JP2013116534A - Grinding method and grinding machine - Google Patents

Grinding method and grinding machine Download PDF

Info

Publication number
JP2013116534A
JP2013116534A JP2011265855A JP2011265855A JP2013116534A JP 2013116534 A JP2013116534 A JP 2013116534A JP 2011265855 A JP2011265855 A JP 2011265855A JP 2011265855 A JP2011265855 A JP 2011265855A JP 2013116534 A JP2013116534 A JP 2013116534A
Authority
JP
Japan
Prior art keywords
grinding
workpiece
normal
rigidity
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011265855A
Other languages
Japanese (ja)
Other versions
JP5857692B2 (en
Inventor
Hayaki Sakai
隼樹 酒井
Masashi Yoritsune
昌史 頼経
Makoto Nonoyama
眞 野々山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2011265855A priority Critical patent/JP5857692B2/en
Publication of JP2013116534A publication Critical patent/JP2013116534A/en
Application granted granted Critical
Publication of JP5857692B2 publication Critical patent/JP5857692B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grinding machine capable of performing grinding at desired grinding accuracy in the shortest possible grinding time in a finishing grinding irrespective of variations in grinding rigidity.SOLUTION: In the course of a continuous grinding method in which workpieces W of the identical shape are subjected to the step of a continuous grinding, the grinding rigidity is measured in the grinding step of an initial grinding cycle S5 which is a grinding cycle for a workpiece to be initially ground. In the following grinding cycle S6 which is a grinding cycle for workpieces to be ground next and thereafter, a rough grinding step is first carried out, and after that, a grinding rigidity measured during the grinding of a workpiece ground before the present workpiece, a normal grinding force measured during the rough grinding step, and a grinding amount in the final grinding step for the present workpiece are made to calculate a retracting amount. After retracting grinding is performed that makes a retracting wheel retracted only by the retracting amount, the final grinding step is practiced so that the grinding rigidity in the final grinding step is measured.

Description

本発明は、円筒研削中に砥石車を後退させながら研削する研削方法および研削盤に関するものである。   The present invention relates to a grinding method and a grinding machine for grinding while retreating a grinding wheel during cylindrical grinding.

研削加工においては、加工部が渦巻形状に切込まれながら工作物径が減少して研削される。この渦巻形状を短時間で真円形状にするため後退研削工程を行った後に仕上研削工程を実施することがある。この後退研削サイクルにおいては、後退研削工程の後退位置を撓みがなくなる位置に設定し、仕上研削工程では改めて撓みが無い状態から砥石車を切込み研削している。更に、仕上研削に要する時間を短縮するために、後退研削工程の後退位置を、仕上研削時の工作物1回転あたりの切込み量に対応した撓みが生じる位置とすることが提案されている(特許文献1参照)。   In the grinding process, the workpiece diameter is reduced and ground while the processed part is cut into a spiral shape. In order to make this spiral shape into a perfect circle in a short time, a finish grinding step may be carried out after a reverse grinding step. In this backward grinding cycle, the backward position in the backward grinding process is set to a position where there is no deflection, and the grinding wheel is cut and ground again from the state where there is no deflection in the finish grinding process. Furthermore, in order to shorten the time required for finish grinding, it has been proposed that the retracted position in the backward grinding process is a position where a deflection corresponding to the depth of cut per work rotation during finish grinding occurs (patent) Reference 1).

特開平7−214466号公報JP-A-7-214466

仕上研削においては所定の精度を確保するためには、工作物を所定の回転数だけ回転させることが必要である。特許文献1に記載の技術では、研削剛性の変化による工作物1回転あたりの切込み量の変動が考慮されていない。このため、仕上研削における工作物の回転数を所定の値以上とするために余裕を見た撓み位置が設定される。結果として、仕上研削時間が長くなる。   In finish grinding, it is necessary to rotate the workpiece by a predetermined number of rotations in order to ensure a predetermined accuracy. In the technique described in Patent Document 1, the variation of the cutting amount per rotation of the workpiece due to the change of the grinding rigidity is not taken into consideration. For this reason, in order to set the rotation speed of the workpiece in the finish grinding to a predetermined value or more, a bending position with a margin is set. As a result, the finish grinding time becomes longer.

本発明は上記事情に鑑みてなされたものであり、後退研削における砥石車の後退量を研削剛性に応じて決定することで、研削剛性の変化に関係なく仕上研削において最短の研削時間で所望の研削精度に研削できる研削盤を提供することを目的とする。   The present invention has been made in view of the above circumstances, and by determining the retraction amount of the grinding wheel in the reverse grinding according to the grinding rigidity, the desired grinding can be performed in the shortest grinding time in the finish grinding regardless of the change in the grinding rigidity. An object of the present invention is to provide a grinding machine capable of grinding with high grinding accuracy.

上記の課題を解決するため、請求項1に係る発明の特徴は、円筒の加工部を備えた工作物を前記円筒の軸心の周りに回転支持して砥石車を前記円筒の半径方向に切込む研削盤を用いて、同一形状の工作物を連続して研削する研削方法において、
2本目以降に研削する工作物の研削サイクルである後続研削サイクルが、
所定の前記砥石車の切込み速度を備えた第2研削工程と、
前記第2研削工程の直前に実施される、前記砥石車が工作物から離れる方向へ後退しながら研削する後退研削工程と、
前記後退研削工程の直前に実施され、前記第2研削工程における前記砥石車の切込み速度より大きな前記砥石車の切込み速度を備える第1研削工程と、
前記後退研削工程の後退量を、当工作物の前に研削された工作物の研削中に測定された実切込み量と法線研削抵抗力の比である研削剛性、前記第1研削工程で測定された法線研削抵抗力または前記第1研削工程の前記砥石車の切込み速度から演算された法線研削抵抗力のいずれかである第1法線研削抵抗力、および当工作物の第2研削工程の目標研削量から演算する後退量演算工程と、
前記第2研削工程における研削剛性を測定する第2研削剛性測定工程を備えることである。
In order to solve the above-mentioned problems, the invention according to claim 1 is characterized in that a grinding wheel is cut in a radial direction of the cylinder by rotatably supporting a workpiece having a cylindrical machining portion around the axis of the cylinder. In a grinding method for continuously grinding workpieces of the same shape using a grinding machine
The subsequent grinding cycle, which is the grinding cycle of the workpiece to be ground after the second,
A second grinding step having a predetermined cutting speed of the grinding wheel;
A reverse grinding step in which the grinding wheel is ground while moving backward in a direction away from the workpiece, which is performed immediately before the second grinding step;
A first grinding step that is performed immediately before the reverse grinding step, and has a cutting speed of the grinding wheel that is greater than a cutting speed of the grinding wheel in the second grinding step;
The amount of retraction in the reverse grinding process is measured in the first grinding process, which is the grinding rigidity, which is the ratio of the actual cutting depth measured during grinding of the workpiece ground before the workpiece and the normal grinding resistance. A first normal grinding resistance which is either a normal normal grinding resistance or a normal grinding resistance calculated from the cutting speed of the grinding wheel in the first grinding step, and the second grinding of the workpiece Retraction amount calculation process that calculates from the target grinding amount of the process,
A second grinding rigidity measuring step of measuring the grinding rigidity in the second grinding step.

請求項2に係る発明の特徴は、円筒の加工部を備えた工作物を前記円筒の軸心の周りに回転支持して砥石車を前記円筒の半径方向に切込み、同一形状の前記工作物を連続して研削する研削盤において、
前記砥石車を前記円筒の半径方向に移動させる砥石車切込み装置と、
前記加工部の直径寸法を測定する工作物径測定装置と、
研削中の法線研削抵抗力を測定する法線力測定手段と、
前記工作物径測定装置により測定した実切込み量と、前記法線力測定手段により測定した法線研削抵抗力の比として研削剛性を演算する研削剛性演算手段と、
前記研削剛性演算手段で演算した研削剛性、法線研削抵抗力、機械剛性、および目標研削量を用いて後退量を演算する後退量演算手段と、
2本目以降に研削する工作物の研削サイクルである後続研削サイクルにおいて、
第1研削工程を実施し、
前記砥石車を前記工作物から離れる方向へ後退量だけ移動させる後退研削工程を実施し、
前記第1研削工程における前記砥石車の切込み速度より小さな前記砥石車の切込み速度を備え、前記工作物径測定装置により第2実切込み量を測定し前記法線力測定手段により第2法線抵抗力を測定する第2研削工程を実施し、
前記後退量を、当工作物の前に研削された前記工作物の研削中に測定された研削剛性、前記第1研削工程で測定された法線研削抵抗力または前記第1研削工程の前記砥石車の切込み速度から演算された法線研削抵抗力のいずれかである第1法線研削抵抗力、および当工作物の前記第2研削工程の目標研削量を用いて前記後退量演算手段により演算し、
前記第2研削工程における研削剛性である第2研削剛性を、前記第2実切込み量と前記第2法線抵抗力を用いて演算すべく、
前記砥石車切込み装置、前記工作物径測定装置、前記法線力測定手段、前記研削剛性演算手段、および前記後退量演算手段を制御する制御装置と、
を備えることである。
A feature of the invention according to claim 2 is that a workpiece having a cylindrical machining portion is rotatably supported around an axis of the cylinder, and a grinding wheel is cut in a radial direction of the cylinder so that the workpiece having the same shape is obtained. In grinding machines that continuously grind,
A grinding wheel cutting device for moving the grinding wheel in the radial direction of the cylinder;
A workpiece diameter measuring device for measuring a diameter dimension of the processed portion;
Normal force measuring means for measuring normal grinding resistance force during grinding;
Grinding rigidity calculating means for calculating the grinding rigidity as a ratio of the actual cutting amount measured by the workpiece diameter measuring device and the normal grinding resistance force measured by the normal force measuring means;
Retraction amount calculation means for calculating a retraction amount using the grinding rigidity, normal grinding resistance, mechanical rigidity, and target grinding amount calculated by the grinding rigidity calculation means;
In the subsequent grinding cycle, which is the grinding cycle of the workpiece to be ground after the second,
Perform the first grinding process,
Performing a reverse grinding step of moving the grinding wheel by a retraction amount in a direction away from the workpiece;
The grinding wheel has a cutting speed smaller than the grinding wheel cutting speed in the first grinding step, the second actual cutting amount is measured by the workpiece diameter measuring device, and the second normal resistance is measured by the normal force measuring means. The second grinding process to measure the force,
The retraction amount is determined by grinding rigidity measured during grinding of the workpiece ground before the workpiece, normal grinding resistance measured in the first grinding step, or the grindstone in the first grinding step. Using the first normal grinding resistance, which is one of the normal grinding resistances calculated from the vehicle cutting speed, and the target grinding amount of the workpiece in the second grinding process, the reverse amount calculation means calculates And
In order to calculate the second grinding rigidity, which is the grinding rigidity in the second grinding step, using the second actual cutting amount and the second normal resistance force,
A control device for controlling the grinding wheel cutting device, the workpiece diameter measuring device, the normal force measuring means, the grinding rigidity calculating means, and the retraction amount calculating means;
It is to provide.

請求項1に係る発明によれば、2本目以降に研削する工作物の後退研削工程の後退量を現在の研削剛性に応じた量に設定できる。このため、研削剛性の変化に影響されずに第2研削工程における研削時間、研削精度などを所望する一定値に設定できる。   According to the first aspect of the present invention, it is possible to set the retraction amount in the reverse grinding process of the workpiece to be ground after the second one to an amount corresponding to the current grinding rigidity. For this reason, the grinding time, the grinding accuracy, etc. in the second grinding process can be set to desired constant values without being affected by the change in grinding rigidity.

請求項2に係る発明によれば、2本目以降に研削する工作物の後退研削工程の後退量を現在の研削剛性に応じた位置に設定できる。このため、第2研削工程における研削時間、研削精度などを所望する一定値にできる研削盤を提供できる。   According to the second aspect of the present invention, it is possible to set the retraction amount in the reverse grinding process of the workpiece to be ground after the second one at a position corresponding to the current grinding rigidity. For this reason, the grinding machine which can make the grinding time in a 2nd grinding process, grinding precision, etc. desired fixed value can be provided.

本実施形態の研削盤の全体構成を示す概略図である。It is the schematic which shows the whole structure of the grinding machine of this embodiment. 図1のB矢視図である。It is a B arrow line view of FIG. 仕上研削の工作物半径の変化を示す図である。It is a figure which shows the change of the workpiece radius of finish grinding. 後退研削における工作物と砥石車の位置関係を示す図である。It is a figure which shows the positional relationship of the workpiece and grinding wheel in reverse grinding. 本実施形態の連続研削サイクルを示すフローチャートである。It is a flowchart which shows the continuous grinding cycle of this embodiment. 本実施形態の初期研削サイクルを示すフローチャートである。It is a flowchart which shows the initial stage grinding cycle of this embodiment. 本実施形態の後続研削サイクルを示すフローチャートである。It is a flowchart which shows the subsequent grinding cycle of this embodiment. 本実施形態の研削剛性測定工程を示すフローチャートである。It is a flowchart which shows the grinding-rigidity measurement process of this embodiment. 本実施形態の研削剛性測定の概念を示す図である。It is a figure which shows the concept of the grinding rigidity measurement of this embodiment.

以下、本発明の実施の形態を、円筒研削盤の実施例に基づき説明する。
図1に示すように、円筒研削盤1は、ベッド2を備え、ベッド2上にX軸方向に往復可能に支持され送り用のモータ(砥石車切込み装置)8により駆動される砥石台(砥石車切込み装置)3と、X軸に直交するZ軸方向に往復可能なテーブル4を備えている。砥石台3は砥石車7を回転自在に支持し、砥石車7は砥石軸回転モータ(図示省略する)により回転駆動される。テーブル4上には、工作物Wの一端を把持して回転自在に支持し主軸モータ(図示省略する)により回転駆動され、主軸の回転位相を検出する位相検出器9を備えた主軸5と、工作物Wの他端を回転自在に支持する心押し台6が設置されている。工作物Wは主軸5と心押し台6により支持されて、研削加工時に回転駆動される。工作物Wの加工部の直径を測定する工作物径測定装置10がテーブル上に設置されている。
図2に示すように、工作物径測定装置10は、テーブルに固定されたベース11に保持された直径測定装置本体101と、直径測定装置本体101に係合し工作物Wの軸心に対して180°対向して配置された接触子102a、102bで構成される。ここでは、接触子102a、102bの対向方向はX軸とΦの角度で交差するように配置されている。
Hereinafter, embodiments of the present invention will be described based on examples of cylindrical grinding machines.
As shown in FIG. 1, a cylindrical grinding machine 1 includes a bed 2 and is supported on a bed 2 so as to be reciprocable in the X-axis direction and driven by a feed motor (grinding wheel cutting device) 8. A vehicle cutting device) 3 and a table 4 that can reciprocate in the Z-axis direction orthogonal to the X-axis. The grinding wheel base 3 rotatably supports the grinding wheel 7, and the grinding wheel 7 is rotationally driven by a grinding wheel shaft rotating motor (not shown). On the table 4, a spindle 5 provided with a phase detector 9 that grips one end of the workpiece W and rotatably supports it and is rotationally driven by a spindle motor (not shown) to detect the rotational phase of the spindle; A tailstock 6 that rotatably supports the other end of the workpiece W is provided. The workpiece W is supported by the main shaft 5 and the tailstock 6 and is rotationally driven during grinding. A workpiece diameter measuring device 10 for measuring the diameter of the processed portion of the workpiece W is installed on the table.
As shown in FIG. 2, the workpiece diameter measuring device 10 includes a diameter measuring device main body 101 held by a base 11 fixed to a table, and a diameter measuring device main body 101 engaged with an axis of the workpiece W. The contacts 102a and 102b are arranged to face each other by 180 °. Here, the facing directions of the contacts 102a and 102b are arranged so as to intersect with the X axis at an angle of Φ.

この円筒研削盤1は制御装置30を備えており、制御装置30の機能的構成として、砥石台3の送りを制御するX軸制御部31、テーブル4の送りを制御するZ軸制御部32、主軸5の回転を制御する主軸制御部33、工作物径測定装置10を制御する測定装置制御部34、演算部35などを具備している。X軸制御部31の機能として、研削時に砥石車7に作用する法線研削抵抗力をモータ8の電流値から測定する法線研削抵抗測定部311と、モータ8の回転位相から砥石台の位置を検出する砥石車位置検出部312を備えている。演算部35の機能として、研削剛性を演算する研削剛性演算手段351と、後退量を演算する後退量演算手段352と、測定値や目標値を記録する記録部353を備えている。   The cylindrical grinding machine 1 includes a control device 30. As a functional configuration of the control device 30, an X-axis control unit 31 that controls the feed of the grindstone table 3, a Z-axis control unit 32 that controls the feed of the table 4, A spindle control unit 33 that controls the rotation of the spindle 5, a measuring device control unit 34 that controls the workpiece diameter measuring device 10, an arithmetic unit 35, and the like are provided. As functions of the X-axis control unit 31, a normal grinding resistance measurement unit 311 that measures a normal grinding resistance force acting on the grinding wheel 7 during grinding from a current value of the motor 8, and a position of the grinding wheel base from the rotational phase of the motor 8. A grinding wheel position detecting unit 312 is provided. As functions of the calculation unit 35, there are provided a grinding stiffness calculation means 351 for calculating the grinding stiffness, a retraction amount calculation means 352 for calculating a retraction amount, and a recording unit 353 for recording measured values and target values.

ここで研削サイクルにおける、砥石車7の切込みを伴う最終研削工程である仕上研削の特性を説明する。仕上研削においては工作物Wを所望の直径値と真円度と表面粗さに最短の時間で研削できることが望ましい、すなわちこれらの値が所望値に到達する最小の工作物Wの回転数を設定できればよい。真円度と表面粗さについては、工作物Wの回転あたりの工作物除去量を所定値以下として、工作物Wを所定の回数だけ回転させることで所望の値とすることができる。一方、工作物Wの直径を所定の値とするのに必要な工作物回転数は研削剛性の値によりに変動する。研削剛性とは、研削部における砥石車7の工作物Wに対する実際の切込み量である実切込み量Uと、その時に作用する法線研削抵抗力Fの比で、研削剛性をkgとするとkg=F/Uとなる。研削剛性が大きいと同じ実切込み量で研削するのに要する法線研削抵抗が大きくなり、切れ味が悪いと称される。通常、研削剛性は、研削に連れて生じる研削作用面の砥粒の脱落や磨耗により徐々に変化する。   Here, the characteristics of finish grinding, which is the final grinding step with the cutting of the grinding wheel 7 in the grinding cycle, will be described. In finish grinding, it is desirable that the workpiece W can be ground to the desired diameter value, roundness and surface roughness in the shortest time, that is, the minimum number of rotations of the workpiece W at which these values reach the desired value is set. I can do it. The roundness and the surface roughness can be set to desired values by setting the amount of workpiece removal per rotation of the workpiece W to a predetermined value or less and rotating the workpiece W a predetermined number of times. On the other hand, the number of rotations of the workpiece necessary for setting the diameter of the workpiece W to a predetermined value varies depending on the grinding rigidity value. Grinding rigidity is the ratio of the actual cutting amount U, which is the actual cutting amount of the grinding wheel 7 to the workpiece W in the grinding part, and the normal grinding resistance force F acting at that time. F / U. If the grinding rigidity is high, the normal grinding resistance required for grinding with the same actual cutting depth increases, and it is said that the sharpness is poor. Usually, the grinding rigidity gradually changes due to falling off or wear of abrasive grains on the grinding surface caused by grinding.

図3に研削剛性の異なる場合の工作物半径の変化の様子を示す。図3の実線aで示す直線が研削剛性が小さい場合で、破線bで示す曲線が研削剛性が大きい場合である。仕上研削開始時の工作物Wと砥石車7の相対的な撓み量Tが同一であるとすると、仕上研削開始時に作用する法線力Fは撓み量Tに比例するため同一となる。実線aで示す研削剛性が小さい場合に、実切込み量Uが、砥石車7の工作物1回転当りの指令切込み量ΔVと等しいとする。この場合、工作物の1回転あたり同じ量が研削され、4回転した時に仕上研削における半径除去量である4×Uが研削除去され仕上げ寸法に到達する。
一方、破線bで示す研削剛性が大きい場合は、初期の実切込み量Uが指令切込み量ΔVより小さいため、工作物の回転につれて撓みと法線研削抵抗が増加しながら、工作物が4回転し撓みがTに達して法線抵抗力がFになった時に、砥石車7の指令切込み量ΔVと等しい実切込み量Uになる。その後は、工作物の1回転あたり同じ量が研削され2回転した後に仕上げ寸法に到達する。
このように、研削剛性が異なると所定の工作物径にするために必要な工作物回転数が異なることになる。研削剛性が大きいと回転数が多くなるため研削時間が長くなり、研削剛性が小さすぎると必要な回転数になる前に仕上げ寸法に到達してしまい、表面粗さや真円度を確保できない恐れがある。
本発明は、仕上研削(第2研削工程)の直前に実施される後退研削(後退研削工程)における砥石車7の後退量を、その時の研削剛性に応じた量とすることで、仕上研削開始時の撓み量Tを適正な法線抵抗が発生する値とし、仕上研削時の実切込み量Uと、仕上工作物径に到達するのに必要な工作物回転数を所望の値とするものである。
FIG. 3 shows how the workpiece radius changes when the grinding rigidity is different. A straight line indicated by a solid line a in FIG. 3 is a case where the grinding rigidity is low, and a curve indicated by a broken line b is a case where the grinding rigidity is high. When finishing the relative deflection of T 1 of the grinding start time of the workpiece W and the grinding wheel 7 is the same, the normal force F 1 acting at the finish grinding start are the same proportional to the deflection amount T 1 . When the grinding rigidity indicated by the solid line a is small, it is assumed that the actual cutting amount U 1 is equal to the command cutting amount ΔV per rotation of the workpiece of the grinding wheel 7. In this case, the same amount is ground per one rotation of the workpiece, and 4 × U 1 which is the radius removal amount in finish grinding is removed by grinding after four rotations to reach the finished dimension.
On the other hand, if grinding rigidity shown by the broken line b is large, the actual grinding depth U 2 initial is smaller than the command infeed amount [Delta] V, while increasing the rotation as bending and the normal grinding force of the workpiece, workpiece 4 rotates When the bending deflection reaches T 2 and the normal resistance force becomes F 2 , the actual cutting amount U 1 is equal to the command cutting amount ΔV of the grinding wheel 7. Thereafter, the same amount is ground per revolution of the workpiece and after two revolutions, the finished dimensions are reached.
As described above, when the grinding rigidity is different, the number of rotations of the workpiece necessary for obtaining a predetermined workpiece diameter is different. If the grinding rigidity is high, the number of rotations increases, so the grinding time becomes long.If the grinding rigidity is too low, the finished dimensions are reached before the required number of rotations, and the surface roughness and roundness may not be secured. is there.
The present invention starts the finish grinding by setting the retraction amount of the grinding wheel 7 in the reverse grinding (reverse grinding step) performed immediately before the finish grinding (second grinding step) according to the grinding rigidity at that time. The amount of deflection T 1 at the time is set to a value at which an appropriate normal resistance is generated, and the actual cutting amount U 1 at the time of finish grinding and the number of rotations of the workpiece necessary to reach the finished workpiece diameter are set to desired values. Is.

次に、図4に基づき後退研削の説明をする。
図4(a)に粗研削(第1研削工程)終了時の工作物Wと砥石車7の位置関係を示す、ここで点Oは撓み(撓みは工作物Wと砥石車7の双方に生じその和が相対撓みとなるが、砥石車7に撓みが無く工作物Wのみが相対撓み分だけ撓むとしても効果は同じであるので、以下の説明では工作物Wのみが撓むとして記述する)の無いときの工作物Wの回転中心であり、点Otは研削時の工作物Wの回転中心である。点Oと点Otの距離が撓み量Tであり、点Oと砥石車7の表面位置の距離が砥石車7の指令切込み位置Vである。この時に作用する法線研削抵抗力がFであり、この時の実切込み量がUである。撓みTと法線研削抵抗力Fの関係は工作物Wと砥石車7の間のばね定数である機械剛性kmを用いてT=F/kmと表せる。図8(b)に後退研削終了時(第2研削工程開始時)の工作物Wと砥石車7の位置関係を示す、撓み量がT、砥石車7の指令切込み位置がV、法線研削抵抗力がF、実切込み量がUである。
Next, the backward grinding will be described with reference to FIG.
FIG. 4A shows the positional relationship between the workpiece W and the grinding wheel 7 at the end of the rough grinding (first grinding step). Here, the point O is bent (the bending occurs in both the workpiece W and the grinding wheel 7). The sum is relative bending, but the effect is the same even if the grinding wheel 7 is not bent and only the workpiece W is bent by the relative bending amount. Therefore, in the following description, it is described that only the workpiece W is bent. ) Is the center of rotation of the workpiece W, and the point Ot is the center of rotation of the workpiece W during grinding. Point O and a deflection amount T 1 the distance between the point Ot, distance of the surface position of the point O and the grinding wheel 7 is commanded cut position V 1 of the grinding wheel 7. Normal grinding resistance force acting at this time is F 1, the actual depth of cut at this time is U 1. The relationship between the deflection T 1 and the normal grinding resistance force F 1 can be expressed as T 1 = F 1 / km using the mechanical stiffness km, which is the spring constant between the workpiece W and the grinding wheel 7. FIG. 8B shows the positional relationship between the workpiece W and the grinding wheel 7 at the end of backward grinding (at the start of the second grinding process). The deflection amount is T 2 and the command cutting position of the grinding wheel 7 is V 2 . The wire grinding resistance is F 2 and the actual cutting depth is U 2 .

後退位置における工作物半径Rは、図4(a)の粗研削終了時の工作物半径Rに対して仕上研削(第2研削工程)における実切込み量Uだけ小さな値となればよい。つまり、R=R+UとなりR=T+V、R+U=T+V+Uから、T+V=T+V+Uとなる。
以上より、粗研削終了時から仕上研削開始時までの後退研削工程における砥石車7の後退量Vbは、Vb=V−V=T−T−Uとなる。ここで、研削剛性kgにおける実切込み量がUとなる法線抵抗力Fは、F=U×kg=T×kmであるから、T=U×kg/kmとなる、又、T=F/kmである。T、Tを置き換えると、Vb=V−V=T−T−U=F/km−U×kg/km−Uとなる。
結局、後退量Vbは、粗研削終了時における法線研削抵抗力F、機械剛性km、仕上研削における実切込み量U、および仕上研削時の研削剛性kgから求めることができる。法線研削抵抗力Fは粗研削終了時に測定し、機械剛性kmはあらかじめ試験により測定しておき、実切込み量Uは所望値を入力すればよい。仕上研削における研削剛性kgは事前に求めることはできないが、工作物を1本研削したことによる変化量は少ないので、1本前の仕上研削における研削剛性kgの値を用いればよい。
The workpiece radius R 2 in the retracted position only needs to be smaller than the workpiece radius R 1 at the end of rough grinding in FIG. 4A by the actual cutting amount U 2 in finish grinding (second grinding process). . That is, R 1 = R 2 + U 2 , R 1 = T 1 + V 1 , R 2 + U 2 = T 2 + V 2 + U 2 , and T 1 + V 1 = T 2 + V 2 + U 2 .
From the above, the retraction amount Vb of the grinding wheel 7 in the reverse grinding process from the end of rough grinding to the start of finish grinding is Vb = V 2 −V 1 = T 1 −T 2 −U 2 . Here, since the normal resistance force F 2 at which the actual cutting amount in the grinding rigidity kg is U 2 is F 2 = U 2 × kg = T 2 × km, T 2 = U 2 × kg / km. Also, T 1 = F 1 / km. When T 1 and T 2 are replaced, Vb = V 2 −V 1 = T 1 −T 2 −U 2 = F 1 / km−U 2 × kg / km−U 2 .
Eventually, the retraction amount Vb can be obtained from the normal grinding resistance force F 1 at the end of rough grinding, the mechanical stiffness km, the actual cutting amount U 2 in finish grinding, and the grinding stiffness kg in finish grinding. Normal grinding resistance force F 1 is measured at the rough grinding completion, mechanical stiffness km is measured beforehand by pre-testing, the actual grinding depth U 2 may be input to a desired value. Although the grinding rigidity kg in the finish grinding cannot be obtained in advance, the amount of change caused by grinding one workpiece is small, so the value of the grinding rigidity kg in the last finish grinding may be used.

機械剛性kmの測定の一例として以下の方法がある。砥石車7の回転を停止させた状態で砥石車7と工作物Wを接触させその時のモータ8の電流値Aを記録し、砥石台3を所定量Vg切込み後停止させた時のモータ8の電流値Aを記録する。この場合の機械剛性kmは、モータの推力定数をCとすると、km=C×(A−A)/Vgで算出できる。 As an example of the measurement of the mechanical stiffness km, there is the following method. The grinding wheel 7 and the workpiece W are brought into contact with the grinding wheel 7 stopped, the current value A 0 of the motor 8 at that time is recorded, and the grinding machine 3 is stopped after cutting the grinding wheel table 3 by a predetermined amount Vg. It records the current value a 1 of the. The mechanical stiffness km in this case can be calculated as km = C × (A 1 −A 0 ) / Vg, where C is the thrust constant of the motor.

以下に、本研削盤1において、工作物Wを連続して研削する研削方法について説明する。
あらかじめ、機械剛性km、工作物回転速度、粗研削終了径、中仕上研削終了径、仕上研削終了径、仕上研削時の実切込み量Uなどを記録部353へ入力しておく。
はじめに、メイン工程について図5のフローチャートに基づき説明する。砥石車7を回転させる(S1)。連続サイクルの終了か否か判定する。終了であればステップS10へ移動し、終了しない場合はステップS3へ移動する(S2)。未研削の工作物Wを搬入する(S3)。砥石修正直後か判定する。修正直後であればステップS5へ移動し、そうでなければステップS6へ移動する(S4)。初期研削サイクル(詳細は後に説明)を実施後、ステップS7へ移動する(S5)。後続研削サイクル(詳細は後に説明)を実施する(S6)。研削終了した工作物を搬出する(S7)。砥石修正の要否を判定する。砥石修正が必要ならばステップS9へ移動し、不要であればステップS2へ移動する(S8)。砥石修正サイクルを実施後ステップS2へ移動する(S9)。連続研削サイクルの終了処理を実施し、連続サイクルを終了する(S10)。
Below, the grinding method which grinds the workpiece W continuously in this grinding machine 1 is demonstrated.
Advance by entering mechanical stiffness km, workpiece rotation speed, the rough grinding completion diameter, medium finishing grinding completion diameter, fine grinding completion diameter, and the actual grinding depth U 2 during finish grinding to the recording unit 353.
First, the main process will be described based on the flowchart of FIG. The grinding wheel 7 is rotated (S1). It is determined whether or not the continuous cycle is completed. If completed, the process proceeds to step S10, and if not completed, the process proceeds to step S3 (S2). An unground workpiece W is carried in (S3). It is determined whether the grinding wheel has been corrected. If it is just after correction, it will move to step S5, otherwise, it will move to step S6 (S4). After performing the initial grinding cycle (details will be described later), the process moves to step S7 (S5). A subsequent grinding cycle (details will be described later) is performed (S6). The workpiece after grinding is carried out (S7). Judge whether or not the grinding wheel needs to be corrected. If grinding wheel correction is necessary, the process moves to step S9, and if not necessary, the process moves to step S2 (S8). After executing the grindstone correction cycle, the process moves to step S2 (S9). The end processing of the continuous grinding cycle is performed, and the continuous cycle is ended (S10).

初期研削サイクルについて、図6のフローチャートに基づき説明する。
砥石車7を粗研削開始位置まで早送りで切込む(S20)。粗研削切込み速度で砥石車7を切込み、工作物Wの直径が第1粗研削終直径に達して、工作物径測定装置10から第1粗研削終了信号が出力されたら粗研削切込みを終了する(S21)。中仕上研削切込み速度で砥石車7を切込み、工作物Wの直径が中仕上研削終了直径に達して、工作物径測定装置10から中仕上研削終了信号が出力されたら中仕上研削切込みを終了する(S22)。仕上研削工程を開始する。仕上研削切込み速度で砥石車7を切込む(S23)。研削剛性測定工程(詳細は後に説明)を実施する(S24)。工作物Wの直径が仕上直径に達して工作物径測定装置10から、仕上研削終了信号が出力されたら仕上研削工程を終了する(S25)。砥石車7を早送り後退させる(S26)。
The initial grinding cycle will be described based on the flowchart of FIG.
The grinding wheel 7 is cut at a rapid feed to the rough grinding start position (S20). When the grinding wheel 7 is cut at the rough grinding cutting speed, the diameter of the workpiece W reaches the first rough grinding final diameter, and the first rough grinding end signal is output from the workpiece diameter measuring device 10, the rough grinding cutting is finished. (S21). When the grinding wheel 7 is cut at the intermediate finishing grinding cutting speed, the diameter of the workpiece W reaches the intermediate finishing grinding end diameter, and the intermediate finishing grinding end signal is output from the workpiece diameter measuring device 10, the intermediate finishing grinding cutting ends. (S22). Start the finish grinding process. The grinding wheel 7 is cut at the finish grinding cutting speed (S23). A grinding rigidity measurement step (details will be described later) is performed (S24). When the diameter of the workpiece W reaches the finishing diameter and a finishing grinding end signal is output from the workpiece diameter measuring apparatus 10, the finishing grinding process is finished (S25). The grinding wheel 7 is fast-forwarded and retracted (S26).

後続研削サイクルについて、図7のフローチャートに基づき説明する。
砥石車7を早送りで前進させる(S30)。粗研削(第1研削工程)切込み速度で砥石車7を切込む(S31)。工作物Wの直径が法線抵抗測定開始直径に達して工作物径測定装置10から法線抵抗測定開始信号が出力されたら、法線研削抵抗力Fをモータ8の電流値から法線抵抗測定部311で測定し、記録部353に記録する(S32)。後退研削工程における砥石車7の後退量Vbを式Vb=F/km−U×(kg/km+1)を用いて後退量演算手段352で演算し、記録部353に記録する(S33)。工作物Wの直径が第2粗研削終了直径に達して工作物径測定装置10から、第2粗研削終了信号が出力されたら粗研削工程(第1研削工程)を終了する(S34)。後退研削を実施する。工作物が1回転する間に砥石車7をVb後退させる(S35)。仕上研削(第2研削工程)を開始し、仕上研削切込み速度で砥石車7を切込む(S36)。研削剛性測定工程(詳細は後に説明)を実施する(S37)。工作物Wの直径が仕上直径に達して工作物径測定装置10から、仕上研削終了信号が出力されたら仕上研削を終了する(S38)。砥石車7を早送り後退させる(S39)。
The subsequent grinding cycle will be described based on the flowchart of FIG.
The grinding wheel 7 is moved forward by rapid traverse (S30). The grinding wheel 7 is cut at the cutting speed at the rough grinding (first grinding step) (S31). When the diameter of the workpiece W reaches the normal resistance measurement start diameter and a normal resistance measurement start signal is output from the workpiece diameter measuring device 10, the normal grinding resistance force F 1 is calculated from the current value of the motor 8 to the normal resistance. The measurement is performed by the measurement unit 311 and recorded in the recording unit 353 (S32). The retraction amount Vb of the grinding wheel 7 in the reverse grinding step is calculated by the retraction amount calculating means 352 using the formula Vb = F 1 / km−U 2 × (kg / km + 1) and recorded in the recording unit 353 (S33). When the diameter of the workpiece W reaches the second rough grinding end diameter and a second rough grinding end signal is output from the workpiece diameter measuring apparatus 10, the rough grinding step (first grinding step) is ended (S34). Perform reverse grinding. While the workpiece is rotated once, the grinding wheel 7 is moved backward by Vb (S35). Finish grinding (second grinding step) is started, and the grinding wheel 7 is cut at the finish grinding cutting speed (S36). A grinding rigidity measurement step (details will be described later) is performed (S37). When the diameter of the workpiece W reaches the finishing diameter and a finishing grinding end signal is output from the workpiece diameter measuring apparatus 10, finishing grinding is finished (S38). The grinding wheel 7 is fast-forwarded and retracted (S39).

研削剛性測定工程について、図8のフローチャートと図9の研削剛性測定の概念図に基づき説明する。
図9(a)に示すように、工作物径測定装置10の接触子102aと接触する点Aと、点Aに対して工作物回転軸心に対して180度対向する点Bの間の工作物直径Dを、工作物径測定装置10により測定し記録部353に記録する(S50)。点Aが研削作用部に位置するように工作物WをΦ°回転させる(S51)。図9(b)に示すように、点Aが研削作用部において研削される時の法線研削抵抗Fを測定し記録部353に記録する。法線研削抵抗Fはモータ8の推力定数Cとこの時に流れる電流値Amの積で算出される(S52)。工作物Wを(180−Φ)°回転させる(S53)。図8(c)に示すように、工作物径測定装置10の接触子102aと点Bが接触する位置で、工作物直径Dを工作物径測定装置10により測定し記録部353に記録する(S54)。
以上の一連の測定により、点Aを研削する前の工作物直径Dと研削後の工作物直径Dを測定でき、工作物直径Dの値から工作物直径Dの値を差引くことで、点Aが研削された量、すなわち砥石車7の工作物Wに対する実切込み量Uの測定ができ、U=D−Dとなる。また、ステップS52で点Aを研削中の法線研削抵抗力Fを測定できる。研削剛性kgは、実切込み量と法線研削力の比であり式Kg=F/Uにより求めることができる。
研削剛性演算手段351で研削剛性kgを式kg=F/(D−D)により演算し、記録部353内の研削剛性値の値を上書きする。(S55)。
The grinding stiffness measurement process will be described based on the flowchart of FIG. 8 and the conceptual diagram of the grinding stiffness measurement of FIG.
As shown in FIG. 9A, the workpiece between a point A that contacts the contact 102a of the workpiece diameter measuring apparatus 10 and a point B that faces the point A and is 180 degrees opposite to the workpiece rotation axis. things diameter D 1, measured by the workpiece diameter measuring device 10 is recorded in the recording unit 353 (S50). The workpiece W is rotated by Φ ° so that the point A is positioned at the grinding portion (S51). As shown in FIG. 9 (b), the normal grinding resistance F 2 when the point A is ground in the grinding action part is measured and recorded in the recording part 353. Normal grinding force F 2 is calculated by the product of the current value Am flowing when the the thrust constant C of the motor 8 (S52). The workpiece W is rotated by (180−Φ) ° (S53). As shown in FIG. 8 (c), at a position where the contact 102a and the point B of the workpiece diameter measuring device 10 contacts was measured by the workpiece diameter measuring device 10 the workpiece diameter D 2 is recorded in the recording unit 353 (S54).
Through the above series of measurements, the workpiece diameter D 1 before grinding the point A and the workpiece diameter D 2 after grinding can be measured, and the value of the workpiece diameter D 2 is subtracted from the value of the workpiece diameter D 1. Thus, the amount by which the point A is ground, that is, the actual cutting amount U with respect to the workpiece W of the grinding wheel 7 can be measured, and U = D 1 −D 2 . Further, it is possible to measure the normal grinding resistance force F 2 in the grinding point A in step S52. The grinding rigidity kg is a ratio between the actual cutting amount and the normal grinding force, and can be obtained by the equation Kg = F 2 / U.
The grinding rigidity kg is calculated by the expression kg = F 2 / (D 1 -D 2 ) by the grinding rigidity calculating means 351, and the value of the grinding rigidity value in the recording unit 353 is overwritten. (S55).

以上のように、本発明の連続研削方法を用いると、同一形状の工作物を連続で研削する場合に、砥石車7の研削作用面の状態による研削剛性の変化に影響されること無く、仕上研削における1回転あたりの研削量と、仕上直径に達するまでの工作物の回転数を同一とすることができる。このため、所望の精度の工作物を所定の研削時間で研削することができる。   As described above, when the continuous grinding method of the present invention is used, when a workpiece having the same shape is continuously ground, the finish is not affected by the change in grinding rigidity due to the state of the grinding surface of the grinding wheel 7. The amount of grinding per rotation in grinding and the number of rotations of the workpiece until reaching the finishing diameter can be made the same. For this reason, a workpiece with a desired accuracy can be ground in a predetermined grinding time.

(その他の実施形態)
上記事例では本発明を円筒外径の研削に適用した例について説明したが、内面研削にも適用できる。
また、後退研削工程における後退量を、直前の粗研削工程において測定した法線研削抵抗力Fの値を用いて演算したが、1本前の工作物の粗研削工程において測定した法線研削抵抗力Fを用いて演算してもよいし、1本前に測定した研削剛性と粗研削における工作物1回転当りの砥石車7の切込み量の積で求めた法線研削抵抗力Fを用いて演算してもよい。こうすることで、研削サイクル中に後退量を演算する時間を要しないで、本連続研削方法を実施できる。
(Other embodiments)
In the above example, the example in which the present invention is applied to grinding of a cylindrical outer diameter has been described, but it can also be applied to internal grinding.
Further, erosion of the retraction grinding process, has been calculated using the normal value of the grinding resistance F 1 measured in the rough grinding step immediately before, the normal grinding measured in the rough grinding step of the one previous workpiece The resistance force F 1 may be used for the calculation, or the normal grinding resistance force F 1 obtained by the product of the grinding rigidity measured immediately before and the cutting amount of the grinding wheel 7 per rotation of the workpiece in rough grinding. You may calculate using. In this way, the continuous grinding method can be implemented without requiring time for calculating the retraction amount during the grinding cycle.

W:工作物 3:砥石台 4:テーブル 5:主軸 6:心押し台 7:砥石車 8:モータ 9:位相検出器 10:工作物径測定装置 30:制御装置 31:X軸制御部 35:演算部 102a、102b:接触子 311:法線力測定手段 312:砥石車位置検出部 351:研削剛性演算手段 352:後退量演算手段 353:記録部 W: Workpiece 3: Whetstone stand 4: Table 5: Spindle 6: Tailstock 7: Whetstone wheel 8: Motor 9: Phase detector 10: Workpiece diameter measuring device 30: Control device 31: X-axis control unit 35: Arithmetic units 102a and 102b: Contacts 311: Normal force measuring means 312: Grinding wheel position detecting unit 351: Grinding rigidity calculating means 352: Retraction amount calculating means 353: Recording unit

Claims (2)

円筒の加工部を備えた工作物を前記円筒の軸心の周りに回転支持して砥石車を前記円筒の半径方向に切込む研削盤を用いて、同一形状の工作物を連続して研削する研削方法において、
2本目以降に研削する工作物の研削サイクルである後続研削サイクルが、
所定の前記砥石車の切込み速度を備えた第2研削工程と、
前記第2研削工程の直前に実施される、前記砥石車が工作物から離れる方向へ後退しながら研削する後退研削工程と、
前記後退研削工程の直前に実施され、前記第2研削工程における前記砥石車の切込み速度より大きな前記砥石車の切込み速度を備える第1研削工程と、
前記後退研削工程の後退量を、当工作物の前に研削された工作物の研削中に測定された実切込み量と法線研削抵抗力の比である研削剛性、前記第1研削工程で測定された法線研削抵抗力または前記第1研削工程の前記砥石車の切込み速度から演算された法線研削抵抗力のいずれかである第1法線研削抵抗力、および当工作物の第2研削工程の目標研削量から演算する後退量演算工程と、
前記第2研削工程における研削剛性を測定する第2研削剛性測定工程を備える研削方法。
A workpiece having a cylindrical processing part is rotatably supported around the axis of the cylinder and a grinding wheel for cutting a grinding wheel in the radial direction of the cylinder is used to continuously grind the workpiece having the same shape. In the grinding method,
The subsequent grinding cycle, which is the grinding cycle of the workpiece to be ground after the second,
A second grinding step having a predetermined cutting speed of the grinding wheel;
A reverse grinding step in which the grinding wheel is ground while moving backward in a direction away from the workpiece, which is performed immediately before the second grinding step;
A first grinding step that is performed immediately before the reverse grinding step, and has a cutting speed of the grinding wheel that is greater than a cutting speed of the grinding wheel in the second grinding step;
The amount of retraction in the reverse grinding process is measured in the first grinding process, which is the grinding rigidity, which is the ratio of the actual cutting depth measured during grinding of the workpiece ground before the workpiece and the normal grinding resistance. A first normal grinding resistance which is either a normal normal grinding resistance or a normal grinding resistance calculated from the cutting speed of the grinding wheel in the first grinding step, and the second grinding of the workpiece Retraction amount calculation process that calculates from the target grinding amount of the process,
A grinding method comprising a second grinding stiffness measuring step for measuring grinding stiffness in the second grinding step.
円筒の加工部を備えた工作物を前記円筒の軸心の周りに回転支持して砥石車を前記円筒の半径方向に切込み、同一形状の前記工作物を連続して研削する研削盤において、
前記砥石車を前記円筒の半径方向に移動させる砥石車切込み装置と、
前記加工部の直径寸法を測定する工作物径測定装置と、
研削中の法線研削抵抗力を測定する法線力測定手段と、
前記工作物径測定装置により測定した実切込み量と、前記法線力測定手段により測定した法線研削抵抗力の比として研削剛性を演算する研削剛性演算手段と、
前記研削剛性演算手段で演算した研削剛性、法線研削抵抗力、機械剛性、および目標研削量を用いて後退量を演算する後退量演算手段と、
2本目以降に研削する工作物の研削サイクルである後続研削サイクルにおいて、
第1研削工程を実施し、
前記砥石車を前記工作物から離れる方向へ後退量だけ移動させる後退研削工程を実施し、
前記第1研削工程における前記砥石車の切込み速度より小さな前記砥石車の切込み速度を備え、前記工作物径測定装置により第2実切込み量を測定し前記法線力測定手段により第2法線抵抗力を測定する第2研削工程を実施し、
前記後退量を、当工作物の前に研削された前記工作物の研削中に測定された研削剛性、前記第1研削工程で測定された法線研削抵抗力または前記第1研削工程の前記砥石車の切込み速度から演算された法線研削抵抗力のいずれかである第1法線研削抵抗力、および当工作物の前記第2研削工程の目標研削量を用いて前記後退量演算手段により演算し、
前記第2研削工程における研削剛性である第2研削剛性を、前記第2実切込み量と前記第2法線抵抗力を用いて演算すべく、
前記砥石車切込み装置、前記工作物径測定装置、前記法線力測定手段、前記研削剛性演算手段、および前記後退量演算手段を制御する制御装置と、
を備える研削盤。
In a grinding machine for grinding and grinding a workpiece having the same shape continuously by rotating and supporting a workpiece having a cylindrical processing portion around the axis of the cylinder and cutting a grinding wheel in a radial direction of the cylinder.
A grinding wheel cutting device for moving the grinding wheel in the radial direction of the cylinder;
A workpiece diameter measuring device for measuring a diameter dimension of the processed portion;
Normal force measuring means for measuring normal grinding resistance force during grinding;
Grinding rigidity calculating means for calculating the grinding rigidity as a ratio of the actual cutting amount measured by the workpiece diameter measuring device and the normal grinding resistance force measured by the normal force measuring means;
Retraction amount calculation means for calculating a retraction amount using the grinding rigidity, normal grinding resistance, mechanical rigidity, and target grinding amount calculated by the grinding rigidity calculation means;
In the subsequent grinding cycle, which is the grinding cycle of the workpiece to be ground after the second,
Perform the first grinding process,
Performing a reverse grinding step of moving the grinding wheel by a retraction amount in a direction away from the workpiece;
The grinding wheel has a cutting speed smaller than the grinding wheel cutting speed in the first grinding step, the second actual cutting amount is measured by the workpiece diameter measuring device, and the second normal resistance is measured by the normal force measuring means. The second grinding process to measure the force,
The retraction amount is determined by grinding rigidity measured during grinding of the workpiece ground before the workpiece, normal grinding resistance measured in the first grinding step, or the grindstone in the first grinding step. Using the first normal grinding resistance, which is one of the normal grinding resistances calculated from the vehicle cutting speed, and the target grinding amount of the workpiece in the second grinding process, the reverse amount calculation means calculates And
In order to calculate the second grinding rigidity, which is the grinding rigidity in the second grinding step, using the second actual cutting amount and the second normal resistance force,
A control device for controlling the grinding wheel cutting device, the workpiece diameter measuring device, the normal force measuring means, the grinding rigidity calculating means, and the retraction amount calculating means;
A grinding machine comprising
JP2011265855A 2011-12-05 2011-12-05 Grinding method and grinding machine Expired - Fee Related JP5857692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011265855A JP5857692B2 (en) 2011-12-05 2011-12-05 Grinding method and grinding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011265855A JP5857692B2 (en) 2011-12-05 2011-12-05 Grinding method and grinding machine

Publications (2)

Publication Number Publication Date
JP2013116534A true JP2013116534A (en) 2013-06-13
JP5857692B2 JP5857692B2 (en) 2016-02-10

Family

ID=48711446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011265855A Expired - Fee Related JP5857692B2 (en) 2011-12-05 2011-12-05 Grinding method and grinding machine

Country Status (1)

Country Link
JP (1) JP5857692B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07266224A (en) * 1994-03-29 1995-10-17 Toyoda Mach Works Ltd Grinder
JPH0839427A (en) * 1994-07-22 1996-02-13 Toyoda Mach Works Ltd Grinding device
JPH10128661A (en) * 1996-10-25 1998-05-19 Ntn Corp Grinding control method and device for grinding machine
JP2008093787A (en) * 2006-10-12 2008-04-24 Shigiya Machinery Works Ltd Grinder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07266224A (en) * 1994-03-29 1995-10-17 Toyoda Mach Works Ltd Grinder
JPH0839427A (en) * 1994-07-22 1996-02-13 Toyoda Mach Works Ltd Grinding device
JPH10128661A (en) * 1996-10-25 1998-05-19 Ntn Corp Grinding control method and device for grinding machine
JP2008093787A (en) * 2006-10-12 2008-04-24 Shigiya Machinery Works Ltd Grinder

Also Published As

Publication number Publication date
JP5857692B2 (en) 2016-02-10

Similar Documents

Publication Publication Date Title
US8287329B2 (en) Grinding machine and grinding method
CN102848320B (en) The apparatus for shaping of grinding machine
JP3467807B2 (en) Grinding equipment
JP5353586B2 (en) Machine tool and processing method
JP5418148B2 (en) Grinding machine and grinding method
JP5862233B2 (en) Actual cutting amount measuring method, machining method and machine tool
JP6089774B2 (en) Grinding machine and grinding method
JP7326843B2 (en) Grinding method and grinder
JP5395570B2 (en) Cylindrical grinding method and apparatus
JP5857692B2 (en) Grinding method and grinding machine
JP5970964B2 (en) Grinding resistance measuring method and grinding machine
JP6102502B2 (en) Grinding machine and grinding method
EP0950214B1 (en) Method of controlling a machine tool
JP6089752B2 (en) Grinding machine and grinding method
JP6186739B2 (en) Grinding machine and grinding method
JP3783998B2 (en) Radius measurement type sizing control method and radius measurement type sizing device
JP2013071204A (en) Rigidity measuring method and grinder
JP3812869B2 (en) Cylindrical grinding method and apparatus
JP6903876B2 (en) Grinding device and grinding method
JP7562985B2 (en) Truing Equipment
JP5724666B2 (en) Runout accuracy measuring method and grinding machine
JP2000094322A (en) Precision grinding machine and grinding wheel radius measuring method
JP2010064192A (en) Grinder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151130

R150 Certificate of patent or registration of utility model

Ref document number: 5857692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees