JPH07266224A - Grinder - Google Patents

Grinder

Info

Publication number
JPH07266224A
JPH07266224A JP5923794A JP5923794A JPH07266224A JP H07266224 A JPH07266224 A JP H07266224A JP 5923794 A JP5923794 A JP 5923794A JP 5923794 A JP5923794 A JP 5923794A JP H07266224 A JPH07266224 A JP H07266224A
Authority
JP
Japan
Prior art keywords
grinding
workpiece
ground
grindstone
finish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5923794A
Other languages
Japanese (ja)
Other versions
JP3413939B2 (en
Inventor
Takayuki Hotta
尊之 堀田
Takao Yoneda
孝夫 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP05923794A priority Critical patent/JP3413939B2/en
Publication of JPH07266224A publication Critical patent/JPH07266224A/en
Application granted granted Critical
Publication of JP3413939B2 publication Critical patent/JP3413939B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

PURPOSE:To improve the circularity of the surface to be ground in spite of a short machining time, and to restrict the lowering of dimension accuracy at minimum in a grinder. CONSTITUTION:A control means 130 operates a driving means 100 so as to perform the pre-stage grinding of the surface Wa to be ground of a work W and the finish grinding to be followed the pre-stage grinding with a grinding wheel 19, and concludes the finish grinding when the outer diameter of the surface to be ground, which is measured by a measuring means 120, achieves the finish target diameter A computing means 90 computes the distance corresponding to the deflection of the work W due to the grinding resistance at the the of concluding the finish polishing. Furthermore, the control means 130 performs the grinding with a grinding wheel during the one turn of the work W, which is continued to the conclusion of the finish polishing, and also moves a grinding wheel stock and a work at a distance corresponding to the computed deflection of the work in the direction for separating from each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、工作物の円筒状の外径
を研削する研削装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grinding device for grinding a cylindrical outer diameter of a workpiece.

【0002】[0002]

【従来の技術】円筒研削盤等の研削装置においては、図
8に示すように、主軸台と心押台のセンタ15a,16
aにより支持した工作物Wに対し回転する砥石車19を
備えた砥石台を送り込んで被研削面Waの外径を研削して
いる。砥石台の位置を、図9の図表の実線Gに示すよう
に、粗研削G1、精研削G2、微研削G3と順次送り速度を減
少させながら送り込むことにより、工作物Wの被研削面
Waの外径は、砥石台位置に換算した値で示せば、例えば
破線Hに示すように減少する。この種の研削装置では、
研削加工に必要な研削抵抗により工作物に撓みが生じ、
ある瞬間における前記実線Gと破線Hの位置は、この撓
みの分だけ差が生じる。
2. Description of the Related Art In a grinding machine such as a cylindrical grinder, as shown in FIG. 8, centers 15a, 16 of a headstock and a tailstock are used.
A grindstone base provided with a grindstone wheel 19 that rotates with respect to the workpiece W supported by a is fed to grind the outer diameter of the surface Wa to be ground. As shown by the solid line G in the diagram of FIG. 9, the grindstone is moved in order from the rough grinding G1, the fine grinding G2, and the fine grinding G3 while decreasing the feed speed in order to reduce the surface of the workpiece W to be ground.
If the outer diameter of Wa is represented by a value converted to the position of the wheel head, for example, it decreases as indicated by the broken line H. With this kind of grinding machine,
The work piece is bent due to the grinding resistance required for grinding,
The positions of the solid line G and the broken line H at a certain moment differ by the amount of this bending.

【0003】そのため、この種の円筒研削加工において
は、高い精度を得るためにインプロセス計測装置を用い
て研削中に被研削面の外径を計測しながら加工を行い、
被研削面Waの外径が粗研削完了径に達すれば送り速度を
粗研送りから精研送りに切り替え、精研削完了径に達す
れば精研送りから微研送りに切り替え、仕上目標径Dに
達すれば研削加工を完了して、実線G4に示すように直ち
に砥石台を早送り後退させている。あるいは、微研削終
了後に二点鎖線G5に示すように所定時間だけ砥石台を停
止させてスパークアウトを行ってから、二点鎖線G6に示
すように砥石台を早送り後退させている。
Therefore, in this type of cylindrical grinding, the processing is performed while measuring the outer diameter of the surface to be ground during grinding using an in-process measuring device in order to obtain high accuracy.
When the outer diameter of the surface to be ground Wa reaches the rough grinding completed diameter, the feed speed is switched from the rough grinding feed to the fine grinding feed, and when it reaches the fine grinding completed diameter, it is switched from the fine grinding feed to the fine grinding feed to reach the finishing target diameter D. If it reaches, the grinding process is completed, and as shown by the solid line G4, the whetstone head is immediately retreated backward. Alternatively, after the fine grinding is finished, the grindstone head is stopped for a predetermined time as shown by the two-dot chain line G5 to perform spark-out, and then the grindstone head is retracted rapidly as shown by the two-dot chain line G6.

【0004】[0004]

【発明が解決しようとする課題】微研削後直ちに砥石台
を早送り後退させる場合には、被研削面Waの形状は図5
に誇張して示すような渦巻面の一部となるので、被研削
面Waの真円度を所定の値に維持するためには微研削送り
速度を所定の小さい値以下にするする必要があり、この
ため加工時間が増大するという問題がある。スパークア
ウトを行うようにすれば、微研削速度を早くしても真円
度を高めることはできるが、このためのスパークアウト
は工作物Wを数回転以上回転させる必要があり、この間
に被研削面Waの径は工作物Wの撓みのスプリングバック
により図9の一点鎖線H5に示すように減少し、この減少
量はスパークアウト終了時にはeとなるので、寸法精度
が低下するという問題がある。スパークアウトを完全に
行った場合の被研削面Waの径は、図5に破線で示す円の
径から微研削終了時の工作物Wの撓みの2倍を引いた値
となる。
When the grindstone head is fast-forwarded and retracted immediately after fine grinding, the shape of the grinding surface Wa is as shown in FIG.
Since it becomes a part of the spiral surface exaggerated as shown in Fig. 4, it is necessary to set the fine grinding feed rate to a predetermined small value or less in order to maintain the circularity of the surface to be ground Wa at a predetermined value. Therefore, there is a problem that the processing time increases. If the spark-out is performed, the roundness can be increased even if the fine grinding speed is increased, but the spark-out for this purpose requires the workpiece W to be rotated several revolutions or more. The diameter of the surface Wa decreases due to the springback of the bending of the workpiece W as shown by the alternate long and short dash line H5 in FIG. 9, and this decrease amount becomes e at the end of the sparkout, so that there is a problem that the dimensional accuracy decreases. The diameter of the surface Wa to be ground when the spark-out is completely performed is a value obtained by subtracting twice the bending of the workpiece W at the end of the fine grinding from the diameter of the circle shown by the broken line in FIG.

