetone, ethanol, toluene, etc. can be used.

本発明において用いるアニオン系界面活性剤は、脂肪酸
アルカリ塩が好適である。ここで脂肪酸としては、直鎖
あるいは分岐鎖を有していてよく、−塩基酸あるいは二
塩基酸以上の多塩基酸であってもよい。アニオン系界面
活性剤としては、直鎖脂肪酸アルカリ塩が好ましく、具
体的には例えばラウリン酸ナトリウム、ミリスチン酸ナ
トリウム。
The anionic surfactant used in the present invention is preferably a fatty acid alkali salt. Here, the fatty acid may have a straight chain or a branched chain, and may be a -basic acid or a polybasic acid higher than a dibasic acid. As the anionic surfactant, straight chain fatty acid alkali salts are preferred, and specific examples include sodium laurate and sodium myristate.

パルミチン酸ナトリウム、ステアリン酸ナトリウム等が
あげられる。
Examples include sodium palmitate and sodium stearate.

アニオン系界面活性剤を使用する場合には、これを通常
、原料酸化チタン(乾燥時型N)の5重量%以上、好ま
しくは5〜20重量%の割合で使用する。この使用量が
あまり少ないと、疎水化(親油化)の効果が現れず、逆
に、あまり多くしても効果が飽和するので経済的でない
When an anionic surfactant is used, it is usually used in an amount of 5% by weight or more, preferably 5 to 20% by weight of the raw material titanium oxide (type N when dry). If the amount used is too small, the effect of hydrophobization (lipophilization) will not be achieved, and on the other hand, if the amount used is too large, the effect will be saturated, which is not economical.

アニオン系界面活性剤を用いて表面改質する場合には、
該界面活性剤1に対して重量比で0.5〜50の水に溶
解し、10〜120分撹拌した後、酸化チタンを上記の
割合になるように混合して、粉状乃至スラリー状の処理
酸化チタンを得、これを室温〜110°Cで3〜24時
間乾燥すればよい。
When surface modification is performed using an anionic surfactant,
The surfactant is dissolved in water at a weight ratio of 0.5 to 50, stirred for 10 to 120 minutes, and then titanium oxide is mixed in the above ratio to form a powder or slurry. The treated titanium oxide may be obtained and dried at room temperature to 110°C for 3 to 24 hours.

また、スラリー状の処理酸化チタンについては、吸引濾
過し、酸化チタン1に対して重量比で5〜50の水で洗
浄し、室温〜110°Cで3〜24時間乾燥すればよい
Furthermore, the treated titanium oxide in the form of a slurry may be filtered by suction, washed with water in a weight ratio of 5 to 50 parts of titanium oxide, and dried at room temperature to 110°C for 3 to 24 hours.

本発明において用いる有機珪素化合物としては、シラン
カップリング剤、例えば珪素原子に結合している加水分
解基を有する有機珪素化合物があげられる。ここで、加
水分解基としては、例えば塩素、アルコキシ基あるいは
アルカノイル基がある。
The organosilicon compound used in the present invention includes a silane coupling agent, such as an organosilicon compound having a hydrolyzable group bonded to a silicon atom. Here, the hydrolyzable group includes, for example, chlorine, alkoxy group, or alkanoyl group.

本発明に使用しうる有機珪素化合物の具体例として、下
記の化合物があげられる。
Specific examples of organosilicon compounds that can be used in the present invention include the following compounds.

CHz =CHS i Cl 3 CHz=CH3i(OCzHs):+ CH2= CHS i (○CH:1)3CHz= C
HS i(OCzH40CHx):+CH2= CCH
3COOC:l Hb S i (OCH3) zCH
2= C(CH3) COOC3Hb S i (OC
2H40CHs ) 3CI Cx Hb S i (
OCH3) 3H3C,+)IbSi(OCH3)z HS C:+H65i(OC2H4)3C5HsSi(
OCzHs):+ アミノアルキルシリコーン水溶液 潤滑剤変性アミノシラン HzNC,+HbSi(OCH:+)3HzNC:+H
bSi(OCzHs)3Hz N Cz Ha N H
C:l Hb S i (OCH3) 3(HOCzH
4)zNC3H6Si(OC2H5)3CHz COO
Cz H4N HCz H4N HC:l Hb S 
i (OCH3) :IHz N Cz H= N H
Cz H4N HCx H6S i (OCH3) 3
HzNCONHC:+H6Si(OCH3):+カチオ
ン不飽和シラン 重合体シラン 0CNC3H6Si(OCzHs)z Cz Hs OCON HC3Hb S i (OCz
 Hs ) ICbHsCHzNHC3H6Si(OC
H3)z、HCln  CeH+tSi(OC2H5)
3((CzHsO)+5iCzHa  C6H5(CH
3)÷1−34ポリアルキレンオキシドシラン 帯電防止性シラン CbHsNHC,+H65i(OCH3)3有機珪素化
合物を使用する場合には、これを通常、原料酸化チタン
(乾燥時重量)の5重量%以上、好ましくは5〜40重
量%添加する。この添加量があまり少ないと、疎水化(
親油化)効果が達成されず、あまり多すぎても、効果が
飽和されるので、経済的でない。
CHz = CHS i Cl 3 CHz = CH3i (OCzHs): + CH2 = CHS i (○CH:1)3CHz = C
HS i(OCzH40CHx):+CH2=CCH
3COOC:l Hb S i (OCH3) zCH
2= C(CH3) COOC3Hb S i (OC
2H40CHs ) 3CI Cx Hb Si (
OCH3) 3H3C, +)IbSi(OCH3)z HS C:+H65i(OC2H4)3C5HsSi(
OCzHs):+ Aminoalkyl silicone aqueous lubricant modified aminosilane HzNC, +HbSi(OCH:+)3HzNC:+H
bSi(OCzHs)3Hz N Cz Ha N H
C:l Hb S i (OCH3) 3(HOCzH
4) zNC3H6Si(OC2H5)3CHz COO
Cz H4N HCz H4N HC:l Hb S
i (OCH3) :IHz N Cz H= N H
Cz H4N HCx H6S i (OCH3) 3
HzNCONHC:+H6Si(OCH3):+Cationic unsaturated silane polymer silane 0CNC3H6Si(OCzHs)z Cz Hs OCON HC3Hb Si (OCz
Hs) ICbHsCHzNHC3H6Si(OC
H3)z, HCln CeH+tSi(OC2H5)
3((CzHsO)+5iCzHa C6H5(CH
3) ÷1-34 polyalkylene oxide silane Antistatic silane CbHsNHC,+H65i(OCH3)3 When using an organosilicon compound, it is usually used in an amount of 5% by weight or more of the raw material titanium oxide (dry weight), preferably is added in an amount of 5 to 40% by weight. If the amount added is too small, hydrophobicity (
If the amount is too much, the effect will be saturated and it is not economical.

上記のような有機珪素化合物で表面改質する場合には、
有機チタン化合物を用いる場合と同様に操作すればよい
When surface-modifying with organosilicon compounds such as those mentioned above,
It may be operated in the same manner as when using an organic titanium compound.

有機チタン化合物、アニオン系界面活性剤あるいは有機
珪素化合物を単独で使用する場合について上記に如くで
あるが、これらの二種以上を用いて酸化チタンを表面改
質することもできる。二種以上を用いて表面改質処理を
行う場合は、上記の単独の場合の操作に準じて操作すれ
ばよい。
The case where an organic titanium compound, an anionic surfactant or an organic silicon compound is used alone is as described above, but it is also possible to surface modify the titanium oxide using two or more of these. When surface modification treatment is performed using two or more types, the operation may be performed in accordance with the above-mentioned operation in the case of a single type.

〔実施例] 次に、本発明を実施例及び比較例によりさらに詳しく説
明する。
[Examples] Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1 200 mlのビーカーにビス(ジオクチルパイロホス
フェート)オキシアセテートチタネート1.4gを入れ
、ヘキサン35m1に溶解させた。この溶液に、平均粒
径200人及び比表面積130nf/gの球状非晶性酸
化チタン(未表面改t)7g(乾燥基準)を添加し、室
温で10分間撹拌した。
Example 1 1.4 g of bis(dioctylpyrophosphate)oxyacetate titanate was placed in a 200 ml beaker and dissolved in 35 ml of hexane. To this solution was added 7 g (dry basis) of spherical amorphous titanium oxide (unsurfaced titanium oxide) having an average particle size of 200 nf/g and a specific surface area of 130 nf/g, and the mixture was stirred at room temperature for 10 minutes.

スラリー状となったので、そのスラリーをガラス皿に移
し、110”Cで3時間空気中で乾燥させた。
The resulting slurry was transferred to a glass dish and dried in air at 110''C for 3 hours.

乾燥後、塊となった酸化チタンを磁製乳鉢で粉砕し、粉
状とした。得られた表面改質酸化チタンを後述する親油
化度評価法で評価したところ、親油化度52%であり、
トルエン中に放置しても、粒子は沈殿しなかった。改質
後の酸化チタンの平均粒径は200人、比表面積は90
rrf/gであった。
After drying, the lumped titanium oxide was crushed in a porcelain mortar to form a powder. When the obtained surface-modified titanium oxide was evaluated using the lipophilicity evaluation method described below, the lipophilicity was 52%.
The particles did not precipitate upon standing in toluene. The average particle size of titanium oxide after modification is 200, and the specific surface area is 90.
rrf/g.

この実験において、ビス(ジオクチルパイロホスフェー
ト)オキシアセテートチタネート(改質剤)の添加量を
種々に変えて同じ酸化チタンを処理し、得られた表面改
質酸化チタンの親油化度を測定し、改質剤の添加量と親
油化度の関係を第1図に示す。
In this experiment, the same titanium oxide was treated with various amounts of bis(dioctyl pyrophosphate) oxyacetate titanate (modifier) added, and the degree of lipophilization of the surface-modified titanium oxide obtained was measured. The relationship between the amount of modifier added and the degree of lipophilicity is shown in Figure 1.

鵬旧圀麿圧負成荻 100 mlのビーカーに蒸留水50m1を入れ、さら
に評価しようとする親油性微粉末試料を0.2 g入れ
る。試料が充分に親油性であれば、試料は完全に水面に
浮いている。この試料の浮いている水に小さなマグネテ
ィックスクーラーで撹拌しながら先端を水中に入れたビ
ユレットからメタノール゛を滴下する。メタノールが加
えられるにしたがって水面に浮いていた試料粉末は濡れ
て水中に分散していく。浮いている試料がなくなり、完
全に濡れてしまった時点のメタノールの添加量を読む。
Put 50 ml of distilled water into a 100 ml beaker, and then add 0.2 g of the lipophilic fine powder sample to be evaluated. If the sample is sufficiently lipophilic, it will completely float on the water surface. Methanol is dripped into the water on which the sample is floating, while stirring with a small magnetic cooler, from a billet with the tip submerged in water. As methanol is added, the sample powder floating on the water surface becomes wet and dispersed in the water. Read the amount of methanol added when there are no more floating samples and the sample is completely wet.

測定値をa mlとすると、親油化度は次式で定義され
る。
When the measured value is a ml, the degree of lipophilicity is defined by the following formula.

従って、親油化度の値が大きい程、高濃度のメタノール
水溶液にならないと濡れないことがら親油化度が高いこ
とになる。
Therefore, the larger the value of the degree of lipophilicity, the higher the degree of lipophilicity since it will not get wet unless it becomes a highly concentrated methanol aqueous solution.

実施例2 ヘキサンを7dとし、乾燥工程と粉砕工程を省いた以外
は、実施例1と同様にして表面改質酸化チタンを得た。
Example 2 Surface-modified titanium oxide was obtained in the same manner as in Example 1, except that hexane was used as 7d and the drying and pulverizing steps were omitted.

その親油化度は51%であり、トルエン中に放置しても
、粒子は沈殿しなかった。
Its degree of lipophilization was 51%, and the particles did not precipitate even when left in toluene.

実施例3 200dのビーカーにイオン交換水70m1を入れ、次
いで実施例1で用いた酸化チタン7gを撹拌機で撹拌し
て分散させた。続いて、ラウリン酸ナトリウム1.4g
を添加し、室温で30分撹拌した。次に、吸引濾過し、
水洗(イオン交換水70m1、室温)した後、110°
Cで3時間乾燥した。
Example 3 70 ml of ion-exchanged water was placed in a 200 d beaker, and then 7 g of the titanium oxide used in Example 1 was dispersed by stirring with a stirrer. Next, 1.4g of sodium laurate
was added and stirred at room temperature for 30 minutes. Next, filter by suction,
After washing with water (70ml of ion-exchanged water, room temperature), 110°
It was dried at C for 3 hours.

乾燥物を粉砕して表面改質酸化チタンを得た。その親油
化度は59%で、放置後、粒子は沈殿した。
The dried material was pulverized to obtain surface-modified titanium oxide. Its degree of lipophilization was 59%, and the particles precipitated after standing.

実施例4 200 mlのビーカーにイオン交換水4 ml、を入
れ、次いで、ラウリン酸ナトリウム0.185 gを加
えて溶解させた。さらに、実施例1で用いた酸化チタン
4gを加え、10分間撹拌して粉状の処理酸化チタンを
得た。次に、110°C,3時間空気中で乾燥して表面
改質酸化チタンを得た。その親油化度は35%であった
。この表面改質酸化チタンの平均粒径は200人、比表
面積は95m/gであった。
Example 4 4 ml of ion exchange water was put into a 200 ml beaker, and then 0.185 g of sodium laurate was added and dissolved. Furthermore, 4 g of titanium oxide used in Example 1 was added and stirred for 10 minutes to obtain powdered treated titanium oxide. Next, it was dried in air at 110°C for 3 hours to obtain surface-modified titanium oxide. Its lipophilicity was 35%. This surface-modified titanium oxide had an average particle size of 200 particles and a specific surface area of 95 m/g.

実施例5 吸引濾過及び水洗をせずに、蒸発乾固した以外は、実施
例3と同様にして表面改質酸化チタンを得た。その親油
化度は58%であった。
Example 5 Surface-modified titanium oxide was obtained in the same manner as in Example 3, except that it was evaporated to dryness without suction filtration or washing with water. Its lipophilicity was 58%.

実施例6 200 mlのビーカーに得た35m1を入れ、ビニル
トリエトキシシラン2.8gを添加し、溶解させた。そ
の溶液に実施例1で用いた酸化チタンを添加し、室温で
10分間撹拌し、その後、実施例1と同様に処理した。
Example 6 The obtained 35 ml was placed in a 200 ml beaker, and 2.8 g of vinyltriethoxysilane was added and dissolved. The titanium oxide used in Example 1 was added to the solution, stirred at room temperature for 10 minutes, and then treated in the same manner as in Example 1.

その親油化度は27%であった。またこの表面改質酸化
チタンの平均粒径は200人、比表面積は80m/gで
あった。
Its lipophilicity was 27%. The surface-modified titanium oxide had an average particle size of 200 particles and a specific surface area of 80 m/g.

比較例1 ラウリン酸ナトリウムの代わりに、非イオン系界面活性
剤であるモノステアリン酸ポリオキシエチレンソルビタ
ン1.4gを用いた以外は、実施例3と同様に操作し、
表面改質酸化チタンを得た。
Comparative Example 1 The same procedure as in Example 3 was carried out, except that 1.4 g of polyoxyethylene sorbitan monostearate, a nonionic surfactant, was used instead of sodium laurate.
Surface modified titanium oxide was obtained.

その親油化度は0%であった。またこの表面改質酸化チ
タンの平均粒径は200人、比表面積は110rrf/
gであった。
Its lipophilicity was 0%. In addition, the average particle size of this surface-modified titanium oxide is 200 mm, and the specific surface area is 110 rrf/
It was g.

応用例1 ポリスチレン90重量部に対して、実施例1で得られた
表面改質された球状非品性酸化チタン超微粒子10重量
部を添加し、ミニマックス成形機で250″Cで101
0X40の試験片を作成した。
Application Example 1 To 90 parts by weight of polystyrene, 10 parts by weight of the surface-modified spherical non-quality titanium oxide ultrafine particles obtained in Example 1 were added, and the mixture was molded using a minimax molding machine at 250''C to 101 parts by weight.
A 0x40 test piece was prepared.

さらに、この試験片をプレス成形機で250°Cで厚さ
200μmのシート状試験片とした。この試験片の50
0 nmでの吸光度は0.30であった。
Furthermore, this test piece was molded into a sheet-like test piece with a thickness of 200 μm at 250° C. using a press molding machine. 50 of this test piece
The absorbance at 0 nm was 0.30.

比較例2 表面改質された球状非品性酸化チタン超微粒子の代わり
に、未処理の球状非品性酸化チタン超微粒子を用いた以
外は、応用例1と同様にして試験片を作成し、500 
nmでの吸光度を測定したところ、吸光度は0.40で
あり、応用例1に比べて透明性が低下していた。
Comparative Example 2 A test piece was prepared in the same manner as in Application Example 1, except that untreated spherical non-quality titanium oxide ultrafine particles were used instead of surface-modified spherical non-quality titanium oxide ultrafine particles, 500
When the absorbance at nm was measured, the absorbance was 0.40, and the transparency was lower than that of Application Example 1.

比較例3 酸化チタンとしてアナターゼ型及びルチル型の混合した
結晶性米粒状酸化チタン(デグッサ社のP−25)を用
い、これをビス(ジオクチルパイロホスフェート)オキ
シアセテートチタネートで実施例1と同様にして処理し
て表面改質された酸化チタンを製造した。このように製
造した表面改質粒状酸化チタンを用いた以外は、応用例
1と同様にして試験片を作成し、吸光度を測定したとこ
ろ、0.50であり、試験片は白濁していた。
Comparative Example 3 Using crystalline rice granular titanium oxide (P-25 from Degussa), which is a mixture of anatase type and rutile type, as titanium oxide, it was treated with bis(dioctyl pyrophosphate) oxyacetate titanate in the same manner as in Example 1. A surface-modified titanium oxide was produced through treatment. A test piece was prepared in the same manner as in Application Example 1 except that the surface-modified granular titanium oxide produced in this manner was used, and the absorbance was measured to be 0.50, and the test piece was cloudy.

〔発明の効果〕〔Effect of the invention〕

本発明の表面改質酸化チタン超微粒子は、非品性、球状
であり、高い比表面積を有し、高い表面疎水性を有する
。すなわち、本発明によれば、有機溶媒や樹脂への分散
性が著しく向上した表面改第1図は、実施例1における
改質剤の添加量と表面改質酸化チタンの親油化度との関
係を示すグラフである。
The surface-modified ultrafine titanium oxide particles of the present invention are non-porous, spherical, have a high specific surface area, and have high surface hydrophobicity. That is, according to the present invention, the surface modification shown in FIG. 1, in which the dispersibility in organic solvents and resins was significantly improved, is due to the difference between the amount of modifier added and the degree of lipophilicity of the surface-modified titanium oxide in Example 1. It is a graph showing a relationship.

親油化度(%)Lipophilicity degree (%)

Claims (4)

【特許請求の範囲】[Claims] (1)有機チタン化合物、アニオン系界面活性剤及び有
機珪素化合物よりなる群から選ばれた一種又は二種以上
の化合物で表面改質された平均粒径100〜1000Å
及び比表面積50〜200m^2/gである非晶性球状
酸化チタン超微粒子。
(1) Surface modified with one or more compounds selected from the group consisting of organotitanium compounds, anionic surfactants, and organosilicon compounds with an average particle size of 100 to 1000 Å
and amorphous spherical titanium oxide ultrafine particles having a specific surface area of 50 to 200 m^2/g.
(2)有機チタン化合物が−Ti−O−結合を有する有
機チタン化合物である特許請求の範囲第1項記載の超微
粒子。
(2) The ultrafine particles according to claim 1, wherein the organic titanium compound is an organic titanium compound having a -Ti-O- bond.
(3)アニオン系界面活性剤が脂肪酸アルカリ塩である
特許請求の範囲第1項記載の超微粒子。
(3) The ultrafine particles according to claim 1, wherein the anionic surfactant is a fatty acid alkali salt.
(4)有機珪素化合物が珪素原子に加水分解基が結合し
ている有機珪素化合物である特許請求の範囲第1項記載
の超微粒子。
(4) The ultrafine particles according to claim 1, wherein the organosilicon compound is an organosilicon compound in which a hydrolyzable group is bonded to a silicon atom.
JP62312354A 1987-12-11 1987-12-11 Surface-modified titanium oxide ultrafine particles Expired - Lifetime JPH0615408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62312354A JPH0615408B2 (en) 1987-12-11 1987-12-11 Surface-modified titanium oxide ultrafine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62312354A JPH0615408B2 (en) 1987-12-11 1987-12-11 Surface-modified titanium oxide ultrafine particles

Publications (2)

Publication Number Publication Date
JPH01153529A true JPH01153529A (en) 1989-06-15
JPH0615408B2 JPH0615408B2 (en) 1994-03-02

Family

ID=18028236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62312354A Expired - Lifetime JPH0615408B2 (en) 1987-12-11 1987-12-11 Surface-modified titanium oxide ultrafine particles

Country Status (1)

Country Link
JP (1) JPH0615408B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07267640A (en) * 1994-03-29 1995-10-17 Idemitsu Kosan Co Ltd Surface-modified titanium dioxide fine particle and method for producing the same
US5560845A (en) * 1994-02-28 1996-10-01 E. I. Du Pont De Nemours And Company Laser marking of fluoropolymer composition
US6835455B2 (en) * 2000-04-25 2004-12-28 Showa Denko Kabushiki Kaisha Ultrafine particulate complex oxide containing titanium oxide
WO2007139091A1 (en) * 2006-06-01 2007-12-06 Sakata Inx Corp. Visible light-responsive titanium oxide photocatalyst dispersion composition and method for producing the same
JP2018184322A (en) * 2017-04-26 2018-11-22 富士ゼロックス株式会社 Titanium oxide particle and method for producing the same, photocatalyst forming composition, photocatalyst, and structure
JP2018184321A (en) * 2017-04-26 2018-11-22 富士ゼロックス株式会社 Metatitanic acid particle and method for producing the same, photocatalyst forming composition, photocatalyst, and structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185405A (en) * 1982-04-26 1983-10-29 Nippon Aerojiru Kk Fine powder of surface-modified metal oxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185405A (en) * 1982-04-26 1983-10-29 Nippon Aerojiru Kk Fine powder of surface-modified metal oxide

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560845A (en) * 1994-02-28 1996-10-01 E. I. Du Pont De Nemours And Company Laser marking of fluoropolymer composition
US5789466A (en) * 1994-02-28 1998-08-04 E. I. Du Pont De Nemours And Company Laser marking of fluoropolymer composition
JPH07267640A (en) * 1994-03-29 1995-10-17 Idemitsu Kosan Co Ltd Surface-modified titanium dioxide fine particle and method for producing the same
US6835455B2 (en) * 2000-04-25 2004-12-28 Showa Denko Kabushiki Kaisha Ultrafine particulate complex oxide containing titanium oxide
WO2007139091A1 (en) * 2006-06-01 2007-12-06 Sakata Inx Corp. Visible light-responsive titanium oxide photocatalyst dispersion composition and method for producing the same
JP5130206B2 (en) * 2006-06-01 2013-01-30 サカタインクス株式会社 Visible light responsive titanium oxide photocatalyst dispersion composition and method for producing the same
JP2018184322A (en) * 2017-04-26 2018-11-22 富士ゼロックス株式会社 Titanium oxide particle and method for producing the same, photocatalyst forming composition, photocatalyst, and structure
JP2018184321A (en) * 2017-04-26 2018-11-22 富士ゼロックス株式会社 Metatitanic acid particle and method for producing the same, photocatalyst forming composition, photocatalyst, and structure

Also Published As

Publication number Publication date
JPH0615408B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
US7276231B2 (en) Lower-energy process for preparing passivated inorganic nanoparticles
AU602982B2 (en) Titanium dioxide coated with oxides of silicon and aluminium
US5653794A (en) Silane treated inorganic pigments
EP0684208B1 (en) Ultrafine iron-containing rutile titanium dioxide particle and process for producing the same
CZ325497A3 (en) Process for preparing improved, loose pigment with reduced dustiness
JP3571277B2 (en) Surface-modified and pyrolytically produced titanium dioxide, method for its production and its use
US8394873B2 (en) Polysiloxane modified titanium dioxide
EP1592503A1 (en) Chemomechanical production of functional colloids
WO2006109847A1 (en) Alunite compound particle, process for producing the same and use thereof
JP3198494B2 (en) Conductive oxide particles and method for producing the same
JP4495801B2 (en) Method for producing rutile ultrafine titanium dioxide
JP3462610B2 (en) Hydrophobic metatitanate fine particles and method for producing the same
CN114747593B (en) MXene-zinc oxide nanocomposite, preparation method thereof and recyclable hydrophobic antibacterial material prepared from same
JP5510521B2 (en) Photocatalyst particle dispersion and process for producing the same
CA2256129C (en) Method of producing anhydrous zinc antimonate
JPH01153529A (en) Ultrafine particle of titanium oxide having modified surface
EP2004761B1 (en) Amino phosphoryl treated titanium dioxide
JP2005132706A (en) Manufacturing method of rutile type titanium oxide superfine particle
KR20020006701A (en) Surface treated barium sulfate and method of preparing the same
JPS6411572B2 (en)
JP3552843B2 (en) Method for producing silicone-coated powder
JPH101621A (en) Hydrophobic metatitanic acid fine particle and its production
WO2019177042A1 (en) Compound, dispersant, complex, dispersion, and method for producing complex
JP3548199B2 (en) Fine powder of titanium dioxide and method for producing the same
JPH09316360A (en) Hydrophobic metatitanic acid microparticle and its production