【0005】本発明はこのような各問題を解決して、加
工時間が少ないにもかかわらず真円度を高くし、しかも
寸法精度の低下も最小にすることを目的とする。
An object of the present invention is to solve each of the problems described above, to increase the roundness in spite of the short processing time and to minimize the deterioration of the dimensional accuracy.

【0006】[0006]

【課題を解決するための手段】このために、本発明によ
る研削装置は、図1に示すように、モータにより回転駆
動される砥石車19を有する砥石台13と、前記砥石車
19とこれにより研削される工作物Wが互いに接近また
は離間する方向に前記砥石台13と工作物Wを相対移動
させる駆動手段100と、前記工作物Wに対する前記砥
石台13の位置を検出する位置検出手段110と、研削
中に工作物Wの被研削面Waの外径を計測する計測手段1
20と、前記駆動手段100を前記接近方向に作動させ
て前記砥石車19により前記被研削面Waの前段研削及び
これに続く仕上げ研削を行い前記計測手段120により
計測される被研削面Waの外径が仕上目標径となれば仕上
げ研削を終了する制御手段130を備えてなる研削装置
において、前記仕上げ研削終了時における研削抵抗によ
る工作物Wの被研削面Waにおける撓みに相当する距離を
演算する演算手段90を備え、前記制御手段130は前
記仕上げ研削終了に続く工作物数回転の間に、前記砥石
車19による研削を行いながら前記砥石台13と工作物
Wを、前記演算手段90により求めた距離だけ、前記離
間方向に相対的に移動させることを特徴とするものであ
る。
To this end, the grinding apparatus according to the present invention, as shown in FIG. 1, has a grinding wheel base 13 having a grinding wheel 19 which is rotationally driven by a motor, the grinding wheel 19 and the grinding wheel 19 thereby. Driving means 100 for relatively moving the grindstone base 13 and the workpiece W in a direction in which the workpieces W to be ground approach or separate from each other, and position detection means 110 for detecting the position of the grindstone base 13 with respect to the workpiece W. , Measuring means 1 for measuring the outer diameter of the surface Wa to be ground of the workpiece W during grinding
20 and the driving means 100 are operated in the approaching direction to perform the pre-stage grinding of the grinding surface Wa by the grinding wheel 19 and the subsequent finish grinding, and the outside of the grinding surface Wa measured by the measuring means 120. In the grinding apparatus including the control means 130 for finishing the finish grinding when the diameter reaches the finish target diameter, the distance corresponding to the bending of the workpiece W on the ground surface Wa due to the grinding resistance at the time of finishing the grinding is calculated. The calculation means 90 is provided, and the control means 130 obtains the grindstone base 13 and the work W by the calculation means 90 while performing grinding by the grinding wheel 19 during the number of revolutions of the work following the completion of the finish grinding. It is characterized in that it is relatively moved in the separating direction by a predetermined distance.

【0007】ここで前記演算手段としては、工作物Wの
剛性に基づいて前記撓みに相当する距離を演算するもの
とすることが考えられる。
Here, it is conceivable that the calculating means calculates a distance corresponding to the bending based on the rigidity of the workpiece W.

【0008】あるいは前記演算手段としては、前記位置
検出手段により検出される前記砥石台13の位置と前記
計測手段により検出される工作物の外径に基づいて前記
撓みに相当する距離を演算するものとすることが考えら
れる。
Alternatively, the calculating means calculates a distance corresponding to the bending based on the position of the grindstone base 13 detected by the position detecting means and the outer diameter of the workpiece detected by the measuring means. It is possible to

【0009】[0009]

【作用】制御手段130は駆動手段100を介して砥石
台13と砥石車19を互いに接近させて砥石車19によ
り工作物Wの被研削面Waを仕上げ研削し、計測手段12
0により計測される被研削面Waの外径が所定の仕上目標
径Dになれば仕上げ研削を終了する。また、演算手段9
0は、仕上げ研削終了時における工作物Wの撓みに相当
する距離を演算する。この仕上げ研削終了に続く工作物
W数回転の間に、制御手段130は、演算手段90にて
求めた距離だけ、砥石台13と工作物Wを互いに離間方
向に移動させる。仕上げ研削終了直後は渦巻面の一部を
なす形状であった被研削面Waは、仕上げ研削完了から工
作物1回転の間の研削により真円化され、一方、工作物
W1回転後には、工作物Wと砥石車19の離間方向移動
により、砥石車19による被研削面Waの研削に必要な研
削抵抗を与える工作物Wの撓みは減少して0になるの
で、研削は行われなくなる。
The control means 130 causes the grinding wheel base 13 and the grinding wheel 19 to approach each other via the driving means 100, and finishes the surface to be ground Wa of the workpiece W by the grinding wheel 19 and finishes the measurement.
When the outer diameter of the surface to be ground Wa measured by 0 reaches a predetermined finishing target diameter D, finish grinding is completed. Also, the calculation means 9
0 calculates the distance corresponding to the deflection of the workpiece W at the end of finish grinding. During the number of rotations of the workpiece W following the end of the finish grinding, the control means 130 moves the grindstone 13 and the workpiece W in the direction away from each other by the distance calculated by the computing means 90. The surface to be ground Wa, which was in the shape of a part of the spiral surface immediately after finishing grinding, was rounded by the grinding during one revolution of the workpiece from the completion of finishing grinding. By the movement of the object W and the grinding wheel 19 in the separating direction, the deflection of the workpiece W, which gives the grinding resistance required for grinding the surface Wa to be ground by the grinding wheel 19, decreases to 0, so that grinding is not performed.

【0010】[0010]

【実施例】以下に図2〜図5に示す実施例により、本発
明の説明をする。図2に示すように、研削盤10のベッ
ド11上に左右方向(Z方向)移動可能に案内支持した
工作物テーブル12上には、主軸15を軸承する主軸台
14と心押台16が左右方向に対向して同軸的に設けら
れ、工作物Wは主軸15と心押台16に設けたセンタ1
5a,16aにより両端が支持されている。主軸15は
主軸台14に設けたモータ18により回転駆動され、工
作物Wは左端部が主軸15から突設された回止め部材1
7に係合されて主軸15と共に回転される。
EXAMPLES The present invention will be described below with reference to examples shown in FIGS. As shown in FIG. 2, a headstock 14 and a tailstock 16 for bearing a main spindle 15 and a tailstock 16 are placed on the left and right sides of a worktable 12, which is guided and supported on a bed 11 of a grinding machine 10 so as to be movable in the left-right direction (Z direction). The workpiece W is coaxially provided so as to be opposed to each other in the direction of the center 1 provided on the spindle 15 and the tailstock 16.
Both ends are supported by 5a and 16a. The spindle 15 is rotationally driven by a motor 18 provided on the spindle stock 14, and the workpiece W has a left end portion protruding from the spindle 15 to prevent the detent member 1 from rotating.
7 and is rotated together with the main shaft 15.

【0011】また、ベッド11上には、Z方向と直交す
る水平なX方向に移動可能に砥石台13が案内支持さ
れ、この砥石台13にはCBN砥石等の砥石車19が主
軸15と平行な砥石軸20により軸承され、Vベルト回
転伝達機構21を介してモータ22により回転駆動され
る。ベッド11に設けたサーボモータ23は、数値制御
装置30のパルス分配回路34から分配される制御パル
スに基づいて作動する駆動回路41により制御駆動さ
れ、図略の送りねじ装置を介して砥石台13にX方向の
送りを与えるものである。エンコーダ等の位置検出器2
5はサーボモータ23の回転角度を介して砥石台13の
移動位置を検出し、この検出値はセンサコントローラ4
2を介して数値制御装置30に入力される。
A grindstone base 13 is guided and supported on the bed 11 so as to be movable in a horizontal X direction orthogonal to the Z direction, and a grindstone wheel 19 such as a CBN grindstone is parallel to the spindle 15 on the grindstone base 13. It is supported by a simple grindstone shaft 20 and is rotationally driven by a motor 22 via a V-belt rotation transmission mechanism 21. The servomotor 23 provided in the bed 11 is controlled and driven by a drive circuit 41 that operates based on a control pulse distributed from the pulse distribution circuit 34 of the numerical controller 30, and the grindstone base 13 is driven via a feed screw device (not shown). To feed in the X direction. Position detector 2 such as encoder
Reference numeral 5 detects the moving position of the grindstone 13 via the rotation angle of the servomotor 23, and the detected value is the sensor controller 4
It is input to the numerical control device 30 via 2.

【0012】工作物テーブル12上に設置されたインプ
ロセス計測装置24は、1対の測定子24aの先端部を
研削中の工作物Wの被研削面Waに係合してその外径寸法
を連続的に直接測定し、その測定信号(アナログ信号)
は数値制御装置30に入力される。
The in-process measuring device 24 installed on the work table 12 engages the tip ends of a pair of measuring elements 24a with the surface to be ground Wa of the work W being ground to determine its outer diameter. Direct and continuous measurement, and its measurement signal (analog signal)
Is input to the numerical controller 30.

【0013】数値制御装置30は、図2に示すように、
研削装置全体を制御し管理する中央処理装置(CPU)
31、メモリ32、外部とのデータの授受を行うインタ
フェース33、及びCPU31からの指令に応じて駆動
パルスを分配送出するパルス分配回路34を備えてい
る。CPU31には、A−Dコンバータ35を介して計
測装置24が接続され、またセンサコントローラ42が
接続されている。このセンサコントローラ42はCPU
31により制御され、前述の位置検出器25が接続され
ている。更に、インタフェース33には、制御データ等
を入力するキーボード等の入力装置40が接続され、ま
たパルス分配回路34には、駆動回路41を介して前述
のサーボモータ23が接続されている。メモリ32に
は、工作物Wを加工するための加工プログラム及びその
他のデータ等が格納されている。
As shown in FIG. 2, the numerical control device 30 has a
Central processing unit (CPU) that controls and manages the entire grinding machine
3, a memory 32, an interface 33 for exchanging data with the outside, and a pulse distribution circuit 34 for distributing and transmitting drive pulses in response to a command from the CPU 31. The measuring device 24 is connected to the CPU 31 via the AD converter 35, and the sensor controller 42 is connected to the CPU 31. This sensor controller 42 is a CPU
The position detector 25 is connected to the position detector 25 described above. Further, the interface 33 is connected to an input device 40 such as a keyboard for inputting control data and the like, and the pulse distribution circuit 34 is connected to the servo motor 23 described above via a drive circuit 41. The memory 32 stores a machining program for machining the workpiece W and other data.

【0014】本実施例と特許請求の範囲の関係におい
て、サーボモータ23が駆動手段100を、位置検出器
25が位置検出手段110を、計測装置24が計測手段
120を、CPU31及びパルス分配回路34が制御手
段130を、CPU31及びメモリ32が演算手段14
0をそれぞれ構成している。
In the relationship between the present embodiment and the claims, the servomotor 23 is the driving means 100, the position detector 25 is the position detecting means 110, the measuring device 24 is the measuring means 120, the CPU 31 and the pulse distribution circuit 34. Is the control means 130, and the CPU 31 and the memory 32 are the calculation means 14
0 respectively.

【0015】次に、上記のように構成された本実施例の
動作を、図3に示すフローチャート並びに図4及び図5
の説明図により説明する。入力装置40からの指令によ
り研削装置が作動を開始すると、図3のフローチャート
に示す加工プログラムによる研削加工が開始される。先
ず数値制御装置30のCPU31は、ステップ101の
粗研削を実施する。すなわち砥石車19が回転し、主軸
台14と心押台16により支持された工作物Wがモータ
18により所定の速度で回転した状態で、CPU31は
砥石台13を予め設定した粗研削送り速度で前進させ、
工作物Wの粗研削を実施する。CPU31は加工プログ
ラム内の砥石台粗研削送り指令を解読してパルス分配回
路34に指令値を与え、これによりパルス分配回路34
から送り出されるパルス信号を駆動回路41を介してサ
ーボモータ23に加えることによりサーボモータ23を
駆動して粗研削を行う。
Next, the operation of the present embodiment configured as described above will be described with reference to the flow chart shown in FIG. 3 and FIGS.
Will be described with reference to FIG. When the grinding device starts to operate according to a command from the input device 40, the grinding process is started according to the processing program shown in the flowchart of FIG. First, the CPU 31 of the numerical control device 30 performs the rough grinding in step 101. That is, the grindstone 19 rotates, the workpiece W supported by the headstock 14 and the tailstock 16 is rotated at a predetermined speed by the motor 18, and the CPU 31 sets the grindstone 13 at a preset rough grinding feed speed. Move forward,
Rough grinding of the workpiece W is performed. The CPU 31 decodes the grindstone rough grinding feed command in the machining program and gives a command value to the pulse distribution circuit 34, whereby the pulse distribution circuit 34.
By applying a pulse signal sent from the servo motor 23 to the servo motor 23 via the drive circuit 41, the servo motor 23 is driven to perform rough grinding.

【0016】この場合において、砥石台13に切込み送
りが与えられると、時々刻々変化する砥石台13の切込
み送り位置は位置検出器25により検出され、その検出
値はセンサコントローラ42を経てCPU31に入力さ
れる。計測装置24の測定子24aは工作物Wの被研削
面Waに係合され、これにより被研削面Waの外径をインプ
ロセス計測し、その計測値はA−Dコンバータ35によ
りデジタル信号に変換してCPU31に入力される。図
4において実線Aは位置検出器25により検出された砥
石台13の切込み送り位置を、破線Bは計測装置24に
より検出された被研削面Waの直径を砥石台13の位置に
変換したものである。
In this case, when the cutting feed is applied to the grindstone base 13, the cutting feed position of the grindstone base 13 which changes moment by moment is detected by the position detector 25, and the detected value is input to the CPU 31 via the sensor controller 42. To be done. The tracing stylus 24a of the measuring device 24 is engaged with the ground surface Wa of the workpiece W, whereby the outer diameter of the ground surface Wa is measured in-process, and the measured value is converted into a digital signal by the AD converter 35. And is input to the CPU 31. In FIG. 4, a solid line A represents the cutting feed position of the grinding wheel base 13 detected by the position detector 25, and a broken line B represents the diameter of the grinding surface Wa detected by the measuring device 24 converted into the position of the grinding wheel base 13. is there.

【0017】粗研削では位置検出器25により検出され
る砥石台13の位置は図4の実線A1に示すように早い粗
研削切込み送り速度で減少し、砥石車19が被研削面Wa
と当接すれば、被研削面Waは砥石車19により研削さ
れ、計測装置24により計測される被研削面Waの直径は
破線B1に示すように減少する。工作物Wと砥石車19の
間の研削抵抗による被研削面Waにおける工作物Wの撓み
(工作物Wの支持部による撓みを含む)(以下単に工作
物Wの撓みという)は、実線Aと破線Bの差として示さ
れている。粗研削が進行し破線B1で示す被研削面Waの径
が予め入力装置40より入力された粗研削完了径D1に達
すれば、CPU31はステップ102において粗研削が
完了したと判断して制御動作をステップ104の精研削
に進める。
In the rough grinding, the position of the grindstone base 13 detected by the position detector 25 decreases at a high rough grind cutting feed rate as shown by the solid line A1 in FIG.
If the contact is made, the surface to be ground Wa is ground by the grinding wheel 19, and the diameter of the surface to be ground Wa measured by the measuring device 24 decreases as shown by the broken line B1. The deflection of the workpiece W on the ground surface Wa due to the grinding resistance between the workpiece W and the grinding wheel 19 (including the deflection by the supporting portion of the workpiece W) (hereinafter simply referred to as the deflection of the workpiece W) is the solid line A and It is shown as the difference between the dashed lines B. When the rough grinding progresses and the diameter of the surface to be ground Wa shown by the broken line B1 reaches the rough grinding completion diameter D1 input in advance from the input device 40, the CPU 31 determines in step 102 that the rough grinding is completed, and the control operation is performed. Proceed to the fine grinding in step 104.

【0018】ステップ104において、CPU31は砥
石台13を粗研削送り速度より遅い精研削送り速度で前
進させて、粗研削の場合と同様工作物Wの精研削を実施
し、位置検出器25により検出される砥石台13の切込
み送り位置は実線A2に示すように減少し、計測装置24
により検出される被研削面Waの外径は破線B2に示すよう
に減少し、これらの検出値はCPU31に入力される。
精研削が進行し破線B2で示す被研削面Waの径が予め入力
装置40より入力された精研削完了径D2に達すれば、C
PU31はステップ105において精研削が完了したと
判断して制御動作をステップ106の微研削に進める。
この精研削の間に、研削抵抗による工作物Wの撓みは、
実線A2と破線B2の差で示すように、次第に減少して一定
値に収束する。
In step 104, the CPU 31 advances the grindstone base 13 at a fine-grinding feed speed slower than the rough-grind feed speed, fine-grinds the workpiece W as in the rough-grind feed, and detects it by the position detector 25. The cutting feed position of the grindstone base 13 is decreased as shown by the solid line A2, and the measuring device 24
The outer diameter of the surface to be ground Wa detected by is decreased as shown by the broken line B2, and these detected values are input to the CPU 31.
If the fine grinding progresses and the diameter of the surface Wa to be ground indicated by the broken line B2 reaches the fine grinding completion diameter D2 previously input from the input device 40, C
The PU 31 determines in step 105 that the fine grinding is completed and advances the control operation to the fine grinding in step 106.
During this fine grinding, the deflection of the workpiece W due to grinding resistance is
As indicated by the difference between the solid line A2 and the broken line B2, it gradually decreases and converges to a constant value.

【0019】ステップ106において、CPU31は砥
石台13を実線A3で示すように精研削送り速度より遅い
微研削送り速度で前進させて、前述と同様工作物Wの微
研削を実施する。これにより計測装置24により計測さ
れた被研削面Waの径は破線B3で示すように減少し、予め
入力された仕上目標径Dに達すれば、CPU31はステ
ップ107において微研削が完了したと判断して制御動
作をステップ108の後退量演算に進める。この微研削
の間に、研削抵抗による工作物Wの撓みは、実線A3と破
線B3の差で示すように、次第に減少して精研削の場合よ
りも小さい一定値に収束する。
At step 106, the CPU 31 advances the grindstone base 13 at a fine grinding feed rate slower than the fine grinding feed rate as shown by the solid line A3, and finely grinds the workpiece W as described above. As a result, the diameter of the surface to be ground Wa measured by the measuring device 24 decreases as shown by the broken line B3, and when the finish target diameter D input in advance is reached, the CPU 31 determines in step 107 that the fine grinding has been completed. The control operation is advanced to the backward movement amount calculation in step 108. During this fine grinding, the deflection of the workpiece W due to the grinding resistance gradually decreases as shown by the difference between the solid line A3 and the broken line B3, and converges to a constant value smaller than that in the fine grinding.

【0020】ステップ108において、CPU31は次
式1により、微研削終了時における研削抵抗による工作
物Wの撓みに相当する後退量を演算する。 後退量=工作物径−砥石台位置より求められる被研削面径 ・・・1 =(D/2)−H 但し、上式の工作物径及び砥石台位置は、微研削終了時
においてそれぞれ計測装置24及び位置検出器25によ
り検出された工作物Wの径及び砥石台13の位置であ
り、熱変位等による誤差は除かれているものとする。な
お、ここでいう砥石台位置より求められる径は、図5で
示す工作物Wの回転中心Oから砥石車19の先端位置ま
での距離Hである。
In step 108, the CPU 31 calculates the amount of retreat corresponding to the bending of the workpiece W due to the grinding resistance at the end of the fine grinding according to the following expression 1. Amount of retreat = Workpiece diameter-Grinding surface diameter obtained from grindstone position ... 1 = (D / 2) -H However, the workpiece diameter and grindstone position in the above formula are measured at the end of fine grinding. It is the diameter of the workpiece W and the position of the grindstone 13 detected by the device 24 and the position detector 25, and the error due to thermal displacement or the like is excluded. The diameter obtained from the grindstone position here is the distance H from the rotation center O of the workpiece W shown in FIG. 5 to the tip position of the grinding wheel 19.

【0021】続くステップ109において、CPU31
は次式2により、工作物W1回転の間に上述の後退量だ
け砥石台13を後退させる後退速度を演算する。 後退速度=後退量×工作物Wの回転速度 ・・・2 なおこの式2は、工作物Wが1回転する間に後退量分だ
け砥石台13を後退させているが、これは1回転でなく
例えば0.5回転、2回転のような数回転させてもよ
い。この場合、式2は次式2aのように変形される。 後退速度=後退量×工作物Wの回転速度/回転数 ・・・2a 但し、この回転数を多くすれば真円度はよくなるが寸法
精度は悪くなり、サイクルタイムも延びることになる。
また1回転以下になれば真円度は悪くなってしまう。こ
のため実験的には、1回転で後退させることが真円度、
寸法精度、サイクルタイムから望ましい値となってい
る。
At the following step 109, the CPU 31
Calculates the retreat speed for retreating the grinding wheel head 13 by the above-mentioned retreat amount during the rotation of the workpiece W by the following equation 2. Backward speed = backward amount × rotational speed of the workpiece W ... 2 In this formula 2, the grinding wheel head 13 is retracted by the amount of the backward movement while the workpiece W makes one revolution. Instead, it may be rotated several times such as 0.5 rotation and 2 rotations. In this case, the equation 2 is transformed into the following equation 2a. Retraction speed = Retraction amount × Rotation speed of workpiece W / rotation speed ... 2a However, if this rotation speed is increased, the roundness is improved but the dimensional accuracy is deteriorated and the cycle time is extended.
If it is less than one rotation, the roundness will be poor. For this reason, experimentally, it is a circularity to retract in one rotation,
It is a desirable value in terms of dimensional accuracy and cycle time.

【0022】次いでCPU31は、続くステップ110
において、工作物Wが上述の回転速度で1回転する間に
前述の撓み量だけ移動するよう、砥石台13を上述の後
退速度で低速後退させ(図4の実線A4参照)て仕上目標
径Dに対応する位置まで戻し、その間は砥石車19によ
る研削を引き続き行う。続くステップ111で、CPU
31は砥石台13を早送り後退させ(図4の実線A5参
照)て、図3のフローチャートに示す加工プログラムを
終了する。
The CPU 31 then proceeds to the next step 110.
In order to move the workpiece W by the above-mentioned amount of deflection while the workpiece W makes one revolution at the above-mentioned rotation speed, the grinding stone head 13 is slowly retracted at the above-described retreat speed (see solid line A4 in FIG. 4) to finish the target diameter D. To the position corresponding to, while grinding by the grinding wheel 19 is continued. In the following step 111, the CPU
In step 31, the grindstone base 13 is fast-forwarded and retracted (see the solid line A5 in FIG. 4), and the machining program shown in the flowchart in FIG. 3 ends.

【0023】ステップ107の微研削が終了した時点で
は、図5に示すように、工作物Wの被研削面Waは渦巻面
の一部をなす形状であり、この被研削面Waの部分は砥石
車19との間に作用する研削抵抗により砥石車19から
離れる方向に撓んでおり、その撓み量は前述の後退量に
等しい。従って、ステップ110における砥石台13の
後退を伴う1回転終了後には工作物Wの撓みは0とな
り、砥石車19は図5の破線で示す円に接した位置とな
る。そして、この1回転の間に破線の円の外側の部分が
研削されて被研削面Waは破線の円で示す形状に真円化さ
れ、その後の研削は行われない。従って微研削送りを大
きくしても真円度が低下することはなく、またこの真円
化により計測装置24により検出される被研削面Waの径
は図4のcで示す分だけ減少するが、スパークアウトを
行う従来技術の場合と異なり、工作物Wの撓みのスプリ
ングバックによる径の減少はない。従って、寸法精度の
低下は真円化のために必要な最低限であり、スパークア
ウトを行う従来技術に比して小となる。なお、この径の
減少値cは微研削の際の工作物W1回転当たりの切込み
送り量と同じであるので、その分だけ仕上目標径Dを大
きく設定することにより寸法精度の低下を少なくするこ
とができる。
At the time when the fine grinding in step 107 is completed, as shown in FIG. 5, the surface to be ground Wa of the workpiece W has a shape forming a part of the spiral surface, and the surface to be ground Wa is a grindstone. It is bent in the direction away from the grinding wheel 19 due to the grinding resistance acting between the wheel 19 and the wheel 19, and the amount of bending is equal to the above-mentioned amount of retreat. Therefore, the flexure of the workpiece W becomes 0 after the completion of one rotation accompanied by the retreat of the grinding wheel base 13 in step 110, and the grinding wheel 19 is in a position in contact with the circle shown by the broken line in FIG. Then, during this one rotation, the portion outside the circle of the broken line is ground and the surface to be ground Wa is made into the shape shown by the circle of the broken line, and the subsequent grinding is not performed. Therefore, the roundness does not decrease even if the fine grinding feed is increased, and the diameter of the grinding surface Wa detected by the measuring device 24 decreases by the amount shown by c in FIG. Unlike the case of the prior art in which spark-out is performed, there is no reduction in the diameter due to springback of the bending of the workpiece W. Therefore, the decrease in dimensional accuracy is the minimum necessary for rounding, and is smaller than that in the conventional technique for performing sparkout. Since the reduction value c of the diameter is the same as the cutting feed amount per one rotation of the workpiece W at the time of fine grinding, the reduction of the dimensional accuracy can be reduced by increasing the finishing target diameter D accordingly. You can

【0024】上記実施例では、図4の実線A4で示す砥石
台13の低速後退の際の後退速度を演算するための後退
量(=微研削終了時における研削抵抗による工作物Wの
撓み)を、微研削終了時に計測装置24及び位置検出器
25によりそれぞれ検出した工作物Wの径及び砥石台1
3の位置に基づいて演算している。これに対し、図6に
示す変形実施例のフローチャートでは、ステップ102
の粗研削完了に続くステップ103で、次式3によりこ
の後退量を演算している。 後退量=(工作物径−砥石台位置より求められる径) ×微研削速度/粗研削速度 ・・・3 但し、上式3の工作物径及び砥石台位置は、粗研削終了
時においてそれぞれ計測装置24及び位置検出器25に
より検出された工作物Wの径及び砥石台13の位置であ
る。
In the above embodiment, the amount of retreat (= deflection of the workpiece W due to the grinding resistance at the end of fine grinding) for calculating the retreat speed at the time of low speed retreat of the wheel head 13 indicated by the solid line A4 in FIG. , The diameter of the workpiece W detected by the measuring device 24 and the position detector 25 at the end of the fine grinding and the wheel head 1
The calculation is performed based on the position of 3. On the other hand, in the flowchart of the modified example shown in FIG.
In step 103 following the completion of rough grinding, the amount of retreat is calculated by the following equation 3. Retreat amount = (workpiece diameter-diameter obtained from the grinding wheel position) x fine grinding speed / rough grinding speed ... 3 However, the workpiece diameter and the grinding wheel position in the above formula 3 are measured at the end of rough grinding, respectively. The diameter of the workpiece W and the position of the grindstone 13 detected by the device 24 and the position detector 25.

【0025】上式3の括弧内は粗研削終了時における工
作物Wの撓みである。一方、同一回転速度の砥石車19
により連続して研削を行う場合は、時間間隔が短かく従
って砥石車19の切れ味の変化が小さい限り、収束した
状態における研削抵抗による工作物の撓みは研削速度
(砥石車の切込み送り速度)に比例するので、次の関係
がある。 微研削速度/粗研削速度=微研削時の撓み量/粗研削時
の撓み量 従って、上式3による後退量は、前式1による後退量と
実質的に同一となる。
The inside of the parentheses of the above equation 3 is the deflection of the workpiece W at the end of rough grinding. On the other hand, the grinding wheel 19 with the same rotation speed
In the case of continuously grinding by means of, the deflection of the work due to the grinding resistance in the converged state becomes the grinding speed (the cutting feed speed of the grinding wheel) as long as the time interval is short and therefore the change in the sharpness of the grinding wheel 19 is small. Since they are proportional, they have the following relationship. Fine grinding speed / rough grinding speed = deflection amount during fine grinding / deflection amount during rough grinding Therefore, the retreat amount according to the above equation 3 is substantially the same as the retreat amount according to the previous equation 1.

【0026】この図6の変形実施例は、上述のようにス
テップ108を削除し、その代わりステップ103で上
述のようにして後退量を演算する以外は、図2〜図5に
示す前記実施例と同じであり、同様の作用効果が得られ
る。この変形実施例における後退速度の演算は、ステッ
プ109の位置に限らず、ステップ103とステップ1
10の間の任意の時点で行えばよい。この変形実施例で
は、前記実施例に比して後退速度の演算に時間的余裕が
あるので、ステップ110の作動に遅れが生じるおそれ
がなくなる。なお、この変形実施例ではステップ102
とステップ104の間で後退量の演算をしているが、ス
テップ105とステップ106の間で、精研削終了時の
工作物径及び砥石台位置並びに微研削速度及び精研削速
度に基づいて後退量の演算をするようにしてもよい。
The modified embodiment of FIG. 6 is the same as the embodiment shown in FIGS. 2 to 5, except that step 108 is deleted as described above, and instead the backward movement amount is calculated in step 103 as described above. The same effect can be obtained. The calculation of the retreat speed in this modified embodiment is not limited to the position of step 109, but steps 103 and 1
It may be performed at an arbitrary time point between 10. In this modified embodiment, since there is a time margin in the calculation of the reverse speed as compared with the above-mentioned embodiment, there is no possibility that the operation of step 110 will be delayed. In this modified embodiment, step 102
The amount of retreat is calculated between Step 105 and Step 104. However, between Step 105 and Step 106, the amount of retreat is calculated based on the workpiece diameter at the end of fine grinding, the wheel head position, and the fine grinding speed and the fine grinding speed. May be calculated.

【0027】図7のフローチャートに示す変形実施例で
は、上記各実施例のように加工の都度後退量を演算する
代わりに、予め各工作物の工作物情報(形状、材質等)
に基づき工作物の剛性を求め、その値と加工情報を用い
て、次式4により微研削終了時における研削抵抗による
工作物Wの撓みに相当する後退量を算出してメモリ32
に記憶させておく。 後退量=k×微研削速度/工作物の剛性 ・・・4 但し、kは実験的に求めた係数 この図7の変形実施例は、ステップ100を加え、ステ
ップ108を削除した以外は、図2〜図5に示す前記実
施例と同じである。CPU31は先ずステップ100で
メモリ32に記憶された該当する工作物の後退量を読み
込み、前記各実施例と同様、ステップ101〜107で
粗研削、精研削及び微研削を行い、ステップ109,1
10で後退速度演算及び砥石台低速後退を行って加工を
行う。これにより前記各実施例と同様の作用効果が得ら
れる。この変形実施例の場合も後退速度の演算は、ステ
ップ100とステップ110の間の任意の時点で行えば
よい。あるいは加工情報に基づき予め後退速度まで算出
してメモリ32に記憶させ、これをステップ100で読
み込み、ステップ109の演算を省略してもよい。前記
変形実施例と同様、この変形実施例でも、後退速度の演
算に時間的余裕があるので、ステップ110の作動に遅
れが生じるおそれがなくなる。
In the modified embodiment shown in the flow chart of FIG. 7, instead of calculating the retreat amount each time machining is performed as in each of the above-described embodiments, the workpiece information (shape, material, etc.) of each workpiece is previously stored.
The rigidity of the workpiece is calculated based on the above, and using the value and the machining information, the retreat amount corresponding to the deflection of the workpiece W due to the grinding resistance at the end of the fine grinding is calculated by the following equation 4 and the memory 32
To remember. Amount of retreat = k × fine grinding speed / rigidity of workpiece ... 4 However, k is an experimentally obtained coefficient. In the modified embodiment of FIG. 7, step 100 is added and step 108 is deleted. 2 to 5 are the same as the above-mentioned embodiment. First, the CPU 31 reads in the retreat amount of the corresponding workpiece stored in the memory 32 in step 100, performs rough grinding, fine grinding and fine grinding in steps 101 to 107 as in each of the above-described embodiments, and then executes steps 109 and 1.
In step 10, the backward speed calculation and the grinding wheel head low speed backward step are performed to perform the machining. As a result, the same operational effects as those of the above-described respective embodiments can be obtained. Also in this modified embodiment, the calculation of the reverse speed may be performed at any time between step 100 and step 110. Alternatively, the backward speed may be calculated in advance based on the processing information, stored in the memory 32, read in step 100, and the calculation in step 109 may be omitted. As in the case of the modified example described above, in this modified example as well, there is a time margin in the calculation of the reverse speed, so there is no risk of delay in the operation of step 110.

【0028】また、研削加工を行うときに研削条件(砥
石台送り速度、送り量等)を演算にて自動決定するよう
な研削盤においては、工作物の剛性を用いることがあ
り、このような研削盤においては後退量を求めるためだ
けに剛性が用いられず、効果がある。
Further, in a grinding machine in which grinding conditions (grinding head feed rate, feed rate, etc.) are automatically determined by calculation when performing grinding, the rigidity of the workpiece may be used. In the grinding machine, the rigidity is not used only for obtaining the amount of retreat, which is effective.

【0029】なお、上記各実施例と特許請求の範囲の関
係において、粗研削及び精研削が前段研削に相当し、微
研削が仕上げ研削に相当する。
In the relationship between each of the above-described embodiments and claims, rough grinding and fine grinding correspond to pre-stage grinding, and fine grinding corresponds to finish grinding.

【0030】[0030]

【発明の効果】上述のように、本発明によれば、仕上げ
研削完了から工作物1回転の間に被研削面の真円化がな
されるので、仕上げ研削送り速度を高めて加工時間を減
少させても被研削面の真円度が低下することはなく、し
かも仕上げ研削完了から工作物W1回転後には研削は行
われないので寸法精度の低下も最小となる。
As described above, according to the present invention, since the surface to be ground is rounded from the completion of the finish grinding to one revolution of the workpiece, the finishing grinding feed rate is increased to reduce the machining time. Even if it is done, the roundness of the surface to be ground does not decrease, and since the grinding is not performed after the completion of the finish grinding and after the rotation of the workpiece W1, the deterioration of the dimensional accuracy is minimized.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による研削装置の構成を示す図であ
る。
FIG. 1 is a diagram showing a configuration of a grinding apparatus according to the present invention.

【図2】 本発明による研削装置の一実施例の全体構成
を示す図である。
FIG. 2 is a diagram showing an overall configuration of an embodiment of a grinding apparatus according to the present invention.

【図3】 図2に示す一実施例の加工プログラムを示す
フローチャートである。
FIG. 3 is a flowchart showing a machining program of the embodiment shown in FIG.

【図4】 図2に示す一実施例の作動の説明図である。FIG. 4 is an explanatory view of the operation of the embodiment shown in FIG.

【図5】 図2に示す一実施例の仕上研削完了時点にお
ける被研削面及びその近傍を示す説明図である。
5 is an explanatory view showing a surface to be ground and its vicinity at the time of completion of finish grinding in the embodiment shown in FIG. 2. FIG.

【図6】 図3に示す加工プログラムの変形例のフロー
チャートである。
FIG. 6 is a flowchart of a modification of the machining program shown in FIG.

【図7】 図3に示す加工プログラムの更に異なる変形
例のフローチャートである。
FIG. 7 is a flowchart of another modification of the machining program shown in FIG.

【図8】 本発明が対象とする研削装置の一例の主要部
を示す図である。
FIG. 8 is a diagram showing a main part of an example of a grinding apparatus targeted by the present invention.

【図9】 従来の研削装置の作動の説明図である。FIG. 9 is an explanatory diagram of an operation of a conventional grinding device.

【符号の説明】 13…砥石台、19…砥石車、90…演算手段、100
…駆動手段、110…位置検出手段、120…計測手
段、130…制御手段、W…工作物、Wa…被研削面。
[Explanation of Codes] 13 ... Grinding stone base, 19 ... Grinding wheel, 90 ... Computing means, 100
... drive means, 110 ... position detection means, 120 ... measurement means, 130 ... control means, W ... workpiece, Wa ... ground surface.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 モータにより回転駆動される砥石車を有
する砥石台と、前記砥石車とこれにより研削される工作
物が互いに接近または離間する方向に前記砥石台と工作
物を相対移動させる駆動手段と、前記工作物に対する前
記砥石台の位置を検出する位置検出手段と、研削中に工
作物の被研削面の外径を計測する計測手段と、前記駆動
手段を前記接近方向に作動させて前記砥石車により前記
被研削面の前段研削及びこれに続く仕上げ研削を行い前
記計測手段により計測される被研削面の外径が仕上目標
径となれば仕上げ研削を終了する制御手段を備えてなる
研削装置において、前記仕上げ研削終了時における研削
抵抗による工作物の被研削面における撓みに相当する距
離を演算する演算手段を備え、前記制御手段は前記仕上
げ研削終了に続く工作物数回転の間に、前記砥石車によ
る研削を行いながら前記砥石台と工作物を、前記演算手
段により求めた距離だけ、前記離間方向に相対的に移動
させることを特徴とする研削装置。
1. A grindstone base having a grindstone wheel that is driven to rotate by a motor, and drive means for relatively moving the grindstone base and the workpiece in a direction in which the grindstone wheel and a workpiece ground by the grindstone wheel move toward or away from each other. Position detecting means for detecting the position of the grindstone with respect to the workpiece, measuring means for measuring the outer diameter of the surface to be ground of the workpiece during grinding, and the driving means for operating in the approaching direction. Grinding provided with a control means that performs pre-stage grinding of the surface to be ground by a grinding wheel and subsequent finish grinding, and finishes the finish grinding when the outer diameter of the surface to be ground measured by the measuring means reaches a finish target diameter. In the apparatus, there is provided computing means for computing the distance corresponding to the deflection of the work surface to be ground due to the grinding resistance at the end of the finish grinding, and the control means is provided for the work following the completion of the finish grinding. A grinding apparatus characterized in that, during the rotation of the number of crops, while the grinding wheel is grinding, the grinding wheel base and the workpiece are relatively moved in the separating direction by the distance obtained by the calculation means.
【請求項2】 前記演算手段が工作物Wの剛性に基づい
て前記撓みに相当する距離を演算するものである請求項
1記載の研削装置。
2. The grinding apparatus according to claim 1, wherein the computing means computes a distance corresponding to the bending based on the rigidity of the workpiece W.
【請求項3】 前記演算手段が前記位置検出手段により
検出される前記砥石台13の位置と前記計測手段により
検出される工作物の外径に基づいて前記撓みに相当する
距離を演算するものである請求項1記載の研削装置。
3. The calculation means calculates a distance corresponding to the deflection based on the position of the grindstone base 13 detected by the position detection means and the outer diameter of the workpiece detected by the measurement means. The grinding apparatus according to claim 1.
JP05923794A 1994-03-29 1994-03-29 Grinding equipment Expired - Fee Related JP3413939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05923794A JP3413939B2 (en) 1994-03-29 1994-03-29 Grinding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05923794A JP3413939B2 (en) 1994-03-29 1994-03-29 Grinding equipment

Publications (2)

Publication Number Publication Date
JPH07266224A true JPH07266224A (en) 1995-10-17
JP3413939B2 JP3413939B2 (en) 2003-06-09

Family

ID=13107582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05923794A Expired - Fee Related JP3413939B2 (en) 1994-03-29 1994-03-29 Grinding equipment

Country Status (1)

Country Link
JP (1) JP3413939B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002283230A (en) * 2001-03-23 2002-10-03 Seiko Instruments Inc Cylindricality control device
JP2008023691A (en) * 2006-07-25 2008-02-07 Univ Nihon Grinding device and control program, and grinding method
JP2013116534A (en) * 2011-12-05 2013-06-13 Jtekt Corp Grinding method and grinding machine
JP2014155975A (en) * 2013-02-15 2014-08-28 Jtekt Corp Grinder and grinding method
JP2014155976A (en) * 2013-02-15 2014-08-28 Jtekt Corp Grinder and grinding method
JP2014226741A (en) * 2013-05-21 2014-12-08 株式会社ジェイテクト Grinder, and grinding method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002283230A (en) * 2001-03-23 2002-10-03 Seiko Instruments Inc Cylindricality control device
JP2008023691A (en) * 2006-07-25 2008-02-07 Univ Nihon Grinding device and control program, and grinding method
JP2013116534A (en) * 2011-12-05 2013-06-13 Jtekt Corp Grinding method and grinding machine
JP2014155975A (en) * 2013-02-15 2014-08-28 Jtekt Corp Grinder and grinding method
JP2014155976A (en) * 2013-02-15 2014-08-28 Jtekt Corp Grinder and grinding method
JP2014226741A (en) * 2013-05-21 2014-12-08 株式会社ジェイテクト Grinder, and grinding method

Also Published As

Publication number Publication date
JP3413939B2 (en) 2003-06-09

Similar Documents

Publication Publication Date Title
JP3467807B2 (en) Grinding equipment
JPH0669663B2 (en) Numerical control grinder
JP3413939B2 (en) Grinding equipment
JP3344064B2 (en) Grinding equipment
JP3385666B2 (en) Grinding equipment
JPH0839427A (en) Grinding device
JP3293300B2 (en) Grinding equipment
JP3404902B2 (en) Grinding equipment
JP3555146B2 (en) Grinding method
JP2786879B2 (en) Internal grinding device
JP3143657B2 (en) Grinding equipment
JPH07171763A (en) Grinding method and device therefor
JP3413938B2 (en) Grinding equipment
JP3185464B2 (en) Grinding equipment
JP3812869B2 (en) Cylindrical grinding method and apparatus
JP2792401B2 (en) Control device for multi-axis grinding machine
JP2000094322A (en) Precision grinding machine and grinding wheel radius measuring method
JP3120578B2 (en) Grinding equipment
JP3143656B2 (en) Grinding equipment
JP2002239901A (en) Method for grinding revolving workpiece
JP2973197B1 (en) Grinding method with CNC grinder
JP2002059335A (en) Working fluid feeder, and working device
JPH06278021A (en) Grinding device
JPH06134668A (en) Grinding machine
JPH07100762A (en) Grinding device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100404

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120404

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees